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The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking vacuum in
Schwarzschild spacetime has been calculated by means of the method of covariant point separation.
It is found that (T„")separates naturally into the sum of two terms. The first coincides with an
approximate expression suggested by Page on the basis of a Gaussian approximation to the proper-
time Green's function. The second term is a "remainder" which comprises sums over mode func-
tions that may be evaluated numerically. It is found that the total expression is in good qualitative
agreement with Page's approximation. These results are at variance with earlier numerical results
given by Fawcett which purported to show that the true value of (T„") differed in important
respects from Page's approximation. The error in Fawcett's calculation is explained.

I. INTRODUCTION

In this paper we calculate the vacuum expectation value
of the stress-energy tensor for the conformally invariant
scalar field in the region exterior to the horizon of a
Schwarzschild black hole. The vacuum state under con-
sideration is the Hartle-Hawking' vacuum, which rep-
resents a black hole of mass M in unstable thermal equili-
brium with a bath of blackbody radiation of local tem-
perature
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Preliminary results of this calculation have been presented
in Ref. 3.

We find that the expression for (T„")„„splitsnatural-
ly into two parts:
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The first part, consisting of the first two terms, is identi-
cal to the expression obtained by Page by means of a
Gaussian approximation to the proper-time propagator.
As described by Page, this part has the trace and asymp-
totic behavior expected from the stress tensor.

The second part contains 6& which is composed of a
traceless combination of several types of mode sums. Our
numerical evaluation of 5&" shows that Page's approxi-
mate expression dominates ( T& )«„, 6&" does not signifi-
cantly affect its character.

These results clearly differ from earlier numerical work
published by Fawcett, which purported to show that the
true value of (T„")«„had significant differences from
Page's approximation. We show that this discrepancy

arises from an oversight in Fawcett's analysis prior to his
numerical calculation.

II. RENORMALIZATION OF ( T„")

We shall calculate the vacuum expectation value of the
stress-energy tensor using the operator expression

Using the geodesic point-separation scheme of DeWitt
and Christensen, the renormalized value of (T&") is
given in terms of the Hartle-Hawking propagator G and
the bivectors of parallel transport g~ „by the expression
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( T„")„„=lim I i—[ ,'(—G.„g "+6'" g „) —, 6—, p.g pg„" —&(6;„"+6; pg „gp")] (—T„")..bt,,tI (2.2)

where ( T„"),„b„„tare the subtraction terms of Christensen. These subtraction terms are
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(o and rye are defined in Appendix 8).
In principle, the knowledge of a single component of ( T& ) in Schwarzschild spacetime is sufficient to determine all

of its components. Conventionally, (Te ) is selected as the component to be evaluated. We will continue this tradition
and demonstrate only the calculation of ( Tee)„„.

It is first necessary to evaluate (Tee),„b„„t. In Schwarzschild spacetime the Riemann tensor may be written in the
OITi1

2M —M 2M
abed 3 (gacgbd gadgcb )~ aibj 3 gabgij ~ Rijkl 3 (gikgjl gilgjk ) ~r r r

(2.4)

where abed run over r and t and ijkl run over 8 and P. An elementary calculation reveals

r M
gezsubtfact 2 2 ~ 2 4

/T
2m o. 360m r

(2.5)

The form above is valid in Schwarzschild spacetime whenever tyi' has zero angular components.
From Eq. (2.2) we see that the expression for ( Tee)j„„takes the form
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(2.6)

where in the last equation we have explicitly shown the forms of g e, g e, and gee. The covariant derivatives have been
written as partial derivatives plus Christoffel symbols. The only Christoffel symbol which appears in Eq. (2.6) is

I "ee—— (r —2M) . — (2.7)

It is shown in Ref. 9 that, for imaginary values of the Schwarzschild "time" coordinate t = ir, this p—ropagator may
be expressed, when r'&r, in the form

00 00

GH( ir, r, 8,$; ir', r', 8—', rtt') = —
2 2 g cosnic(r r') g (21 +1)P—i(cosy)[pi"(g&)qi"(g& )/n —2Pi(g& )Qi(g& )],

32m. M 1=0

(2.8)

where

cosy =cos8 cos8'+ sin8 sin8'cos(rtr P'), g= ——1, ir =
M ' 4M'
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and g'( and g) denote the smaller and the greater of g and g'. Pl and Ql are Legendre functions and pl" and ql" are solu-
tions of the radial equation

(g2 —1) —l (l +1)—,8 (g) =0
16 (g2

(2.9)

specified by the requirements that, for n )0, pl" (g) is the solution that remains bounded as g~ 1 and ql"(g) is the solution
that tends to zero as g~ ao. These solutions are normalized by requiring

Pl"(4) (4-1—)"" ql"(4) -(4—1) "" as 0 (2.10)

As discussed in Ref. 9, this form for the propagator is well suited to the type of problem at hand. The expression (2.8)
for the propagator will not contain divergent l sums as partial coincidence limits are taken.

Use of the expression (2.8) for the Hartle-Hawking propagator brings ( Ts )„„into the form
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where e=r r' In the—par. tial coincidence limit g=g', 9=8', and P=P', Eq. (2.11) becomes
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where terms involving Legendre functions have been replaced using identities proved in Appendix A. We have freely

added terms to Eq. (2.12) which are proportional to
00

g n cos(nate) =0 . (2.13)

These terms have been inserted to make explicit the convergence of the l sums. For large I the WKB approximants indi-

cate that the l summands in Eq. (2.12) are all 0 (l ). The inverse powers of e in (2.11) have been replaced with n sums

shown in Appendix B to be equivalent up to terms of order e which will not survive the limiting process.
Unfortunately, while the expression on the left-hand side of (2.12) is finite and unambiguous, it is expressed in terms

of n sums which are not separately finite. We may remedy this by distributing the O(n ) and O(n) terms, which

originated as subtraction terms, among the other sums. In this effort we are guided by the WKB form of the product
pi"(g)qi"(g). This procedure provides
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Each of the n sums is now individually finite, and we inay take the indicated limit.
The final term in (2.14) contains the finite contributions from Christensen s subtraction terms, as well as contributions

from products of bivectors of parallel transport with inverse powers of e. We will return to discuss this term after exam-
ining the remainder of Eq. (2.14).

When the limit is taken we find

where

Z' 13

90(85rM)
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hii = —Si —Sq+2S3 —(g—1)S4—2S5 . (2.16)

The forms of the S; are given in Table I.
To show the convergence of the n sums which appear in the S; we may follow the procedure of Ref. 9. A short exam-

ination reveals

Si —— g n [~„(g)+g„(g)],
n=i

S4 ——
2 g [J n(g)+7n(g)],

1 d

(g+ I)' d

(2.17)

(2.18)

S5=, g [J,(g)+g, (g)],
4(g+ I)' „=1

with

(2.19)
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The 8'~""(g) are given in Table II. Ji'n(g') and gn(g) were shown in Ref. 9 to be 0(n ). Only Sz and S3 require fur-
ther study. We will show that the summands of S2 and S3 are both 0 (n ) for large n.

TABLE I. A table of the sums that appear in 6„".
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TABLE II. The WKB approximants.
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We will begin by examining the 1 sum in S3. As was shown in Ref. 9, it may be replaced by a contour integral

21+1, z ~
2(1+I') n (/+ I) 1
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1
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with y the contour in Fig. 1. Using

2l
cotml = 1+—

e —2m ~i
(2.23)

and rotating the contour of the integral of the second term to y depicted in Fig. 2 [the rotation of the contour is allow-
able in view of the analytic properties of pi"(g) and, qi"(g) (Ref. 10)], we have
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l 0 n
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To 3&g(g) we may subtract and add again the third-order WKB approximant to pi"(g)qi"(g) ln:
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3&n(g) = f dl (2l +1)(l+ —,
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The second integral in (2.27) may be evaluated explicitly. We obtain
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We observe that the terms cubic and linear in n exactly cancel the last two terms in large square brackets in S3.
We may isolate the O(n ) contribution to 3g„(g') by subtracting and adding again the first WKB approximant

evaluated at A, =O:
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Evaluating the second integral, we find
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Note that the final term in (2.30) exactly cancels the 0 (n ') behavior of 3&n(g). Assembling these results we have

, g [P'(P+37.(k)l(/+1)
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where the Wsi"(g) and WPI"(g) are defined in Appendix C.
We may write

3/n(g) + f 2' P —I/2+i'(f)q —I/2+ii. (g) w —I/2(f) (2.33)
e +1

We have shown that 3'(g) and 3g n(g) are O(n ) for large n.
A similar procedure shows that the n summand of S2 is O(n ) for large n. We will not show the steps involved,

only note the necessary intermediate results for the interested reader. We have

y
-' pg,'"" +pg,'"" +pg,'"" +p p,'"" +pp, '""

n (/+1) n (/+1) (~2 16~ 17) (2.34)
96(g—1) 48(g —1)
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S&——
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~„(g)and ~„(g)are each O(n ) for large n. These results are exact.
The other components of the stress-energy tensor are also amenable to this process. We find
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with

5,'= 5S) —S2 —S3—S4+S5, (2.40)
S) —,S) ——44, (g—1)

2
+1

' IO

' 10

g(3), (2.42)

6„"=—3S) + 3S2 —3S3+ (2g —1 )S4+3ss . (2.41)

The first two terms in (2.39) are exactly the expression
that Page obtained. We will show presently that the con-
tribution of b,„does not significantly alter the character
of (T„")„„from that expected on the basis of Page's ap-
proximation.

At this point we may approximate the S s by replacing
the integrands of the W„(g)'s and g „(g)'s by WKB terms
of the next higher order. For zJr„(g), sg„(g), pW„(g),
and s7„(g) this amounts to using the O(n ) terms.
This procedure yields the following asymptotic forms,
valid for large r:

—1 2
aS2 —

430080 $+ I

Xg(3)(931( —2058$

—5256(' +6298/+ 1653), (2.43)

—(/2 Re 4

- I/2 I 2

Y

4 Re&

FIG. 1. The curve y used in converting the l sum to a con-
tour integral.

FIG. 2. The curve y' used to evaluate 3g „(g). The crosses
correspond to the poles of the function qP(g).
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FIG. 3. [90(8aM) /H]( Tea) as a function of g. The dashed
line represents Page's approximation.

FIG. 5. [90(8mM)"/n ](T,") as a function of g. The dashed

line represents Page's approximation.

—(g —1) 2
322560 /+1

10 regular in a freely falling frame on the future horizon. As
discussed in Ref. 9, this breakdown can be traced to the
fact that the radial function q&"(g) contains a logarithm
which is not present in its WKB approximation.
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FIG. 4. [90(8m.M) /m ](T,') as a function of g. The dashed
line represents Page's approximation.

The approximate values for ( T&'),«obt ai ned by the use
of the, S; are presented in Figs. 3—5 as dotted curves.

One might expect these asymptotic forms to also apply
as r~2M because the criterion for the validity of the
WKB approximation holds both as r —+ oo and as r~2M.
This cannot be the case as evidenced by the fact that the

,S; predict (T,')«„&(T„")«„atr =2M, whereas these
two components must be equal in order for ( T„")„„to be

III. NUMERICAL EVALUATION OF ( T„")

The expressions for the S; in terms of integrals are not
amenable to numerical evaluation. We will begin with the
forms of the S; given in Table I and obtain more suitable
expressions.

First we must consider the evaluation of the l sums
which appear in the S;. Each l sum is of the form

r

F(l,pI"(g), q("(g) ) G(l,g)—
l=0

where F is a functional which may contain derivatives.
For each of these sums, we will subtract and then add
again the WKB approximant to F(l,p~"(g), qP(g)) through
terms of order l . Symbolically, this procedure yields

[F(lpP(k»qP(k» —FwKB(l, n, g)]
2l+1

I=O n

FwKn(l, n, g) G(l,g)—2l +1
1=0 n

All of the sums of the first type will converge rapidly.
An explicit expression exists for the FwKs(l, n, g), so sums
of the second type are easily evaluated. For each n and g,
the first 28 FwKn(l, n, g) are obtained as double precision
numbers. A 15-term Richardson extrapolation (see Ap-
pendix D) then returns a value for the sum which is accu-
rate to ten significant figures.

Values for sums of the first type must be obtained in a
more tedious manner. In general, these sums of the
difference between a functional of p&"(g) and qt"(g) and a
WKB approximant of it, will converge more slowly than
the similar sum which appeared in b, (r), so higher 1 terms
will provide a larger contribution. To achieve dependable
values, the functions p~"(g) and q~"(g) and their derivatives
must be evaluated very accurately to prevent the greater
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Its derivative gives

de (g) dpi'(g) p dx

(x 2 —1)[p~"(x )]i

2n

(g —1)pi"(g)
(3.2)

For values of their arguments less than 3.0, pi"(g) and its
derivative may be evaluated as double precision sums and
for values of their arguments greater than 3.0 a sixth-
order predictor-corrector method applies. Transformation
of the integral to a finite range and an extended ten-point
integration routine achieves an accuracy of 12 significant
figures in qi"(g).

cancellation, which occurs for large l, from contributing
significant errors.

The function qi"(g) is defined in terms of pi"(g) by

(3.1)

The use of double precision in the evaluation of the l
summands allows the use of an iterated Shanks transfor-
mation scheme to be used to evaluate the l sums. The
desired accuracy is reached with the first 30 terins.

The evaluation of the integral which appears in (3.1)
and (3.2) is by far the most time-consuming portion of the
numerical program. Each of the S; requires this integral,
so the most efficient use of computer time is achieved if
all five S; are evaluated simultaneously. Given the S;, the
form (2.39) allows all the components of (T&")„„to be
evaluated. No further numerical work is necessary, as
would be were we extracting (T,')„„and (T„')„„from
( Te )ren

The rate of convergence of the n sums in the S;, estab-
lished in the previous section, allows us to obtain accept-
able accuracy. in the S; by evaluating only the n=1 to
n =4 contributions and approximating the remaining
terms by their contribution to,S;.

The above method allows (T„") to be calculated to
three-figure accuracy in about 12 minutes of C.P.U. time.
Our results are presented in Table III and depicted in
Figs. 3—5.

1.0
1.1
1.2
1.3
j.4

5
1.6
1.7
1;8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4,4
4.6
4.8
5.0
5.2
5.4
5.6
5.8

90(8n.M)~ (T s)

10.29
8.793
7.585
6.624
6.034
5.565
5.205
4.922
4.683
4.473
4.296
4.136
3.991
3.859
3.735
3.621
3.514
3.414.
3.321
3.233
3.151
2.999
2.865
2.743
2.634
2.535
2.446
2.366
2.292
2.226
2.165
2.113
2.057
2.009
1.966

TABLE III. Values of (T„")„,„
90(8aM) ( T „)

37.728
31.490
26.233
21.892
18.709
16.132
14.059
12.344
10.942
9.771
8.794
7.970
7.269
6.672
6.158
5.714
5.328
4.993
4.697
4.435
4.203
3.810
3.498
3.243
3.029
2.852
2.701
2.572
2.460
2.363-
2.278
2.202
2.134
2.074
2.020

90(8m'M)
( T, )t ren

37.728
24.827
14.472
6.381
1.402

—2.096
—4.579
—6.334
—7.560
—8.400
—8.963
—9.321
—9.530
—9.631
—9.651
—9.615
—9.536
—9.428
—9.299
—9.156
—9.005
—8.693
—8.381
—8.078
—7-.795
—7.529
—7.283
—7.055
—6.845
—6.652
—6.475
—6.310
—6.159
—6.019
—5.889
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( T„„&,,= &(P,.„P;.+ ,'g„.P—&P)&+,g„.~~
6m

——,', g„.o&y'& ——.
' (y'&,„.. (3.3)

He employs (3.3) to evaluate ( Tee)„„from which he ob-
tains the other components of (T&„)„„.In his calcula-
tion, he assumes that the last term

Our results are seen to alter slightly the values of
(T& )«„ from those predicted by Page's approximation,
without changing the overall character of the curves.
This is in marked disagreement with the previous numeri-
cal work of Fawcett.

We feel that Fawcett's work is in error for the follow-

ing reason. Prior to his numerical analysis he effectively
writes

the metric may be obtained. The expression thereby ob-
tained, while not exact, should contain the important
characteristics of the true one-loop solution.
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APPENDIX A: IDENTITIES INVOLVING SUMS
OF LEGENDRE FUNCTIONS

vanishes on the grounds that (P ) is a function of r only.
However,

(y2) (y2) I A, (y2) (3.4)

and therefore

In this appendix we will prove a series of identities of
the form

aP, (x) aP, (x)
(2+1)E PI(x),gi(x),

p i
Bx

'
Bx

&0 &;ee= ~ee&0 &,
—. (3.5) + G(l,x) (Al)

which is norizero. In Fig. 6 we show our results,
Fawcett's published results, and his results plus the term
(3.5). It is apparent that this term brings his results into
agreement with ours.

In view of the success of Page's expression for
( T„)„„,work is currently in progress to solve the back-
reaction problem for a static (nonevaporating) black hole.
Using his expression on the right-hand side of the semi-
classical Einstein equation

G~"——Sm ( Tq")„„, (3.6)

an approximation for the one-loop quantum correction to

(x2 —1) —l(l +1) Pt(x) =0 .
Bx Bx

(A2)

We will use the identities

g PI(cosy) = —,
' (1—cosy)

1=0

—I/y+O(y),
y —+0

g I (l + 1)Pi(cosy ) = —,(cosy —3)[2(1—cosy )]
1=0

where PI(x) and QI(x) are Legendre functions satisfying

IO

——
Y

——,Y+O(y),
y~0

(A4)

where (A4) follows from (A3) by the use of (A2). We also
use the identity

e)e \

2
/

\

g (2l + 1)Pl (x)gt(x')Pi(cosy)
1=0

=(x +x' —2xx'cosy —sin y) 'i, (A5)

6 I I I I I I I I

I .0 l.2 l.4 1.6 l.8 2.0 2.2 2.4 2.6 2.8 5.0

FICx. 6. [90(8~M)"i+](Te ) as a function of g. The solid
line is our result, the dashed line represents the published values
of Fawcett, and the dotted line is obtained by adding the term
(3.5) to his results.

which is proved in the following way.
We find the zero-frequency term of the Fourier series

expansion for the standard identity (12) (assuming x') x),

QI(xx' —(x —I)'i (x' —I)'i cosf)

=pl(x)gi(x')+2 g ( —1)"cos(np)Pi "(x)gl (x')
n=1

(A6)
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to be

P, (x)Q, (x')

1 2~
dfgt(xx' (x—2 I)—'/ (x' —1)'/ cosl(I) .

2m'

(A7)

This relation and Heine's formula,

After taking the derivative of (A13) with respect to x'
we find,

00 BPt(x) Bgt(x')g (2l+I), Pt(cosy)
I=O Bx Bx

xx'(3+cos y) —2cosy(x +x' ) —cosy sin y
(x +x' —2xx'cosy —sin y)'/

(A16)

g (2&+1)Pi(y)gt(z) =
1=0 z —y

(A8) For x =x' and y approaching zero, the right-hand side
becomes

allow us to show that

g (21 + 1)Pt(x)gi(x')Pi(cosy )
1=0

2m

d g[xx ' —cosy
2m'

x —I)' z(xi —I)' cosy]

1 3 3
y3(x2 1)3/2 8y(x2 1)3/2 8y(x2 1)5/2+ + +O(y) .

Using (A3) and (A4), we see that

BPt(x) Bgt(x)
(2l +1)

0 X X

=(x +x' —2xx'cosy —sin y)

which proves (A5).
The first identity of the form (Al) is

g [(2l +1)Pt(x)gt(x) —2(x —1)' ]=0 .
1=0

(A9)

(A10)

l(l+1) 3

(x —1) 8(x —1)

The relation

(21 +1)l(l+1)P(x)g(x)—
00 l(l+1)

1=0 (x2 1)1/2

(A17)

g [(2I+1)Pi(x)gt(x)—(xz —1) '/z]=0 .
I=O

A single derivative with respect to x on (A5) gives

60 aPt(x)g (2l+1) Qt(x')Pt(cosy)
Bx

x cosy —x
(x =x'2 —2xx'cosy —sin y) /

which, for x =x' and y near 0 behaves as

(A12)

2(x —1) y
2 3/z +

From this we may deduce that

Examining (A5) for x =x' and y-0 we find

00 1g (21 +1)Pi(x)gt(x)Pt(cosy)-, / +O(y) .
I =0 y(x —1)'/

(Al 1)

Dividing (A3) by (x —1)'/, subtracting it from (All),
and letting y —+0, we see

——,(x2 —I) i/2 =0 (A18)

may easily be proved by considering the effect of

(x —1)

upon (A12). After using Legendre's equation, we see that

(2l+1) l(l+ I)Pt(x)gt(x)
j=o

dPi(x) Bgi(x)
+ (x —1

BX

=0 . (A19)
2(x' —I)'"

Termwise subtracting (x —1) times (A17) from (A19)
proves (A18).

APPENDIX B: FORMULAS RELEVANT
TO TIMELIKE POINT SEPARATION

00 dPt(x) X(2l+1) Qt(x)+ z 3/2
—0

I=o BX 2(x —1)3/2

and

(A14)
The quantity o(x,x') is defined as one-half the square

of the geodetic distance from x to x'. For two points
x =(t, r, B,Q) and x'=(t+e, r, B,Q) in Schwarzschild
spacetime one finds'

00 Bgi(x)
(2l +1)Pt(x) +. .. =0,

I=O 2(x —I )i/2
(A15)

M g 1
0 =IT' =E+

6@4 120
6M 2M1—
r r

where (A15) follows from the symmetry of the right-hand
side of (A5) under x~x'.

M E'+''
p8

(Bl)



(83)

(813)

The bivectors of parallel transport (7) may be found by
exploiting the symmetries of the Schwarzschild metric.
Fof two pMQts &46sc scpsj.8'.GQ 66cs 604 LGvokvc 44c 8Q"

gular coordinates, the connecting geodesic lies entirely in
the r, t plane. We may construct an orthonormal tetrad at
the point x' such that its timehke leg is aligned with o'",

The angular legs may be chosen to lie along the
Schwarzschild angillar coordinate directions. The fourth
leg of this right-handed tetrad is uniquely specified by re-
quiring orthonormahty with respect to the other three
legs. A second orthonormal tetrad may be constructed
similarly at the point x. The properties of geodesics and
the spherical symmetry of the Schwarzschild metric en-

sure that this second tetrad is the same as the first tetrad,
parallel transported to the point x. Any vector may be
paraHel transported from x' to x by finding its com-
ponents with respect to the tetrad at x' and constructing
(ac vMfof 84 x &j.44 f4@ 88Mc cQMpGQcQ48 w3.44 fwpM4 46
the tetrad at x. Symbolically,

g J QIÃ6 $ p ltd

=
z cot — +0(e) .2,6~0 Kg

(816)

The results (812), (813), and (815) ar'e easily obtained by
differentiating (814) with respect to a'e.

We also note that

(817)

(8g)

when e&0. This is a restatement of the Pourier decompo-
sitioii of a Dli'ac 5 fuilc'tloii of KE'.

We require products of bivectors of parallel transport
and sums involving powers of n and sin( n~@) or cos( net).
It is straightforward to express these sums as inverse
powers of e using Eqs. (812)—(817), complete the re-

@GIFTS MQkf1pBcskioB, RQ6 FMxpfws 44c 8Q

powers of e as n sums. An example, useful in the renor-
Blalizatlon of ( Ts )~is'
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00 2g" g n sin(nate)= ae
$+1

(g—2)32~V
3

2

/+1
—2

, +O(e)
(a.e)'

—2 2
(ae) g+ 1

2
64(g —2)+

3
+O(e)2

+1

'2
00 1 2

1l COS 7lKE'

a=1 6 +1
64(g —2)

3
+O(e) .2

+1 (B18)

TABLE EV. wS and wI'.

X'=(I + —,
' )'(g' —1)+ (I+/)', Xo=—( I+/)',

16
' 4

ws")=y,

ws"'=—

1 (2g g'+7)Xo 5(g' 2) Xp

Sy 4y' 8y'

1105(ig—2}Xp 221(g—2) (2$ —6/+7)Xp {Ig' +9)
128+ 32/ 128/

(376/' —2144$ +5145/ —6764/+4426)Xp (16( —60$ +84/ —58/+157)Xp
64+ 32y5

(~( 414125(g—2) Xo' 248475(g' —2) (2f —6/+7)Xo'P

1024'" 512'"
(822 128( —4 797 728/~+ 12 085 883$—15 827 868/+ 9 782088)(g —2) Xp

1024+'

Xp (67 648/ —570276(' +2 124232( —4603 830$'~+6 398415$ —5 721 462/+2 645 630)
256'"

(29824( —197472$ +574944( —985216/ +1133991/ —1095852/+963472)Xp
1024''

(256/ —1008)' + 1216/ —344/ + 1450$ —12 883/+ 11 105)Xp (12+ +792/~+ 153)
512+ 1024y5

Pg —2 }Xo' (4—2 }'Xo'
+ +

4(g2 1 )2X 2(g2 1 )2X3 4(g2 1 )2XS

(~) 65(g—2) Xp (g—2) (3g' —44/+133)Xp (59( —292/ +543)' —292$—196)Xp

32(g' —1)'X" 16(g' —1)'X' 32(g~ 1) X7

g(3g —11$ + 19$—27)Xp 5/i

8(P 1)~X5 32(P—1)~X

w~"&=(
30685(g —2) Xp 3(g' —2) (5263(' —20 794/+35 938)Xp

512(g'& 1 }&X(7 256(g'& 1 )~X(5

(18925/ —64708$ —5282/ +324 120$—464 194)(g—2) Xp

1/X»

(6546( —50 358$'~+ 164792( —291 348$ +268 641$ —53 320/+ 81 300)Xp

128(I(o 1) X

(6000/ 37 69@'5+1Q3 362/ 165 320$ + 186713$ —132228/+ 14 828)Xp'

512(g —1) X

(192( —752('~+ 1344$ —1208/ + 1990$ —5820)Xo (80/ ~ 171/~)
512(P—1) X 512(g' —1PX'
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We set

a'(4) = p—P (4)qP (4»
n

APPENDIX C: DERIVATION OF
THE WKB APPROXIMATION

&& (1/n }pi"(g}qi'"(g}

(Cl)

APPENDIX D: ON SPEEDING
THE CONVERGENCE OF SUMS

Here we briefly discuss two methods to speed the con-
vergence of sums. This discussion draws heavily from
Chap. 8 of the book by Bender and Orszag. '~

Suppose the nth term in the sequence of partial suins of
a series takes the form

choose a new radial variable z such that
A„=A +aq" (Dl)

=(g —1)

and write

(C2) with
~ q ~

&1. A is the sum of the series and aq" is a
transient. It is easy to show that

n
X2(g) =(I+-,' )2(g2-1)+ „(g+1)".

The radial equation becomes
r

(C3)
2

A= An+iAn-i —An

A&+~+An-i —2An
(D2)

2

2
—[X ——,'(g —1)] pp(g)=0. (C4)

It follows from (C4) and the Wronskian relation

dpi (g) 2n-
PP (4)

d
e"(4)-

that a satisfies the nonlinear equation

d2
2

—[h X ——,'(g —1)]a+a '=0

(C5)

(C6)

with h an expansion parameter that will ultimately be set
to unity.

It is convenient to rewrite (C6) as

This is known as the Shanks transformation and is exact
if (Dl) is precisely correct. If the An have several tran-
sients, and (Dl) is only an approximation, then (D2) gives
the nth term in a sequence which converges faster than
the original A„. This transformation may be iterated to
remove several leading transients. Unfortunately, this
method suffers a loss of accuracy in nuinerical coinputa-
tion. Roughly speaking, if the An are known to k digits,
the Shanks transformation will be effected by roundoff er-
rors at k/2 digits.

The second method is known as the Richardson extra-
polation. It assumes the An take the forms

~ =Qp+Qin +Q2n + ' ' ' +Q~n
r

a =X ~ 1 — — +—(g —1)
1 du
a dz' 4

P 2X2

—1/4

(C7)

A„+i——Qp+Q, (n +1) '+Q2(n +1)
+ . +Qg(n+1)

(D3)

We solve (C7) iteratively, taking X '~ as a first approxi-
mation. This procedure yields

~(k)n(g)
a2 (C8)

k=1

The first four W' ' are displayed in Table II.
To evaluate the sum S2 of Sec. III, we need an approxi-

mation to the product

A„+~——Qp+Qi(n +N) '+Q2(n +N)

+ ' ' ' +Q~(n +N)

from which we see

Qp ——lim A„.
n~oo

(D4)

dpi'(4) dqP(k)

dg dg

From (Cl) and (C5) it is easy to show that

1 dpi"(C) dqP(k)

n dg dg
dcx

dg

'2
CX

(f2 1)2
(C9)

from which we may define

dpi'(g) dqP(g) ~P,' '"(g) 8'Si"'"(g)
X

)'2 2k —2 +
Ii 2k —2(g2 1 )2

The first four 8'S'"' and the first three WP' ' appear in
Table IV.

The expression for Qp in terms of the A„ is

k=0

A k(n +k)"(—1) +

k!(N —k)! (D5)

Unfortunately this method is also limited in numerical ac-
curacy, somewhat more so than the Shanks method. The
greater sensitivity to roundoff error for large n of the
Richardson method is due to the large coefficients of al-
ternating sign in (D5).

The Shanks transformation and Richardson extrapola-
tion are both used in this work, depending upon the suita-
bility of the forins (Dl) and (D3). Each is most useful in
different circumstances.
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