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Vacuum (T,”) in Schwarzschild spacetime
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The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking vacuum in
Schwarzschild spacetime has been calculated by means of the method of covariant point separation.
It is found that (T,") separates naturally into the sum of two terms. The first coincides with an
approximate expression suggested by Page on the basis of a Gaussian approximation to the proper-
time Green’s function. The second term is a “remainder” which comprises sums over mode func-
tions that may be evaluated numerically. It is found that the total expression is in good qualitative
agreement with Page’s approximation. These results are at variance with earlier numerical results
given by Fawcett which purported to show that the true value of (7,") differed in important
respects from Page’s approximation. The error in Fawcett’s calculation is explained.

I. INTRODUCTION

In this paper we calculate the vacuum expectation value
of the stress-energy tensor for the conformally invariant
scalar field in the region exterior to the horizon of a
Schwarzschild black hole. The vacuum state under con-
sideration is the Hartle-Hawking! vacuum, which rep-
resents a black hole of mass M in unstable thermal equili-
brium with a bath of blackbody radiation? of local tem-
perature

(1.1)

Preliminary results of this calculation have been presented
in Ref. 3.

We find that the expression for (TMV)ren splits natural-
ly into two parts: ,
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The first part, consisting of the first two terms, is identi-
cal to the expression obtained by Page* by means of a
Gaussian® approximation to the proper-time propagator.
As described by Page, this part has the trace and asymp-
totic behavior expected from the stress tensor.

The second part contains A,” which is composed of a
traceless combination of several types of mode sums. Our
numerical evaluation of A,” shows that Page’s approxi-
mate expression dominates (T, )en; A,” does not signifi-
cantly affect its character.

These results clearly differ from earlier numerical work
published by Fawcett,® which purported to show that the
true value of (T,")., had significant differences from
Page’s approximation. We show that this discrepancy
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arises from an oversight in Fawcett’s analysis prior to his
numerical calculation.

II. RENORMALIZATION OF (T,")

We shall calculate the vacuum expectation value of the
stress-energy tensor using the operator expression

(T, =(50,u8" — +8,"0;a8"* — $06,.")) .

Using the geodesic point-separation scheme of DeWitt’
and Christensen,® the renormalized value of (T,") is
given in terms of the Hartle-Hawking propagator G and
the bivectors of parallel transport g“',, by the expression

(2.1)
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(o and ot are defined in Appendix B).

In principle, the knowledge of a smgle component of (T,%) in Schwarzschild spacetime is sufficient to determine all
of its components. Conventionally, { T4%) is selected as the component to be evaluated. We will continue this tradition
and demonstrate only the calculation of ( Tgg ) ren-

It is first necessary to evaluate {Tgg)subtract- In Schwarzschild spacetime the Rlemann tensor may be written in the
form ‘

2M —M 2M
Ripea= F(gacgbd —8ad8eh)s Raivj= Tgabgijr Riju= T(gikg it —8i8jk ) » (2.4)

where abed run over r and ¢ and ijkl run over 6 and ¢. An elementary calculation reveals
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The form above is valid in Schwarzschild spacetime whenever o has zero angular components.
From Eq. (2.2) we see that the expression for ( T'gg ) en takes the form
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where in the last equation we have explicitly shown the forms of g%, g¢'¢, and gg9. The covariant derivatives have been
written as partial derivatives plus Christoffel symbols. The only Christoffel symbol which appears in Eq. (2.6) is

1
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(2.6)
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It is shown in Ref. 9 that, for imaginary values of the Schwarzschlld ‘time” coordinate ¢t = —ir, this propagator may
be expressed, when 7'547, in the form

Gyl —it,r,0,¢; —it',r',0',¢") = ——— 2 cosnk(T—1") 2 (21 +1)P(cosy)pi(& gl (ES ) /n —2P(E QIELN] ,

32172M2 oo foart
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where

cosy =cosf cosf’ +sinfsinf’cos(p—¢’), &= ﬁ —1, k= e’
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and £ _ and £, denote the smaller and the greater of £ and £’. P; and Q; are Legendre functions and p;" and g/" are solu-
tions of the radial equation

d n2 (1+§)4

specified by the requirements that, for n>0, p/(£) is the solution that remains bounded as £—1 and g;'(£) is the solution
that tends to zero as §— oo. These solutions are normalized by requiring

PHE) ~(E—1"2, gME)~(E—1)""% asE—1. (2.10)

As discussed in Ref. 9, this form for the propagator is well suited to the type of problem at hand. The expression (2.8)
for the propagator will not contain divergent / sums as partial coincidence llmlts are taken.
Use of the expression (2.8) for the Hartle-Hawking propagator brings { T¢®) ., into the form
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where e=7—7'. In the partial coincidence limit §=¢’, 6=6', and ¢ =¢’, Eq. (2.11) becomes
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where terms involving Legendre functions have been replaced using identities proved in Appendix A. We have freely
added terms to Eq. (2.12) which are proportional to

o0
3, n’cos(nke)=0. (2.13)
n=1
These terms have been inserted to make explicit the convergence of the ! sums. For large / the WKB approximants indi-
cate that the / summands in Eq. (2.12) are all O(/~2). The inverse powers of € in (2.11) have been replaced with n sums
shown in Appendix B to be equivalent up to terms of order €* which will not survive the limiting process.

Unfortunately, while the expression on the left-hand side of (2.12) is finite and unambiguous, it is expressed in terms
of n sums which are not separately finite. We may remedy this by distributing the O(n3) and O(n) terms, which
originated as subtraction terms, among the other sums. In this effort we are guided by the WKB form of the product
pi(E)gi(€). This procedure provides
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Each of the n sums is now individually finite, and we may take the indicated limit.

The final term in (2.14) contains the finite contributions from Christensen’s subtraction terms, as well as contributions
from products of bivectors of parallel transport with inverse powers of . We will return to discuss this term after exam-
ining the remainder of Eq. (2.14).

When the limit is taken we find

| 2 2
T E+1 2 6
T6%) ren= 1—|—=— | |[4——— 1920A,° |, 2.15
To n 90(81TM)4H§"1 41| [*TET | [T10P0N (215
where
Af=—8,—8,+28;—(£—1)S,—2S5 . (2.16)

The forms of the S; are given in Table I.
To show the convergence of the n sums which appear in the S; we may follow the procedure of Ref. 9. A short exam-
ination reveals
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The W{™&) are given in Table Il. #,(£) and £ ,(£) were shown in Ref. 9 to be O (n~3). Only S, and S; require fur-
ther study. We will show that the summands of S, and S; are both O (n ~*) for large n.

TABLE I. A table of the sums that appear in A,".
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TABLE II. The WKB approximants.
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We will begin by examining the / sum in S3. As was shown in Ref. 9, it may be replaced by a contour integral
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with y the contour in Fig. 1. Using
2i 2.23)
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and rotating the contour of the integral of the second term to ¢’ depicted in Fig. 2 [the rotation of the contour is allow-
able in view of the analytic properties of p/'(£) and ¢/(£) (Ref. 10)], we have

2145 nHE+1)* 1

& (2141 )
n _ —s (£), (2.24)

g { (143l E)glE)— (E2—1DV2 7 16(£2—1)3/2 1P ] 3 (&) 43,7 ulE)

where
© 21 2477 p2Ae4 1) 1

3j"(§)= f—l/Zdl { (g)qln(g) g _1)1/2 + 16(52—1)3/2 - 4(§2_1)3/2 (2.25)

and
w dAAd 1, i
3= =42 [ o PR §a 12 6) | (2.26)

To 37 ,(£) we may subtract and add again the third-order WKB approximant to p/(£)q/(£)/n:
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The second integral in (2.27) may be evaluated explicitly. We obtain
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We observe that the terms cubic and 11near in n exactly cancel the last two terms in large square brackets in S;.
We may isolate the O(n~!) contribution to 3£ ,(£) by subtracting and adding again the first WKB approximant
evaluated at A=0:

WFao)=—42 [~ f:;:‘_sl ;pi,/zﬂl(g)q'il/“m(g)—W‘_‘);r,z(g) ~4 [ ei’;’jl W (&) . (2.29)
Evaluating the second integral, we find

1P nf)=—42 fow‘e%)_il 1P 1240680 1 2410 (&) — W5 (8) —m- (2.30)
Note that the final term in (2.30) exactly cancels the O (n ~!) behavior of 3.#,(£). Assembling these results we have

Ss= i 3 LT O+7 01, | @31
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Fnl)= [ Al +DIU+3) —pl(é‘)qz”(é‘)——W,(”"(é') wiPng) — W‘”"(g)] (2.32)
and _
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We have shown that 1.7 ,(£) and 3.7 ,(£) are O (n ~3) for large n.
A similar procedure shows that the n summand of S, is O(n~3) for large n. We will not show the steps involved,
only note the necessary intermediate results for the interested reader. We have

S0, A1+ D =€ =D WS{E) + WS E) + WS{P™E)]+ W E) + WPP"(£))

nAE+1?  m(E41) 97¢—143

= 2_16+17)— 2.34
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4 [T )2 | s+ WSl — AL s, e |~ P (e)
0 e21ﬂ.+1 / 172 ) d}\'z 1/ /
n 97£—143 (2.35)

TA8(E—172 | n240(E+1)4E—1)

where the WS['(€) and WPJ(£) are defined in Appendix C.
We may write
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sz=5— 3 L7+ 701, 236

n=1

where

d n
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d§ d§
+ (1) WS E) + WSIPME) + WS €)] ] | (2.37)
and
N o _dA | 1dP%104i(8) 971040 ()
2fn(§)_4g fo eZﬂl_‘_l n dé' dg
(@ =172 [ WSWE)+ Ws‘%n(g)—%j—WS“uz 5)} WP“’I",2<§>] (2.38)

27 () and , £ (&) are each o (n—3) for large n. These results are exact.
The other components of the stress-energy tensor are also amenable to this process. We find

—-3000 300 0
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o E+1 0 100 2 ot1o0
T,")en= 24 | —— 1920A,"
T ) en 90(8wM)* | | E—1 . §+1 §+1 0 010" g 0000 +19
0 001 0000
(2.39)
! 10
ith .
" Si~aS1=5g(—1) ‘ 1 ] £3), (2.42)
Af=55,—8,—S3—S4+Ss , (2.40) £+
10
r _ _ 2
AS=—35,+435, 353+ (26— 1)S,+3Ss . (2.41) Sy~ oSy = Tmks §+1
The first two terms in (2.39) are exactly the expression ,
that Page obtained. We will show presently that the con- 3
tribution of A," does not significantly alter the character X §(3)(931£*—2058¢
v 4 g
of ('T” ).ren from that expected on the basis of Page’s ap- —5256£2+6298¢ +1653) , (2.43)
proximation.
At this point we may approx1mate the S;’s by replacing
the integrands of the .#,(£)’s.and _Z’ #(£)s by WKB terms
of the next higher order For 27 ,(E), 3.8 (&), 27 n(E),
and 37 ,(£) this amounts to using the O(n~3) terms. ‘ | Im ¢
This procedure yields the following asymptotic forms, y' X
valid for large r: '
X
Im ¢ x
-1/2 Re
me x
=12 ] 2 '3 a4 Re £
) ®
®
FIG. 1. The curve y used in converting the / sum to a con- FIG. 2. The curve ¥’ used to evaluate ;,#,(§). The crosses

tour integral. correspond to the poles of the function g/*(€).
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FIG. 3. [90(87M)*/m*]{ T¢®) as a function of £&. The dashed
line represents Page’s approximation.

e —lE=1 | 2
S3~a53= 323560 E+1
X E(3)(1556° —465624+73116—7931) ,  (2.44)
2 14
Si~aSs= 57 (E—1) ey E(5)(46—T7), (2.45)
2 13
Ss~oSs=zg(E—1) [§+1 &(s) . (2.46)

The approximate values for (T,“')ren obtained by the use
of the ,S; are presented in Figs. 3—5 as dotted curves.
One might expect these asymptotic forms to also apply
as r—2M because the criterion for the validity of the
WXKB approximation holds both as r— « and as r —2M.
This cannot be the case as evidenced by the fact that the
oS; predict (T*)en“{T, ) ren at ¥ =2M, whereas these
two components must be equal in order for (7,*) ., to be

a0}

<T>

. L L L L L
1.0 20 3.0 40 5.0

FIG. 4. [90(87M)*/7*]{ T,*) as a function of £&. The dashed
line represents Page’s approximation.
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40 T T T T T T

35

30

<T/> 20}!

L L n L
1.0 2.0 30 4.0 50

FIG. 5. [90(87M)*/m*1{T,”) as a function of £&. The dashed
line represents Page’s approximation.

regular in a freely falling frame on the future horizon. As
discussed in Ref. 9, this breakdown can be traced to the
fact that the radial function g;'(£) contains a logarithm
which is not present in its WKB approximation.

III. NUMERICAL EVALUATION OF (T,")

The expressions for the S; in terms of integrals are not
amenable to numerical evaluation. We will begin with the
forms of the S; given in Table I and obtain more suitable
expressions.

First we must consider the evaluation of the / sums
which appear in the S;. Each / sum is of the form

3

1=0

2+ o prE), M) — G (L,E)

where F is a functional which may contain derivatives.
For each of these sums, we will subtract and then add
again the WKB approximant to F(/,p/(£),q7(§)) through
terms of order /~°. Symbolically, this procedure yields

2 2LEL {1, pie), 7€)~ Fcallm, )]

0

FWKB(I n,§) G(l,g) ] .

All of the sums of the first type will converge rapidly.
An explicit expression exists for the Fygg(/,n,£), so sums
of the second type are easily evaluated. For each »n and &,
the first 28 Fwkg(l,n,£) are obtained as double precision
numbers. A 15-term Richardson extrapolation (see Ap-
pendix D) then returns a value for the sum which is accu-
rate to ten significant figures.

Values for sums of the first type must be obtained in a
more tedious manner. In general, these sums of the
difference between a functional of pj'(£€) and ¢/(£) and a
WKB approximant of it, will converge more slowly than
the similar sum which appeared in A(r), so higher / terms
will provide a larger contribution. To achieve dependable
values, the functions p/(£) and ¢/(£) and their derivatives
must be evaluated very accurately to prevent the greater



cancellation, which occurs for large /, from contributing
significant errors.
The function g/*(£) is defined in terms of p/(£) by

ME)=2 —_— . (3.1)
ai'(§)=2npi () f 1)[p1"(x)]2
Its derivative gives
dql(&) —on dp[(€) fw dx
d§ d¢ ¢ (x*-DpI'x)]P
S — (3.2
(E2—1)pl(E)

For values of their arguments less than 3.0, p/(£) and its
derivative may be evaluated as double precision sums and
for values of their arguments greater than 3.0 a sixth-
order predictor-corrector method applies. Transformation
of the integral to a finite range and an extended ten-point
integration routine achieves an accuracy of 12 significant
figures in g/(&).
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The use of double precision in the evaluation of the /
summands allows the use of an iterated Shanks transfor-
mation scheme to be used to evaluate the / sums. The
desired accuracy is reached with the first 30 terms.

The evaluation of the integral which appears in (3.1)
and (3.2) is by far the most time-consuming portion of the
numerical program. Each of the S; requires this integral,
so the most efficient use of computer time is achieved if
all five S; are evaluated simultaneously. Given the S;, the
form (2.39) allows all the components of (T,") ., to be
evaluated. No further numerical work is necessary, as
would be were we extracting (T}’ ., and (T,") ., from
( T90>ren'

The rate of convergence of the n sums in the S;, estab-
lished in the previous section, allows us to obtain accept-
able accuracy in the S; by evaluating only the n=1 to
n=4 contributions and approximating the remaining
terms by their contribution to ,S;.

The above method allows (7,”) to be calculated to
three-figure accuracy in about 12 minutes of C.P.U. time.
Our results are presented in Table III and depicted in
Figs. 3—5.

TABLE III. Values of (T, ren.

90( 81rM

4
£ S0BM) (6., 0BTMY (.ry . (T sen
72
) 1.0 10.29 37.728 37.728
1.1 8.793 31.490 24.827
1.2 7.585 26.233 14.472
1.3 6.624 21.892 6.381
1.4 6.034 18.709 1.402
' 5 5.565 16.132 —2.096
1.6 5.205 14.059 —4.579
1.7 4,922 12.344 —6.334
1.8 4.683 10.942 —7.560
1.9 4,473 9.771 —8.400
2.0 4296 8.794 —8.963
2.1 ' 4.136 7.970 —9.321
2.2 3.991 7.269 —9.530
2.3 3.859 6.672 —9.631
2.4 3.735 6.158 —9.651
2.5 3.621 5.714 —9.615
2.6 3.514 5.328 —9.536
2.7 3.414 4,993 —9.428
2.8 3.321 4.697 —9.299
2.9 3.233 4.435 —9.156
3.0 3.151 4.203 —9.005
3.2 2.999 3.810 —8.693
34 2.865 3.498 —8.381
3.6 2.743 3.243 —8.078
3.8 2.634 3.029 —7.795
4.0 2.535 2.852 —7.529
4.2 . 2.446 2.701 —17.283
4.4 2.366 2.572 —7.055
4.6 2.292 2.460 —6.845
4.8 2.226 2.363 —6.652
5.0 2.165 2.278 —6.475
52 2.113 2.202 —6.310
54 2.057 2.134 —6.159
5.6 2.009 2.074 —6.019
5.8 1.966 2.020 —5.889
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Our results are seen to alter slightly the values of
(T#")ren from those predicted by Page’s approximation,
without changing the overall character of the curves.
This is in marked disagreement with the previous numeri-
cal work of Fawcett.°

We feel that Fawcett’s work is in error for the follow-

ing reason. Prior to his numerical analysis he effectively
writes!!

1
€ T;w Yren= ((¢;u¢;v+ _:'g[.w‘ﬂ:]‘ﬁ)) + 6—77_2'gpv‘12

— 808" — () v - (3.3)

He employs (3.3) to evaluate {Tgg) e, from which he ob-
tains the other components of T, )en. In his calcula-
tion, he assumes that the last term

— (%00

vanishes on the grounds that (¢$?) is a function of r only.
However,

<¢2>;I-W=<¢2>,pv"‘rﬁv(¢2>,}‘ (34)
and therefore ‘
<¢2>§09=_r69<¢2>,r ’ (35)

which is nonzero. In Fig. 6 we show our results,
Fawecett’s published results, and his results plus the term
(3.5). It is apparent that this term brings his results into
agreement with ours. '

In view of the success of Page’s expression for
(T#V)m, work is currently in progress to solve the back-
reaction problem for a static (nonevaporating) black hole.
Using his expression on the right-hand side of the semi-

classical Einstein equation
G”V= 87T< Tyv>ren ’ (3.6)

an approximation for the one-loop quantum correction to

-6 1
10 1.2

18 20 22 24 26 28 30
3

L L
1.4 16

FIG. 6. [90(87M)*/7?]{T¢®) as a function of & The solid
line is our result, the dashed line represents the published values
of Fawcett, and the dotted line is obtained by adding the term
(3.5) to his results.
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the metric may be obtained. The expression thereby ob-
tained, while not exact, should contain the important
characteristics of the true one-loop solution.
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APPENDIX A: IDENTITIES INVOLVING SUMS
OF LEGENDRE FUNCTIONS

In this appendix we will prove a series of identities of
the form

OP)(x) OP(x)
ox = ox

Py(x),0;(x),

s [(2+1)F
1=0

+G(x)|, (A1)

where P;(x) and Q;(x) are Legendre functions satisfying

B 2 1,0 _
ax (x l)ax I(I14+1) [Pi(x)=0. (A2)
We will use the identities
3, Py(cosy)=5(1—cosy)~12
=0
~ 1/y+0(y), (A3)
y—0
1(I +1)Py(cosy)=~(cosy —3)[2(1—cosy)] 3/
1=0
~ =y —3y+0(y), (A4)
Y—0

where (A4) follows from (A3) by the use of (A2). We also
use the identity

3 21+ DP(x)Q(x")Py(cosy)
1=0

—-172
b

=(x24x"2—2xx'cosy —sin’y) (A5)

which is proved in the following way.
We find the zero-frequency term of the Fourier series
expansion for the standard identity (12) (assuming x’> x),

'Q](XX’—(XZ—‘ 1)1/2(x12_ 1)1/2008¢)

—PQ(x)+2 S (—1)cos(nh) P "(x)Q(x")

n=1

(A6)



to be
Py(x)Qy(x")

_ 1 p? (o 2 N/2u2 13122
=5 [ dv Qixx’ — (x> = 1)'(x?— 1) 2cosy)) .

(A7)
This relation and Heine’s formula,
3 @+ 0PI =—1—, (A3)
=0 z=y
allow us to show that
> (21 +1)Pi(x)Q;(x")Py(cosy)
=0
1 27 ,
=or fo dy[xx’'—cosy
__(x2_ 1)1/2(xl2_'1 )lﬂcos¢]—-l
=(x2+4x"?—2xx'cosy —sin’y)~1/% , (A9)
which proves (A5). “
The first identity of the form (A1) is
S [(21 + DP(0Q(x) —2x>—1)2]=0 . (A10)
1=0
Examining (AS5) for x =x' and ¥ ~0 we find
& 1
I§0(2l + 1)P;(x)Q;(x)Pi(cosy) ~ W +0(y).
(A11)

Dividing (A3) by (x2—1)!”2, subtracting it from (A11),
and letting ¥y —0, we see

3 [(21 + DPy(x)Q(x)—(x2—1)"12]=0. (A12)
1=0
A single derivative with respect to x on (A5) gives
® AP (x)
S (2 +1)——=0y(x")Py(cosy)
i=o ox
_ x'cosy —x (A13)
* (x2=x"2—2xx'cosy —sin’*y)*/? ’
which, for x =x' and ¥ near 0 behaves as
—X
——5—+0(y).
. 2(x2——1)3/2y + Y
From this we may deduce that
m 3P;(x) x
20 +1 — X = 4
Eo 2 +1D)— —ix)+ 17 | =0 (A14)
and
] 9g(x) . x
zgo '(21+1)P1(x) o 2R_1)7 =0, (A15)

where (A15) follows from the symmetry of the right-hand
side of (AS) under x<>x’.
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After taking the derivative of (A13) with respect to x’
we find,

] aPI(x) an(x')

,§0(2l+1) dx ax’

Py(cosy)

_ xx'(3+cos’y) —2 cosy(x*+x?) —cosy sin’y
(x24x"?—2xx'cosy —sin’y)!/? '

(A16)

For x =x' and y approaching zero, the right-hand side
becomes

1 3 3
PIx2—1)2 " gyp(x2—1)3" + 8y(x2—
Using (A3) and (A4), we see that

57 +0(y).

& aP,(x) aQ,(x)
Eo @I+
I(I+1) 3
— =0. Al7
(x2_1)3/2 8(x2_1)5/2/ ( )
The relation
I(1+1)

©
2
=0

QI+DId {l)P(x)Q(x)w‘(;z‘i‘)]—/;

_lan

=0 (A18)

may easily be proved by cohsidering the effect of

9 .1 9
—_— — 1 —_—
ox (x ) Ix
upon (A12). After using Legendre’s equation, we see that

00

> \(21 +1) [l(l +1)P(x)Q(x)

1=0

aP,(x) an(x)
ax ax

(xz——l)]
1 _l-0. (19
- 2(x2_1)3/2 -

Termwise subtracting (x2—1) times (A17) from (A19)
proves (A18).

~ APPENDIX B: FORMULAS RELEVANT
TO TIMELIKE POINT SEPARATION

The quantity o(x,x’) is defined as one-half the square
of the geodetic distance from x to x’. For two points

x =(t,r,6,§) and x'=(t+¢€,r,0,4) in Schwarzschild
spacetime one finds'?
. M2 1 | 6M3 2M
t__ st _ _
o=or=et 6r* 120 r7 r
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,,r._(,,r___i_Mz_ 1—2M | g 2M || M2 M>  3m*
2r r & = r 2rt 6r’  8rt ’
2\
+ 1Mzrs [1 2’:’ [1——571‘1’e4+--- . (B2 (B10)

A straightforward calculation reveals

2
2 (; x,) = —1 + M + * ’
olx,
e 1—3—M 12r4{1~3‘-M—
r r
(B3)
1 1 _ M?
403(x,x") N 2 2
o 1_.2...] ot [1 24
r r
-2
4l M3 3IM*
r 30¢7 720r
4 (B4)

The bivectors of parallel transport (7) may be found by
exploiting the symmetries of the Schwarzschild metric.
For two points whose separation does not involve the an-
gular coordinates, the connecting geodesic lies entirely in
the r,t plane We may construct an orthonormal tetrad at
the point x’ such that its timelike leg is aligned with at,

o.ﬂ'

= BS
= ot B3

- The angular legs may be chosen to lie along the
Schwarzschild angular coordinate directions. The fourth
leg of this right-handed tetrad is uniquely specified by re-
quiring orthonormality with respect to the other three
legs. A second orthonormal tetrad may be constructed
similarly at the point x. The properties of geodesics and
the spherical symmetry of the Schwarzschild metric en-
sure that this second tetrad is the same as the first tetrad,
parallel transported to the point x. Any vector may be
parallel transported from x' to x by finding its com-
ponents with respect to the tetrad at x’ and constructing
the vector at x with the same components with respect to
the tetrad at x. Symbolically,

’

ghv=n"e,tepy , (B6)

where the tetrad indices a and b run from 0 to 3 and n*
is the Minkowski metric.
For our case, this procedure yields

g¥=r-2, (B7)
g% =r%in"%0, (B8)
oM | M2 M3 3M*
|1 1 =
g [ r ] [ + 2r4 [ 6r7  8rd

+"'), (B9)

e+ (B11)

For small, nonzero € we may express inverse powers of
€ in the following way:

e=—k2 3 n cos(nxe)+——+0(62) , (B12)
n=1
e—? _._L < .
- § n3cos(nke) 720 +0(e2) , (B13)
“l=k ¥ sin(nke)+0(e), (B14)
n=1
3 K&,
€ =—7 > n’sin(nke)+0(€) . (B15)
n=1
The proof of (B14) is as follows:
i sin(mce) 2 emxe z e«inxs
n=1 n=1 n=1
1 eixe eixe
=E l_eike—l___e—ixe
=1 cot "—e] ~L o). (B16)
2 |e—»0kKe

The results (B12), (B13), and (B15) are easxly obtained by
differentiating (B14) with respect to ke.
We also note that

i cos(nke)=—+ (B17)
=1

when €540. This is a restatement of the Fourier decompo-
sition of a Dirac & function of «e.

"We réquire products of bivectors of parallel transport
and sums involving powers of n and sin(nke) or cos(nke).
It is straightforward to express these sums as inverse
powers of € using Egs. (B12)—(B17), complete the re-
quired multiplication, and reexpress the surviving inverse
powers of € as n sums An example, useful in the renor-
malization of (T,?), is
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6
2

E+1

_ (E—2)326%
3

2
£+1

o0
g™ Y n’sin(nke)=
n=1

Ke +O0(€)

(ke )3

_ =2
(ke)?

2
E+1

64(6—2)
3

2

6
E+1 +O0(€)

+

2

§+1

2
E+1

n=1 §+1 3

2 2
Encos(nke) 1 ‘ 2 ] +64(§_2)

TABLE IV. WS and WP.

6
+O0(e).
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(B18)

=(++ )2(§2—1)+ (1+§)4 Xo= —(1+§)2,
Ws(l)__.x s
1, (282—66+TIXs"  S(E—2)X
8Y 4 8x’ ’
S 1105(6—2)%* | 221(6—2)’2E2—66+T)Xo®  (16£249)
128y 32%° 1283
(3766*—2144£° + 514582 —6764£ 1-4426)X* (16_6,“ 60E° 4 84£2— 58E -+ 157)X 2
- 64x7 32x°
414125(£—2)%,'2  248475(£—2)% 262 —6£+T7)Xo"°
1024x"7 - 512x1
(822 128£*—4797 7285+ 12085 883£% — 15 827 868£ +9 782 088)(£ —2)*X,}
1024y "
Xo8(67 648£5—570276£°+2 124 232£* — 4 603 830£%+ 6 398 41562 — 5721 462£ +2 645 630)
- 256x!!
(29 824£5— 197 472£° + 57494454 —9852166% + 1 133 991£2— 1095 852£ + 963 472)X,*
1024x°
(256£°— 1008§5+ 1216£* —344£° 145052 — 12 8836+ 11 105)X®  (128£* 479262+ 153)
5127 1024X° ’
WP(” 2§2 2. + §(€2_2))§OZ3 (§2_2)2X2045 ’
A1 AL M1
WP _ 65(6—2)"X0°  (£—2)(367—44£+133)X,° (596 —292£° 54367 — 2926 — 196)X,*
32(52 1)1 16( §2—— 1)%° 32(52__ 1)%7
E(3E2— 11824196 —27)X2 52
8(E2—1)%° 32(E2—1)%° ’
30685(£—2)%12  3(£—2)%(5263£2—20794£ 435 938)X,'°
s12(82— 1) 256(£2—1)%1S
(189256*— 64 708£° —5282£* 324 1206 —464 194)(£—2)%X,¢
- 512(£2— 1)1
(6546§6 5035855+ 164 792£* —291 348£° +268 641£2— 53 320£ + 81 300)X°
128(£2—1)%!!
(6000£° — 37 696£5+ 103 36264 — 165 32063 + 186 71362 — 132 2285+ 14 828)X "
- 512(£2—1)2°
(19256 7526° 4 13446 — 1208£° + 199062 — 5820)X>  (80&*+171£2)
512(£2—1)%7 512(82—1)%° °

Ws(2)= _

Ws(4)___

WP(3)=
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APPENDIX C: DERIVATION OF
THE WKB APPROXIMATION
TO (1/n)p["(&)q1(§)
We set
a2(§)=—p1(§)q1"(§) (cny
choose a new radial variable z such that

d . d

= =(E2—1)—, C2

2z (& ) dE (C2)
and write

XHE) =1 +3)4E— 1)+'——(§+1 (C3)
The radial equation becomes
;2 X~ +E—1)] |pf(€)=0. (4
It follows from (C4) and the Wronskian relation
dgi(§) dpi(§)  —2n
[(&) [ (Cs
DI (é‘ d § (€ )— § §2 1 )
that a satisfies the nonlinear equation

d? -

d‘; —[A2—F(E—D]ata3=0 (C6)
with A an expansion parameter that will ultimately be set
to unity.

It is convenient to rewrite (C6) as
—1/4
a=x"1? ll—- < ‘;‘Z +(€2—1) ]/hzle .

(Cn

We solve (C7) iteratively, taking X ~!/2 as a first approxi-
mation. This procedure yields

® W(k)n(g)

a~§1 p2k—2

(C8)

The first four W'* are displayed in Table II.
To evaluate the sum S, of Sec. III, we need an approxi-
mation to the product

dp[(E) dgqi(&)

d§ g
From (C1) and (C5) it is easy to show that
1 dp[(§) dgr’ 5 da _a”r
n dE dE  |dE | (e—12’ (C,9)
from which we may define
dpl(§) dgf®) & WPME) & WSiE)

T T A N N ST

The first four WS'® and the first three WP'*) appear in
Table IV.

.remove several leading transients.

K. W. HOWARD 30

APPENDIX D: ON SPEEDING
THE CONVERGENCE OF SUMS

Here we briefly discuss two methods to speed the con-
vergence of sums. This discussion draws heavily from
Chap. 8 of the book by Bender and Orszag.'*

Suppose the nth term in the sequence of partial sums of
a series takes the form

Ap,=A +aq” (D1)

with |g | <1. A is the sum of the series and ag” is a
transient. It is easy to show that

An+1An—1—An2

(D2)
App1+A4n_1—24,

A=

This is known as the Shanks transformation and is exact
if (D1) is precisely correct. If the A4, have several tran-
sients, and (D1) is only an approximation, then (D2) gives
the nth term in a sequence which converges faster than
the original A4,. This transformation may be iterated to
Unfortunately, this
method suffers a loss of accuracy in numerical computa-
tion. Roughly speaking, if the 4, are known to k digits,
the Shanks transformation will be effected by roundoff er-
rors at k/2 digits.

The second method is known as the Rlchardson extra-
polation. It assumes the A, take the forms

Ay =00+Qin "'+ Qon "2+ - +QynV,
Ay 11=Q0+Qi(n +1)_1+Q2(n +1)2
+ o +Qn(n+ DTN

(D3)
Ay n=00+Q1(n +N)"'4+0,(n +N)72
+ - +Qn(n +N)V,
from which we see
Qo= lim 4, (D4)
n— o
The expression for Q, in terms of the 4, is
N A, i (n +E)(—1kHN
= ,E’o KN —k)! ' (D5)

Unfortunately this method is also limited in numerical ac-
curacy, somewhat more so than the Shanks method. The
greater sensitivity to roundoff error for large n of the
Richardson method is due to the large coefficients of al-
ternating sign in (D5).

The Shanks transformation and Richardson extrapola-
tion are both used in this work, depending upon the suita-
bility of the forms (D1) and (D3). Each is most useful in
different circumstances.
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