
PHYSICAL REVIEW D VOLUME 30, NUMBER 12 15 DECEMBER 1984

Dirac Hamiltonian structure of R+R +T Poincare gauge theory
of gravity without gauge fixing

Ignjat A. Nikolic
Physics Department, Princeton University, Princeton, Xeu Jersey 08540

and Institute ofPhysics, P.O. Box 57, 11001Belgrade, Yugoslavia

(Received 27 September 1983; revised manuscript received 3 April 1984)

Dirac's Hamiltonian method for constrained systems is applied to the most general Poincare
gauge-invariant theory of gravity interacting with an arbitrary matter field. Working in the first-
order formalism, it is shown that the Hamiltonian contains a linear combination of nine kinematical
symmetry generators and one dynamical generator, 4 &. The Poisson brackets between kinematical
generators are calculated in the general case. In the case of a nine-parameter theory, described by
the Lagrangian of R+R +T type, it is shown that some of the primary constraints appear only
when parameters satisfy certain conditions, which correspond to infinite tordion masses. The
explicit form of A j valid for all values of parameters is found. Assuming massive tordions, con-

sistency conditions of primary constraints are analyzed in detail in the case of four-parameter
R +T theory and are also discussed in the general case. As an example, the spin-1/2 matter field is

examined and preliminary Dirac brackets are found.

I. INTRODUCTION

Einstein s classical theory of gravity' is in agreement
with all known observational facts. However, from the
theoretical point of view, one can remark that the theory
admits singular solutions under very general assump-
tions, ' and that spin does not act as a source of the gravi-
tational field. A serious objection against Einstein's
theory is also unrenormalizability of the corresponding
quantum theory of gravitation.

Among many attempts to overcome some of these
problems, gauge theories of gravitation are especially at-
tractive due to their considerable success in elementary
particle physics. In the Poincare gauge theory of gravita-
tion, gauge potentials are tetrad field (b &) and Lorentz
connection ( A'~&), whereas the corresponding field
strengths are torsion (T"&„) and'curvature . (R'tz„) ten-
sors. ' The most general, pity-conserving Lagrangian,
which is at most quadratic in the torsion and the curva-
ture, i.e., it is of R+R +T type, depends on nine pa-
rameters (excluding the cosmological constant).

At-the moment, there are several Lagrangians of that
type proposed in the literature. For one choice of parame-
ters, the corresponding theory has a better singular
behavior. For other values of paraineters, one can obtain
a theory without ghosts and tachyons. Although ac-
cording to the results of Ref. 9 it seems impossible to have
a theory which is both renormalizable and unitary, the
problem is still open for some values of parameters. Be-
sides, one can be encouraged by the fact that renormaliz-
able' higher-order derivative quantum gravity has recent-
ly been proven to be also unitary. "

In order to leave all possibilities open, we will consider
the most general case, with nine arbitrary parameters.
Our investigation of the theory is based on the Dirac
Hamiltonian method for constrained dynamical sys-

tems. ' ' Such an analysis is necessary in order to get a
clear picture about physical degrees of freedom, and to
check the consistency of the classical theory. Further, it
is the first step toward canonical quantization (although a
covariant quantization' may be more useful in practice, it
should be justified by a Hamiltonian analysis).

The Hamiltonian dynamics of Poincare gauge theory
has been studied in Ref. 17 from a geometric point of
view. The matter field is restricted to be a tensor field,
while the Lagrangian is left quite arbitrary, excluding the
possibility of particle-spectrum investigation. Our La-
grangian, although very general, has a definite form, so
that the complete dynamical structure can be studied in
detail.

Dirac Hamiltonian formulation of Einstein's, '

Einstein-Cartan ' ' E. +T ' and 8 +R +T theory of
gravity has already been performed in the time gauge
(see also Ref. 23). The investigation of Einstein s and of
the Einstein-Cartan theory, without gauge fixing, has been
carried out in Refs. 24—27. The purpose of this work is
to extend the results of Ref. 22 in a gauge-free framework.
The motivation for such a work is that the time-gauge
condition may not be suitable for calculations at the quan-
turn level. Besides, we are not going to modify our La-
grangian by adding a non-gauge-invariant four-divergence
term, as one usually does, which could cause troubles in
the quantized theory (see also Ref. 27).

Following the gauge fidd approach to gravity, we treat
the tetrad (b"„) and the Lorentz connection (A'~„) as in-
dependent fields, the so-called first-order formalism (and
denote the corresponding momenta by ~k" and m,J-",
respectively). This assumption leads to at most a second-
order Euler-Lagrange equation for the basic field. For
that reason our results are not applicable directly to the
very promising higher-order-derivative conformal theory
of gravitation.
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In Sec. II we briefly review the basic elements of the
Poincare gauge theory of gravitation, and also introduce
our notation. In Sec. III, it is shown that the total Hamil-
tonian of the most general Poincare gauge-invariant
theory can be written in the standard, Dirac-Arnowitt-
Deser-Misner (ADM) form' ' (up to a three-divergence
term D ~)

~tot +~i++ ~a 2 A Ml'j+D, a

+b pm. k + —,'A jpn.;i +(u P),
where only the A i and the possible primary constraints P
depend on the choice of the initial Lagrangian density; all
other terms are purely kinematical. Besides, P and secon-
dary constraints A i, A ~, and A,j are independent of un-

physical variables b 0, mk, A'0, and m;J . The Poisson
brackets between kinematical terms A and A,z are cal-
culated, revealing them as the generators of "shift"
transformations and local Lorentz rotations. The right-
hand sides of these brackets are free of the terms which
are quadratic in A,J, as one could have expected accord-
ing to the results of Ref. 31.

In Sec. IV we consider a nine-parameter Lagrangian
which is of R+R +T type. It is shown that the Hes-
sian matrix is singular (with respect to velocities b ~ and
A'j ) if the parameters take on critical values. These
values of parameters coincide with the conditions for in-
finite tordion masses of Ref. 7 (see also Ref. 8, where tor-
dions are defined in a different way). All corresponding
primary constraints are found and presented in the form
of if constraint-s which automatically drop out of the
theory if parameters are not critical. The gravitational
super-Hamiltonian Mi is expressed in a form which is
valid for all values of parameters.

In Sec. V, Dirac's procedure of finding all possible con-
straints is performed in the case of the four-parameter
R+T theory, assuming massive tordions. It is shown
that also for noncritical values of parameters, there exist
secondary constraints in the theory, which play the same
role as corresponding (absent) primary constraints —they
are of the second class and reduce the number of physical
degrees of freedom. The final theory, after appropriate
gauge fixing, contains four degrees of freedom which cor-
respond to a massless graviton. In the R +R +T case,
the results of Ref. 22 concerning the consistency condi-
tions of the if-constraints are generalized to a gauge-free
formulation, which could serve as a starting point for fur-
ther investigation.

Section VI is an illustration of the general method
developed in Sec. III. The spin- —, matter field is put into
the Hamiltonian form, and the preliminary Dirac brackets
are derived. Similar results have been obtained in Ref. 25
in a somewhat different framework. In Sec. VII the
time-gauge condition is imposed in order to make easier
comparison with some previously obtained results in the
literature.

A. Conventions

WM= WM(u, a,u), (2.1)

where Bku=u k ——Bu/Bx" and u is a column vector
which transforms according to some representation of the
Lorentz group. Such a theory has to be modified, in order
to become invariant with respect to the local Poincare
group, by introducing two kinds of gauge potentials:
b &-tetrad field, related to the translations, and A'j&-
Lorentz connection, associated to the Lorentz rotations
(note that A'j„= —Aj'~). ' The covariant derivative of
the matter field is defined by

Dku =hk"Vpu =hk"(dq+ ,' A'jpSij)u—,

where hk" is the inverse tetrad field

b phk" ——5p",

(2.2)

(2.3)

and S;J are the Lorentz group generators. The matter
field Lagrangian density is now given by

=bW (u, Dku), (2.4)

where b=detb &.
In order to construct a gauge field Lagrangian, one has

to introduce two kinds of gauge field strengths: torsion

(~ wl ( [v,~]+ i[~ vl) ~

and curvature

(2.5)

R j~ =2(A j(q „)+A'„(„A"~„)) . (2.6)

Such a gravitational Lagrangian density must be of the
general form

( Tijk~Rijkl ) i (2.7)

where greek indices are transferred into latin with the help
of the inverse tetrad field.

One usually assumes that the matter field is minimally
coupled to gravity

(2.8)

and that the gravitational Lagrangian is a parity-
conserving scalar which is at most quadratic in the field
strengths. It can be written as the sum of a three-
parameter torsion part

whereas the greek indices are the coordinate indices (holo-
nomic). The first letters of both alphabets
(a, b, c, . . .;a,P,y, . . . ) run over 1,2,3, whereas the rest of
them run over 0,1,2,3. Furthermore, il,j——diag(+, —,
—,—); e'j and e' ' are completely antisymmetric tensors .

and P =e' = 1. Also, X(,j) = —,
'

(Xii —Xj,. ) and

X(|i~= —,(X|i+Xj,). The meaning of a bar over a latin in-

dex is explained in Appendix A. The Ricci tensor is de-
fined by R;j—:R"ki.

II. POINCARE GAUGE-INVARIANT
THEORY OF GRAVITATION

Let us start with an arbitrary matter field Lagrangian
which is invariant under the global Poincare group,

Our conventions are the same as in Refs. 20—22. The
latin indices are the local Lorentz (anholonomic) indices,

=A Tjk
T'i"+BTijk Ti'"+ CT' k Tii":—P,jk( T)T'i", (2.9)
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and a six-parameter curvature Lagrangian

=aR +b)R,pIR '"'+b2R,Jk(R
" +bsR JR'

+b4Rg&R '+bsR +b6(ep(R' "
)

aR—+13,JkI (R)R 'J", (2.10)

2 =a/2 —y/18, 8 =a/2+y/9,
C = —a/2+P,
b& ——(3a2+4as)/8, b2 ——(3aq —4as)/8,

bs ——( —3a2 —4as+2a4+2as)/4,

b4 ——( —3a2+4a s —2a4 +2a s ) /4,

bs =(a2 —as +4 6)/4 b6 = —(4at —3 2)/' 6

(2.11)

(2.12)

which appear when the gravitational Lagrangian is ex-
pressed in terms of the irreducible components of the tor-
sion and the curvature.

Due to the presence of (A'J&) terms in the R +T part
of the Lagrangian, the irreducible components of the
Lorentz field describe particles (called tordions) which are
not necessarily massless, as in ordinary gauge theories. '

According to the results of Ref. 7, if the parameters do
not take on degenerate values, i.e., if

a&0, a —3u/2&0, a +3P/2&0,
a —2y/3&0,

a,P, y, a, a&, . . . , a6 ( 00

(2.13)

all tordions are massive. On the other hand, if the param-
eters take on critical values (see Sec. IV), the masses of the
tordions become infinite. Both sets of parameters, degen-
erate and critical, are very important for a Hamiltonian
analysis, as will be shown in Sec. V.

III. GENERAL FORM
OF THE TOTAL HAMILTONIAN

The basic dynamical variables in our theory are u, b „,
and A' &. Let us denote the corresponding momenta by m.,
mk", and m.;1", respectively. Due to the fact that the tor-
sion and the curvature are defined through the antisym-
metric derivatives of b z and 3'

& they do not involve ve-
locities b p p and A'Jp p. As a consequence, one immedi-
ately obtains the primary constraints

where R;j and R denote the Ricci tensor and scalar curva-
ture. According to the Bach-Lanczos identity, only five
of the six parameters b&, . . . , b6 are independent; thus,
our gravitational action depends on nine arbitrary parame-
ters. In Secs. IV and V we will use another, more con-
venient, set of parameters,

In this section we are going to show that the canonical
Hamiltonian density, ' ' is linear in the fields b p and

p up to a three-divergence term
I ~ ~

~can b Mk z ~ Mij+P, a ~ (3.3)

and that the other possible primary constraints, P, are in-
dependent of b p and A'Jp. Thus, the total Hamiltonian
density' ' is given by

k 0 & ij 0A „,=A „„+u peak + —,u per~ +(u P), (3.4)

where u's are arbitrary multipliers. Using the form 'of the
total Hamiltonian in the consistency conditions for the
primary constraints (3.1) and (3.2), ' ' one immediately
obtains the secondary constraints

A k-0,
I

Mgj ~0 0

(3.5)

(3.6)

A. Decomposition of the inverse tetrad field

Before we proceed to prove that the canonical Hamil-
tonian can be written in the form (3.3) it is important to
realize that the Lagrangian (2.9) depends on an unphysical
variable b p also through the inverse tetrad field hk&. To
recognize this dependence clearly, it is convenient to pass
from hkl' to the set of variables (nk, h~, N, N I as fol-
lows. Let us first note that the components of the unit
normal n to the x =const hypersurface, with respect to
the local Lorentz basis are given by

nk=hk /'t/g g""—=hk"h ' (3.7)

and they are independent of b "p, as can easily be inferred
from the orthogonality relations (2.3). Further, one can
decompose hk" into the orthogonal and parallel corn-
ponents with respect to the local Lorentz indices (see Ap-
pendix A):

hk" hp+ n——kh g",

hp =&g'h/" = (&k—
'

nk n ')hI", —

h, &=n "hk&=n& .

(3.8)

(3.9)

(3.10)

At the end of this section, we will give arguments that
A k and A;1 are the symmetry generators, thus, the first-
class constraints. As a consequence, variables b p and
A'Jp are arbitrary functions of time. For that reason, we
will call them and their momenta mk and m,j. unphysical
variables. Using the Hamiltonian equations of motion
one can easily infer that multipliers u "p and u '

p are equal
to b "p and 3 'Jp, respectively, and therefore arbitrary
functions of time. That means that constraints (3.1) and
(3.2) should also be first-class constraints.

0
mk -0, (3.1) Let us now observe that

0
K]j ~0 ~ (3.2) hg=0, hg ——g ~b p, (3.11)

The situation is very similar to the case of a gauge theory
based on an internal-symmetry group. If the Lagrangian
(2.9) is singular with respect to the remaining variables, u,
b ~, and A'J~, one obtains further primary constraints,
which will be generically denoted by P. N= 1/'(/g =nkb p, (3.12)

where g ~ is the three-dimensional contravariant metric.
From (3.11) it follows that h~ does not depend on b "p,

too. Introducing now, as usual, lapse and shift functions
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Na gOa/g00 h ab k

respectively, we can write (3.10) in the form

hi =1/N, hi —— N —/N .

(3.13)

(3.14)

M M
gj =ITS)Ju, A a=1TVau

aw M
MmD——iu —JW =J D, u —W

BDg u

(3.24)

~i=nAkp&a —b

cP k nkPt /+he cP a e

Equations (3.15) and (3.4) are equivalent to Eq. (1.1).

(3.16}

(3.17)

B. Matter Hamiltonian

Let us assume, for a moment, that coupling between
matter and gauge fields is minimal, so that the canonical
Hamiltonian is a sum of the matter (A ) and gravita-
tional (A ) parts.

The initial matter Lagrangian (2.4) depends on the time
derivative u o only through the covariant derivatives Dku.
Decomposition of Dku into the orthogonal and parallel
components

It is now clear that we can always pass from I hk" I to the
more suitable set [ nk, h~, N, N I and vice versa

One can now rewrite the canonical Hamiltonian (3.3) in
the Dirac-ADM form, ' ' using the fact that N and N
are linear functions of b "0

A „„=NA,+N 4 ,'A —J~—;J+D, (3.15)

where lapse (A i) and shift (A ) Hamiltonians are relat-
edtoAk as

(3.25)

and D a= 0. —From the last equality in Eq. (3.25) it is
evident that (A™~/J)is just the Legendre transformation
of the function W with respect to Diu; therefore, it can
be expressed as a function of u, D~u, n, and m /J [ac-
cording to Eq. (3.21)]. Thus A i is independent of un-

physical variables.
If the matter Lagrangian W is singular with respect

to Diu, the system of equations for momenta (3.21) gives
rise to further primary constraints:

'(u D u m/J)

which are again independent of unphysical variables. As
a consequence, the

( .y)M g u(M)y(M)

(M)

term in the total matter Hamiltonian density is also in-
dependent of them.

Note that A,&
and A a are purely kinematical terms

depending only on the Lorentz transformation properties
of the matter field. On the other hand, the "super-
Hamiltonian" A z is dynamical: it depends on the choice
of the initial matter field Lagrangian.

Dku =nkDj u+D~u:—hz"V&u +h~ V u, (3.18) C. Gravitational Hamiltonian

is very convenient, because D~u does not depend on veloc-
ities as well as on unphysical variables [see Eqs. (2.2) and
(3.11)]. Thus, expressing the initial matter Lagrangian in
terms of Di u, D~u, and nk, instead of Dku

WM=M M(u, D, u, Dqu;nk), (3.19)

b—:detb &= detb a=NJN
np

(note that J is independent of b 0) lead to the result

g(b ~M) g~ M
=J

Bu p BDju

(3.20)

(3.21)

Let us now replace velocities in the definition of the
(canonical) matter field Hamiltonian

mM, .„=~u 0 bwM, — (3.22)

has the advantage that complete dependence on velocities
and unphysical variables is through Dzu. Using that
form of the matter Lagrangian in the standard definition
of the matter field momenta, and the usual factorization
property of the determinant b,

Construction of the gravitational Hamiltonian density
can be performed in a way, very similar to the case of the
matter field; the role of Dku should be taken over by T,J
and R'~k~. First, one can decompose the torsion and the
curvature tensor as

lm 2T [pj nm] +T pm
k k k

k k=~ 1m+ T lm

R Jk) ——2R'J)r~nil+R' gp

=~"k)+R "k) ~

(3.26)

(3.27)

so that T"~ and R'J&& are indepe—ndent of velocities and
unphysical variables [see Eqs. (2.5}, (2.6), and (A, 5)]. If
we now define the following convenient "parallel" gravi-
tational momenta (see Appendix A)

(3.28)

which satisfy nk ni ——0, wj nk =0, we can easily obtain

, a(bW'} aW'
gg k gTk

by the expression

u 0 NDiu+N V u ———
2

A'~p', J.u (3.23)
, a(bW') aW'

aa'J M'Ja, p Ex

(3.29)

[see Eqs. (2.2), (3.11), and (3.18)]. The result can be writ-
ten in the Dirac-ADM form (3.15), where

where F =W (Tkpi, Tkp ,R,Jri, R,~glink). —
The canonical gravitational Hamiltonian density
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(3.30)

can be written in the Dirac-ADM form (3.15) after one re-
places velocities by the expressions

=Nbl Tk~~+NpTk p
Tk—o(0

A'ao Nb——aR'li+N R'ap R'—ao(0),

where

T"~(o)= b "o,—a+ b'aA "io b'oA—'ia

R'j (0)=—A'j +A'loA

(3.31)

(3.32)

~ ~

,a (b olrk + 2 A oirij ),a ~

;~ =2m(; bj)a+Va~ij

m =~kpT"p b" vp k—p+,'~;,pR "~, .
r

(3.33)

(3.34)

(3.35)

i=J J~k T )i+ ir; R Jpi W —nVam—k

(3.36)

The expression in parentheses in the last equation can be
expressed as a function of T"~ ,mk /J;R'j—~l- and m,j /J,
with the help of Eq. (3.29). It is independent of unphysi-
cal variables and represents the only dynamical part of the
gravitational canonical Hamiltonian.

From Eq. (3.29) it is also clear that the other possible
gravitational primary constraints do not involve unphysi-
cal variables. This completes our proof about the general
form of the total Hamiltonian from the beginning of this
section.

D. General case

Our construction of the Hamiltonian is based only on
the fact that velocities u o, b & o, and A'j& o appear in the
Lagrangian only through covariant combinations Dku,
T~k, and R'jkI, respectively. Therefore, generalization to
a derivative coupling theory, which can be described by a
Lagrangian of the general form

~Dk i ijk~ ijkl) (3.37)

is straightforward. In that case, the Hamiltonian can
again be written in the Dirac-ADM form, in which the
kinematical generators are simply equal to a sum of al-
ready obtained expressions:

~ ~

D =(b "oak + —,A'oir;j ) (3.38)

(3.39)~ij ITS&j'u +2m
~ i bj ]&+V~ij

~a=mVau+mkT Pa
.baVPn. k +, ~;J R—Pa,p k k p & p ij

(3.40)

whereas the "super-Hamiltonian" A z is given by

Note the presence of spatial derivatives of the unphysical
variables b "o and A' o, which cause the appearance of the
three-divergence term in the canonical Hamiltonian.
After a little algebra one obtains the result

E. Symmetry generators of the theory

According to Dirac's general arguments, ' ' there
have to be (at least) ten first-class constraints in the
theory, as it is invariant under the ten-parameter local
Poincare group. It has already been shown that A i and
A a represent the generators of the orthogonal and paral-
lel x =const hypersurface deformations in the purely
metric theory of gravity, and the corresponding Poisson
brackets have been derived as a consequence of the path
independence of dynamical evolution ' (see also Ref.
12). After that, in the second-order tetrad formulation of
Einstein's theory, it has. been shown that A;J represents
the generators of the local Lorentz transfo~ations, 1824

and the complete algebra has been established:

I~ij ~~kl j Yfij kl~mn5(x

IA;j,A '
j =0,

(3.42)

(3.43)

I ~a,~p j =(~aBp+~pBa+ , R '~ad%—,
q )5( x x'), —

(3.44)

IA ij,A ij —0,
Im. ,~;j =(~,a.+ —,

' R'j.,m,j)5(x —x '),
(3.45)

(3.46)

I~i «~i j = —( g ~a+ g A a)Bp5(x —x ),
(3.47)

where fj "kl are structure constants of the Lorentz grouP
[in the above formulas a condensed notation is used; for
example, [A i,A ij is a shorthand for the equal-time
Poisson brackets IA i(x),A i(x') j]. These results have
been verified in Refs. 26 and 27 in the first-order tetrad
formulation of Einstein's theory.

Recently it has been noticed ' that the method used in
Ref. 25, although very general, can determine the right-
hand sides of the above brackets only up to such terms

A i (——m.D&u+n. k T"~i+ ,' n—.,j R'&&i J—W) n—V mk

(3.41)

where W is defined in the same way as W and W
Note that A i is again the only part of the Hamiltonian

which carries dynamical aspects of the theory. This is a
remarkable advantage of the Dirac-ADM form of the
Hamiltonian, compared to the form (3.3), in which all Mk
depend on the choice of the initial gravitational Lagrang-
ian [see Eq. (3.16)].

The above written parts of the Hamiltonian A i, A
and A,J. generalize corresponding previously obtained ex-
pressions in the literature, due to the fact that we have not
imposed any ga'uge-fixing condition and confined our-
selves to a specific form of the Lagrangian. Such assump-
tions a priori diminish the number of physical degrees of
freedom in the theory, and thus change the form of A i,
A ~, and ~;j. Furthermore, we have not added a
nongauge invariant four-divergence term to the gravita-
tional Lagrangian density, which should have altered the
"canonical" form (momentum && field) of the kinematical
parts [see, for example, Eq. (D4) in Ref. 22].



30 DIRAC HAMILTONIAN STRUCTURE OF R+R +T 2513

which are quadratic functions of the constraint A,J. For
that reason, one cannot take the relations (3.42)—(3.46) for
granted, and has to calculate the Poisson brackets before
attempts to quantize the theory.

What can be anticipated without explicit verification,
for the purpose of this work, is the fact that A l, A, and
A,J are the first-class constraints (see also Ref. 39), so
that their consistency conditions are trivially satisfied.
Nevertheless, we have calculated the kinematical part of
the Poisson brackets, and our results show that Eqs.
(3.42)—(3.44) hold as they are; thus, there are no quadratic
terms in them. We leave explicit verification of the
remaining Poisson brackets (which involve dynamical
super-Hamiltonian A l ) for one of our forthcoming pa-
pers.

IV. PRIMARY CONSTRAINTS AND
SUPER-HAMILTONIAN IN THE R +R +T CASE

We are now going to investigate the nine-parameter
gravitational Lagrangian (2.9)—(2.12)

Wg=W'+W"=b[P; (T)T'& +aR+P; „,(R)R'l" ],
(4.1)

Now, using the method of Appendix A, one can easily di-
agonalize the system by decomposing it into the irreduci-
ble parts with respect to the group of three-dimensional
rotations in the x =constant plane. Introducing also
parameters a,P,y instead of A, B,C [see Eq. (2.11)] one
obtains

2(a+ P) T&~i Pir——=n ir/J (a —2l3—)T

( 4y—/9}'T~r ="P~r

= "m gr/J+ (a+2y/9) Terr,

krl= Er= ~TT
T —T =T

6» ~i=P ~=~ T, /J ~

(4.6)

(4.7)

(4.8)

(4.9)

We see that the torsion Lagrangian (2.9) is singular with

respect to velocities b (or, equivalently, with respect to
T"~i) if the parameters take on critical values: a+P=O,
a —4y/9=0, a=O, and (or) P=O. In that case, one ob-
tains the following primary constraints: P =0, "P~T=O,
P =0, and (or) P ~=0. In order to be able to treat all

such possibilities in a unique way, we introduce if-
constraints ' in the theory

in more detail. %'e have already obtained the general
form of the total Hamiltonian [see Eqs. (1.1) and
(3.38)—(3.41)], therefore we have to find only the gravita-
tional super-Hamiltonian A l and ( u p) term explicitly.
In our case, they are the sum of the torsion and the curva-
ture parts, respectively,

A l =A i+A z, (u p) =(u.p) +(u p) . (4.2)

A. The torsion part

Prr, = [1—A(a—+P)]Pip=0,
"ltlrr= [1 A,(a 4y —/9)] "P—gr=0,

pkr =—[1—A, (a)] Pgr=O,

P P=[1—A,(P)]P k=O,

where we have used the singular function

1/x, x&0
0, x =0.

(4.10)

(4.11}

(4.12)

(4.13)

(4.14)

Let us consider equations for the torsion momenta first
[see Eq. (3.29)]. Using the fact that W depends on T Tl

only through combination ~ i~
—=2T trjn~~, according to

Eq. (3.26},one easily obtains

=4Pk"(T} (4.3)
~T lm

[the factor 4 appears as a consequence that P(T) T is a
quadratic function of the antisymmetric torsion tensor ].
Now it is convenient to use the fact that P is a linear func-
tion of T to insert "velocities" T ~i on the left-hand side
of the above equation

413krl(~) Pkl kT/J 4Pkrj. ( T) (4.4)

where we have introduced generalized momenta I'
which are convenient functions of fields and mornenta.
The explicit form of the above equation can be easily ob-
tained with the help of Eq. (2.9):

Let us explain this definition. If, for example, a+P=O,
then 1 —A,(a+P) = 1, and from (4.10) it follows that
Pik=0, as it should be, according to Eq. (4.6). Contrari-

ly, if a+PrO, 1 —A,(a+P)=0, Eq. (4.10) results in the
trivial identity 0=0. It should be noted here that if-
constraints do not represent any modification in the stan-
dard Dirac Hamiltonian formulation. They are a trivial
consequence of the fact that our theory depends on arbi-
trary parameters, and thus, the primary constraints may
exist only when some of the critical values are satisfied
(otherwise they do not appear as primary constraints in
the theory at all).

In order to exploit generalized momenta in the torsion
super-Hamiltonian [see Eq. (3.36)],

J —irk T"rl JI3klm ( T)Tk™ n—"V irk, (4—.15)

one has to decompose T"' according to Eq. (3.26), and
then to use Eqs. (4.3) and (4.4) as well as the identities

4A Tk~i +2BTT&i +2Cg~ TT l + , (B+C)nk —Ti&i—,p
~~klm 2p Tkri

Pkl (~)Tk™=Pkl (T)~"—
(4.16)

(4.17)

to get

=7Tkp/ J+2BTg g p+ 2C+k T (4.5) (4.18)
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where W (T)=W (TkTi O——, TkT ,n—k). The "velocities"

Tk~~ can now be eliminated, after one decomposes P Tk»
according to Eqs. (A8) and (A13). Let us consider, for ex-
ample, the term of the sum

j.T
—,JP T~p~ .

If a+f0, we can eliminate TiTi, according to Eq (4. .6)
and obtain

1 J PJ-TP
p)

lT.

Contrarily, if a+p=O, p T=p =0, and we can absorb
this term into the (u P) part of the total torsion Hamil-
tonian to get

(
i JTlll +u LT)P a &iTQ

(4.22)

which can be diagonalized again by the method of Appen-
dix A.

+ )AR it/i Apifl

Apical

A+ET/J 2(2 )AR k l

(3a, +2a )rR'&~&=&p«T

rpL&T—r+&T/J (3a 2a )rR &T

(4.23)

B. The curvature part

The curvature super-Hamiltonian A z can be obtained
in a very similar way. The equations for momenta (3.29),
lead to the system of equations

8Pmnkl(~) Pmnf ~nk/J 8Pmnfl(R )+4an [m+n]k

2pzJW '(T) n V nk (4.19)

where u' is an arbitrary multiplier. Both possibilities can
easily be handled by exploiting the A, function (4.14) again.
The final result is

2(a5+12a6)R ~i P-—
P ~

——m &/J —(a5 —12a6)R &T+ 6a,ET

4(ai+a3) R = P

(4.24)

(4.25)

&(~+p) PJf 2 ~(~ 4r—/9) APET2
T =

2(a+ p) a —4y/9
p

~(&) (TpkT)2+ ~(P) (pk )2
3a 18P

(4.20)

and the ( u.P) term is simply a sum

( .p)T ill +A fTAy + Tu kTTy

(4.21)

where u denotes the arbitrary multipliers (we have omit-
ted primes).

='~/J 4(a i—a3)&—~TmiR'

2(a4+a5)vR = P = m. /J+2(a4 —a5)R

(3a +4a )TRklml Tp~™
TPETm T~ETm/J+ (3a 4a ) TR Lm k T

(4.26)

(4.27)

(4.28)

(4.29)

where R~~ and R~~ are the irreducible parts obtained
from R~T—:Rm . The super-Hamiltonian A i [see Eq.
(3.36)] can be written in terms of the generalized momenta
and W (R)=W (R, Ti

——0, R, &T,'nk)"

i.
——

4 (Pili) + 4 (P2ii) —JW (R),

A(2a3+a4)
A i&T2 2A(3a2+2a5) T i&T2 A(a5+12a6)

( Apl )2+ (PIE)2.
2a3+a4 3a2+2a5 3(a5+12a6)

—A, ai+a3) A(a4+a5) & 4 A(3a2+4a3)
24(ai+a3) 2(a4+a5) 3 (3a2+4a3)

J

(4.30)

(4.31)

and the ( i4 P)" term in the total Hamiltonian is

(„.P)z 2 „PTAS +2 u ET
y

& PaPy+ vakvy + 4 TukTmTy (4.32)

where u denotes the arbitrary multipliers and P's are if-
constraints, which are deterinined by the system of equa-
tions (4.23)—(4.28). For example, the first of them reads

Apl' l [1 g(2a +a )]Aplf T 0 (4 33)

Note that A i, A i, and (u.P) terms depend on momen-
ta only through the generalized rnornenta Pk and Pki
that is why we have introduced them.

At this point, let us summarize our results. First, we
have found all the values of parameters which diminish

the rank of the Hessian matrices d2W'/db'. db', and
a2W'/a~". a~ "~ "ritical values of parameters. As
one could have expected, such values of parameters result
in infinite masses of the tordions. Further, we have
found all the possible primary constraints, which appear
when parameters take on the critical values. They can be
written in the form of if-constraints, which automatically
drop out from the theory when the corresponding critical
values of the parameters are not fulfilled. At the end, we
have found expression for the super-Hamiltonian A
which is valid for all values of parameters.

Before investigating the consistency conditions of the
if-constraints, let us consider the special, "most dynami-
cal" case of the theory, when parameters are not critical.
Although we know that such a choice is of no physical
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importance due to the presence of ghosts and tachyons, it
is interesting to see what dynamical degrees of freedom
are in that case. The only primary constraints ~k -0 and
m(1 -0 result in ten first-class secondary constraints
A k=0 and A,&-0; therefore Dirac's procedure is fin-
ished after one imposes ten gauge-fixing constraints.
After that, the unphysical variables b 0, mk, A'J(), and

can be dropped out, whereas ten gauge-fixing con-
straints, together with ten secondary constraints reduce
the number of 24 tetrad degrees of freedom to four—
which correspond to the massless graviton. All other
fields A'J~ and mij. remain dynamical, i.e., all tordions
propagate in the theory. Note that if some tordions are
massless (for example, a=0, a,P, y&0), our conclusion
still holds. That means that there are no extra first-class
constraints (and thus extra symmetries in the theory) con-
nected with the zero-mass tordions, as one could have
naively expected.

V. CONSISTENCY CONDITIONS
OF THE IF-CONSTRAINTS

In order to keep all parameters arbitrary, up to the end
of Dirac's procedure, we have to investigate the consisten-
cy conditions of all the possible primary constraints.
Such an analysis has already been performed in Ref. 21
for the R + T type of the theory and in Ref. 22 for the
general R+R +T theory. In these papers, Einstein's
Lagrangian aR has been modified by the addition of a
four-divergence term (the time gauge condition imposed
in these papers is not very important for the following dis-
cussion). We know that such a modification does not
alter equations of motion in the theory but very well af-
fects the structure of the constraints (curvature general-
ized momenta P,J ceases to depend on a, whereas Pk
also includes terms of the a A'~~ type). Therefore, it is
necessary to check whether the scheme, proposed in these
references, works in our case, since we do not want to add
such a four-divergence for the reasons explained in the In-
troduction.

We confine ourselves to check the scheme (and general-
ize it to a gauge-free framework) in the case of the four-
parameter R + T theory of gravitation. This example is
very important as it includes the standard Einstein-Cartan
theory and also exhibits all important features of the pro-
posed scheme, being relatively easily calculable at the
same time.

A. R +T cgse

A i (which we denote here by 4 i) as

maori= 2 (&r)'+mi(A') A—"k~I~+~i"" (5.2)

where —,
' (Pr ) is given by Eq. (4.20), ~i(A ) is quadratic

ln 3 Jg'.

A )(A )= —J[W (A )+W (A )] (5.3)

[note that A i, in our case, contains only Einstein's term
—JW (R ) = aJR—~~], whereas

A'~g—=A'J hg~, (5.4)

is "canonically conjugate" to m,j (see Appendix A). The
last term A z"" is at most linear in A' and mk ', vari-
ables which have nontrivial brackets with the primary
constraints (5.1).

Turning now to the constraints P&~ and P, one can
easily show that they have weakly vanishing Poisson
brackets with all torsion generalized momenta Pk, and
therefore with all possible torsion primary constraints. As
a result, their consistency conditions lead to the following
secondary constraints:

=2K(a 3a/2) Ag—p + fop =—0, —

X"~~j = —3—(a 3a/2) 5kf ~5—(x x'), —

(5.7)

I P, X'j =48—(a —2y/3)5(x —x'),J (5.8)

if the tordions are massive [see Eqs. (2.13) and (&19)].
For what follows, we will assume that tordions are mas-
sive.

In order to examine the consistency conditions of the
other curvature primary constraints, we first note that
nonvanishing Poisson brackets between them and the tor-
sion generalized momenta Pk are given by

X=d"P/dt =4K(a —2y/3) A+ f=0, (5.6)

where f&& =—I P~~ , —f X'A 'i—""dx'j and f is de-

fined in an analogous manner; thus f's are independent of
A'J~ and mk . Now, it is clear that the above secondary
constraints are of the second class:

As a result of the assumption that all a; vanish
(i =1, . . . , 6), all curvature if-constraints become non-
trivial, and they can be written in the coinpact form

4'kl ~kl /J +4«(k5 I]

X5~k5(x —x '), (5 9)

according to Eq. (4.22). Nevertheless, it is more con-
venient to investigate the consistency conditions of the ir-
reducible components of the above primary constraints, as
will be shown in the sequel.

Assuming now, as usual, that the matter field Lagrang-
ian W is linear in derivatives, and thus in Lorentz con-
nection A'~, one can decompose the super-Hamiltonian

I AP AP&ltl ITj [(a 2y/3) (~ 4y/9)]J
X 5(k 5"()5(x —x ), (5.10)

[ry, ~„,ra' "j= ——a(5 (k5",) ——,'g "g~)-)5(x—x'),
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IP~P, P' j = a5(x —x') . (5.12)

X~— —=( —a+a/2 P)P~~—
[2(g +a/2+ 2P)A III+ft ITl] 0

"X~pp= (2a —a 8y/9) "Pg)-— (5.14)

+(a 4y/9)[2(a 4y l—9)"Aqg~ "f—~gp] =0,
(5.15)

rX~&&= —2(a 3al2) P~~+3a fj ~1=0,—

X&P =12(a +3P/2)P p+18Pf' g=O,

(5.16)

(5.17)

where f"s are independent of A'J and mk . Note that
these constraints reduce to the corresponding possible tor-
sion primary constraints given by Eqs. (4.10)—(4.13) if
a+P, a —4y/9, a, and (or) P vanish. Therefore, the
above constraints are always present in the theory and are
of the second class, as one can easily prove that

They take such a simple form, due to the fact that we
have used irreducible components instead of the con-
straints (5.1), as one usually does (see, for example, Ref.
27). Note that nontrivial brackets appear only between
torsion generalized momenta and curvature primary con-
straints which are of the same spin and parity. One
should be aware of the fact that the decomposition into
the irreducible parts of the constraints (t)k~ should be per-
formed before taking the Poisson brackets with mk, as the
following relation holds:

Im), n' j =5 5(x —x '} (5.13)

(which reveals —~) as a variable canonically conjugate to
normal nI ).

From the above Poisson brackets we see that all possi-
ble torsion primary constraints are of the second class. If,
for example, a+P=O, primary constraint P) P) ~ do——es
not commute with p1- (a —3a/2&0). The maximal
number of torsion primary constraints appear when
a=P=y=O, i.e., in the case of Einstein-Cartan theory.
In that case the Dirac's procedure is finished after one
constructs Dirac brackets based on the primary con-
straints as well as on the secondary constraints (5.5) and
(5.6). Note that the components of the Lorentz connec-
tion A™and A~~~ do not appear in these second-class
constraints. Still, it makes sense to say that pairs of con-
straints (P~,P) ) and (P~&&,P~~) determine variables

(m~, A~~1-) and (m~~1;A~~&), respectively, because it is

well known that A~~ and A can be expressed in

terms of other variables and their velocities by using equa-
tions of motion for tetrad fields as well as these con-
straints.

What happens if a+ f0, a —4y/9+0, a+0, and (or)
p&0') Using Eqs. (4.20), (5.2), and (5.3) one can easily ob
tain that consistency conditions for P~ — and P~~~ result
in the secondary constraints, which can be written (after
multiplication with appropriate factors) as

IP™,X') „-"j =(4/J)(a +3P/2)(a —3a/2)

X5~&5(x —x '),

I "P)~~, X' "
j =(4/J)(a —2y/3)(a —3a/2)

X5(k~5"~)5(x —x '),

I Ty TXim n
j (4/g)a (a —3a/2)

(5.18)

(5.19)

X(5(k 5 ))
—Tri gpss)5(x —x ),

(5.20}

IP~P,X'~ j =(144/J)a (a+3P/2)5(x —x ') .

(5.21)

In this way, there are no tertiary constraints due to the
fact that we assume massive tordions. As in the
Einstein s case, after imposing ten gauge-fixing conditions
there remain only four physical degrees of freedom in the
theory, which correspond to the massless graviton. The
Lorentz connection field is undynamical, and can be
determined by the second-class constraints (or through the
equations of motion).

B. R+R +T case

From the preceding example, we see that the only
essential difference between our results, and the results of
Refs. 21 and 22 lies in the fact that the torsion if-
constraints cannot always be solved in terms of A

and A~~)- as should have been the case if we had added
the already mentioned four-divergence term to the La-
grangian. Instead, one has to use the equations of motion
for the tetrad field in order to determine A and A~&)-
explicitly (in such a way one actually reproduces the con-
straints which exist in the Lagrangian formulation of the
theory, and which involve velocities). On the other hand,
the second-class property of the if-constraints and their
consistency conditions [see Eqs. (5.7), (5.8), and
(5.17)—(5.20)] is exactly the same in both approaches, as
one can easily verify. Therefore, we adopt the scheme
proposed in Ref. 22 here, being aware of the subtlety con-
cerning determination of A™—and A

Following the scheme, we first decompose all if-
constraints into six groups according to their spin and
parity. The first four groups contain the pairs of if-
constraints, say P) and P2. If both if-constraints are non-
trivial, they are of the second class and the corresponding
components of the Lorentz connection cease to be dynam-
ical. If, on the other hand, only one if-constraint in the
pair exists as an ordinary primary constraint, say, (t „its
consistency condition leads to the secondary constraints
X), which generalizes the expression for (()2 [in the same
sense as the constraints (5.14)—(5.17) are a generalization
of the torsion if-constraints (4.10)—(4.13)]. Then P& and
X~ serve to freeze the corresponding components of the
Lorentz connection (and their momenta). The last two
groups contain only one if-constraint ((), which, if it ap-
pears as a primary constraint, leads to a secondary con-
straint X. Then P and X can be used to determine the cor-
responding Lorentz connection degrees of freedom. These
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Group Critical
values of

parameters Constraints
Undynamical

variables

TABLE I. If-constraints, their consistency conditions, and
dynamical consequences in the theory.

,
'

f—iy" dan m—fP, (6.1)

where QB f=g(BQ) —(Bg)g and y" are Dirac's matrices
The generators of the Lorentz group in the bispinor repre-
sentation are given by

IV

VI

0+

0

P=O
a5+ 12a6 ——0
u —4y/9=0
2a3+a~ ——0
a=0
3a2+2as ——0
a+P=O
a4+a5 ——0

a~+a3 ——0

~F&~K
T T

~iT ' ~iT
6T& JiKT

A A
~iFT& ~iKT

~ET& Jik T

~iKT& ~1.KT

~if& +iF
~Km & ~k'm

Py P~

3~2+4~3 O ~T T & ~ET

A~&, m«

A g A
iKT~ ~i% T

AiKT~ ~j.J T

K'm & K'm

T g T
K'Tm& ~fTm

1

iJ 4[Y yii 4 Y yj YJY

Using the minimal substitution rule in the Lagrangian
(6.1) one gets

(6.3)

If we want to apply here the results obtained for an ar-
bitrary matter field directly, we should use an eight-
dimensional column vector u'=()T) in the Lagrangian
(6.3). Instead, we prefer to keep standard variables P and

i7, and their momenta F and ir, respectively. Repeating
the few steps which have led us to Eqs. (3.24) and (3.25),
one easily finds

results are summarized in Table I.
In this paper we have nothing to add to the scheme.

Still one should be aware of the problems which may
arise. The right-hand sides of brackets (5.9)—(5.12), in the
general case, besides the already written terms, involve
~~„and m.,j linearly. The secondary constraints 7
could, in principle, depend on higher powers of A'J~ and
m;J~ (up to the third). Even more, brackets of the type
{P,X'I may involve derivatives of the 5 functions, requir-
ing a careful analysis and fixing of the boundary condi-
tions. ' For that reason one can accept our scheme (which
is valid at least in the massive-tordion weak-field approxi-
mation, as shown in Ref. 22) as the first step toward a
more detailed analysis.

VI. SPIN- 2 MATTER FIELD

Let us consider a spin- —, matter field minimally cou-
pled to gravity in the Poincare gauge-invariant frame-
work. This case is important since we believe that most
of the matter in the universe (quarks and leptons) are
described by the Dirac field. Besides, the spin tensor of
the Dirac field is nontrivial and can play an important
role as a source of the gravitational field.

We start with the special-relativistic Lagrangian density
in which independent variables li& and li& play symmetric
roles: I

,J ms,q@—fs&J m—
&

(6.4)

(6.5)

(6.6)

(6.8)

—Jfy =—0 .l

2
(6.9)

It is easy to see that p and &II are second-class constraints:

{P,P') =iJy 5(x x'), d—ety =1 . (6.10)

Therefore, the consistency conditions of P and P deter-
mine four-multipliers u and u, respectively, and do not
lead to any secondary constraints.

One can now easily construct the preliminary Dirac
brackets based on constraints (6.8) and (6.9).' ' In our
case they are given by

The last equation is a consequence of the fact that the La-
grangian (6.3) is linear in the velocities; therefore, A i is
simply equal to —JW (Dig=Dig=0). The (u.P)
term, which appears in the total spin- —, Hamiltonian, is

given by

(u.p) =up+pm, (6.7)

where u's are the arbitrary multipliers and P and P the
primary constraints in the theory,

(6.11)

where I' and G are arbitrary variables and "T"denotes
the transpose matrix [see also the text below Eq. (3.47)].

After that, one can use (6.8) and (6.9) as strong equali-
ties to decrease the number of physical degrees of freedom
from the theory. If one decides to eliminate g and n., it is
enough to find the preliminary Dirac brackets for the
remaining set of variables. From Eq. (6.11) it is clear (6.13)

I

that the basic preliminary Dirac brackets' ' for two
variables can differ from the corresponding Poisson
brackets, only if both of them belong to the set
{P, K, m k J. These brackets are given by

{P,F'' I*= —,
' ll( x —x '), (6.12)

{mk,g']'= ,'(hJ; +nkhT—yy )$5(x x'), —
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VII. TIME-GAUGE CONDITION

At the end of this work, let us say something about the
time-gauge condition (TGC) which is commonly used in
the literature. It is usually imposed froin the very begin-
ning, eliminating b ~ degrees of freedom from the La-
grangian:

(7.1)

A somewhat modified method of the TGC is used in Ref.
22, where only velocities b p are not restricted to vanish
in the Lagrangian. In such an approach, it is necessary to
treat b =0 as an ordinary primary constraint which

has to satisfy the consistency condition b ~=Ib, f A,'„d'x'I =0.
Both methods of imposing the TGC are equivalent to

the standard method, which we are going to explain
here. In the standard approach, gauge-fixing constraints

b'. =0 (7.2)

should be imposed after the whole Dirac's procedure is
finished. They have the nonvanishing Poisson brackets
with boost generators A p&, given by Eq. (3.48), which can
be explicitly solved in terms of mp~.

h (b ~ A™pb—A—pb) 0, (7.3)

where hb are'the inverse triads, and A pb and A pb are
the matter and curvature boost generators. Thus, con-
straints (7.2) and (7.3) are of the second class, and serve to
eliminate b and ~p from the theory.

Before that, we have to construct the preliminary Dirac
brackets, using the constraints. But, in this case, the basic
preliminary Dirac brackets are simply equal to the stan-
dard Poisson brackets, as far as the remaining set of vari-
ables is concerned. That means that we can simply elim-
inate b and mp from the theory, using (7.2) and (7.3) as
strong equations.

As a consequence of the breakdown of the boost invari-
ance, the multiplier 3 p is determined by the consistency
conditions for the TGC, b =0, and can be expressed in
terms of other variables.

The decomposition of the inverse tetrad field hk", in
the time gauge, is simpler than in the general case:

n k~$kp h a~o

hg ~hb

N~b p N ~—b php

(7 4)

From the above expressions for n, we see that TGC fixes
the first tetrad leg to coincide with the normal to the
x =const hypersurface. This is the geometrical meaning
of the TGC. Besides, there is no need to use n and h&

Iirk, ir'I*= —,—ir(h~ +nkh~ y y )5(x —x '), (6.14)

Ink, n'i~I*=iJnknih h„~Py s "$5(x x—') (6.15)

[where s "is given by Eq. (6.2)] and they reduce to the
brackets which have been found in Refs. 18 and 20, after
imposing the time-gauge condition.

at all, and the decomposition described in Appendix A
should be replaced by the standard "space + time"
decomposition:

"l"—+ "0", "k"~"a" a =1,2, 3 . (7.5)

It is now a trivial exercise to rewrite all the if-constraints
and the total Hamiltonian in the time gauge. They are
somewhat different from the corresponding expressions of
Ref. 22, where a four-divergence term has been added to
the Lagrangian.

To conclude, the advantage of the TGC lies in the fact
that it gives a physical meaning to the first general coor-
dinate x, and simplifies the theory, on account of de-
stroying the boost invariance of the theory (see also Refs.
23 and 25).

VIII. CONCLUDING REMARKS
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APPENDIX A: "3+ 1"DECOMPOSITION
WITH RESPECT TO x =CONST HYPERSURFACE

We are going to explain here how to decompose any
tensor field with respect to the subgroup of three-

As has already been mentioned in Sec. IIIE, we have
left verification of Eqs. (3.45)—(3.47) for one of our next
papers. This problem is interesting not only because we
want to see whether there are terms which are quadratic
in the constraints, but also for the following reason. Such
brackets are usually derived by exploiting the symmetry
of the theory under general coordinate transformations
(and local Lorentz rotations) and also imposing some kind
of consistency requirements. ' ' But, it has already
proved by Schwinger that the theories of spins higher
than 2 do not satisfy similar requirements, even in flat
space-time. Thus, it seems to be worthwhile to check
these equations in a straightforward manner and to find
which are the consistency requirements in our case (if
there are any).

The next problem we have not completely solved is the
problem of consistency conditions of the if-constraints,
especially in the massless-tordion case. Still, the results of
Secs. IV and V may serve as a starting point for further
investigation of these problems. Especially, the massless-
tordion case can be very well studied in the R +T frame-
work, as condition (2.13) does not involve parameters
from the R sector of the theory. "

At the end we emphasize again that our initial La-
grangian is not altered by adding a non-gauge-invariant
four-divergence term. According to the results of Refs.
20 and 14, one could expect that our total Hamiltonian
density must be improved by adding some suitable surface
terms which reveal the Harniltonian as the total energy of
the system under consideration. This problem is also left
for further investigation.
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dimensional rotations in the x =const hypersurface. As
in the main part of the text, we prefer to work in the local
Lorentz basis. In the vector representation, projectors to
the normal, Pz, and to the x =const plane, P

~
~, are given

by

(~(()"r —=5 T=5"t—n "nt, (Al)

where nk ——hk I+g . We adopt the convention that an
overbar above an index "k" does not mean a different in-
dex "k" but denotes the fact that contraction with nk
vanishes. Thus one can equally well write

5 P
——5"P——5 l (A2)

as 5 T is symmetrical in its indices. The projectors (Al)
are orthogonal to each other and define a complete set

5k~ I () 5k 5E~+n kn (A3)

Dk nk (n Dl ) +5k' Dt =nkDL +Dk' (A4)

Using (A3) we can express any vector field, say, Dk, in
terms of its orthogonal and parallel components:

T & S
~kT ~kT+ ~kT+ 3 ~E/ ~ ~

whereas the tr TTT term in Eq. (A8) becomes

TT+ ~ T1~7. +r TTr+ + ~s~7-
EI— kT

(A12)

(A13)

The same decomposition can be performed for m~™,
which is present in Eqs. (A7) and (A9).

The antisymmetric parallel tensor m = —m™can be
expressed as a sum of the pseudoscalar, vector, and tensor
parts, respectively,

klm ~ &kTmlp +v [k' T[m+ 4 T [kT)m
6 7T m' '9 3 77

(Note that ek T „=0as well as ezz „=0.)
Starting from the parallel tetrad momenta mk. T, we can

form the antisymmetric, traceless-symmetric, and scalar
part, respectively,

T & m S~TT=~[k T]~ ~ET=~(kT) 3 tiki'

(A 1 1)

The inverse relation is

where the notation is self-evident. A second-rank an-
tisymmetrical tensor Xkl ———Xlk can be decomposed as

where

Rim~ V k kf~fTm~

X« =Xu r+ 2X[ei nl)

+gT= 5 k5"T+mn, +k~ =5"kn Xnm

(AS)
T ETm k(Tm) & V f Tm+ & E(TV m)

The sum m ~R&T—in (A9) can be written as

(A15)

~klm ~ETm+ 2n [k+T)m (A7)

[see the text below (3.28)]. Besides, using Eq. (A3) one
easily obtains that

HTrkT=~kTrkT++'Z;T, (A8)

Rl———m RgP +2' R P—,klm k Em ~Tm (A9)

for any tensors Tkt and Rkt
The parallel tensors lie in the hypersurface x =const,

and can be further decomposed into the irreducible parts
using the standard method of symmetrization, antisym-
metrization, and contraction. This decomposition should
be performed by using walk T

and ekT ~ instead of g,z and
E'j'kl in order to remain in the plane. These tensors satisfy
the useful identities

kT (A10)
ET—i

where 2X~ J-,~ nl~ =X~~nl —X~~nk. Similarly, the tetrad and
Lorentz connection "parallel" momenta m.k"and m.«can
be further decomposed in the following way:

~T k T+„k~T (A6)

~&TmR 4 r~kTmrR + v kvR i p~RfT'm= 3 ~ &&m ~ g 6 (A16)

Note that the tensor part satisfies the useful cyclic identi-
ty

T T T&r-+ ~-re+ ~r-u—=o. (A17)

The Lorentz connection field A'J&, defined by Eq. (5.4),
can be decomposed analogously as ~,z . Note that passing
to parallel components is not a canonical transformation
as nk does not commute with m~ . Still, the following
"basic" Poisson brackets within the set I A 'Jk.,m;J I holds:

IA'Jk, m' „ I =25'[ 5j„)5Tk5(x—x '), (A18)

I AkT, n."P~I =—5"Pe5(x —x'),

5kt:5"k5 ~t5 ~

—(all necessa—ry traces) .
(A19)

from which it is clear that the brackets between irreduci-
ble components of A'J& and m „are nontrivial if both of
them are of the same spin and parity, for example,
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