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A range of solutions to Einstein's equations in 1+d +D dimensions is presented for a variety of

perfect-Quid energy-momentum tensors. The techniques used to obtain these solutions are explained

at some length. Solutions with D dimensions eventually collapsing and d expanding are singled put

and studied in detail. It is explained how the higher-dimensional universe passes into a (1+8)-
dimensional Friedmann-Robertson-Walker phase. The modifications in the thermal history of the

universe are traced. It is found that this altered scenario offers a resolution to the horizon problem.

I. INTRODUCTION

The idea that the universe we see today is only part of a
higher-dimensional manifold, of which the nonvisible sec-

tion is too small to be resolved at currently available ener-

gies, leads in a simple arid natural way to the unification

of gauge and gravitational interactions. ' One merely

writes the Einstein-Hilbert action for the extended space-

time and reduces this down to 1+ 3 dimensions by in-

tegrating over the extra space-time variables. The same

idea permits a simple derivation of the N =8 supergravity

Lagrangian. Here one begins by putting down the X =1
supergravity Lagrangian in 11 dimensions and performs

on this an appropriate dimensional reduction.
Within this unification scheme, internal symmetries are

seen to originate in the space-time symmetries associated

with the extra dimensions. Gauge invariance thus as-

sumes the same status as space-time invariance while

internal quantum numbers such as electric charge are

brought onto the same footing as energy and momentum

(i.e., they are seen to result from symmetry motions in the

extra dimensions).
Its aesthetic appeal notwithstanding, this approach

would amount to little more than a mathematical trick if
the compact dimensions it postulates do not have an actu-
al physical existence. Unfortunately, resolving these di-

mensions at currently available energies seems to be out of
the question. Indeed, arguments linking the gravitational
constant 6 to the gauge coupling constants and the size of
the compact dimensions suggest that the latter are at
most a few orders of inagnitude larger than the Planck
length.

However, it is possible to look for effects of these extra
dimensions in the very early phases of the universe, for if
we evolve the Friedmann-Robertson-Walker (FRW)
universe back towards the big-bang singularity, we eventu-

ally reach energies at which the extra dimensions become
resolvable and, in fact, come onto the same footing as the
standard dimensions.

The Kaluza-Klein view of world geometry thus implies

that the universe started out in a higher-dimensional

phase with some dimensions eventually collapsing and

stabilizing at a size close to the Planck length while three
others continued to expand and are still doing so. It is

precisely such a scenario that will be elaborated in this

paper.
The models we have in mind can be explained rather

simply in terms of various two-dimensional analogs. For
example, a multidimensional cosmology which collapses

into a closed FRW universe with a compact S" at each

point can be visualized by considering a torus,
Si"(r)XS'i '(R), where Si ', say, refers to the cross-

sectional circle and r and R are the respective radii. The
surface of this torus is two-dimensional and, to a creature
confined to it, represents the entire spatial universe. Now

let this torus evolve in time in such a way that r expands

while R contracts. In time, the cross section becomes un-

resolvable which happens for a radiation-dominated

universe when the temperature T of the radiation drops

below 1/R. The torus then effectively collapses into an

expanding one-dimensional ring with a compact S' at
each point. This compact space plays no further dynami-

cal role, but will need to be stabilized at the size of the

compact dimensions today. Any creature which comes
into existence after the dimensional collapse has taken

place evolves as a one-dimensional being with a one-

dimensional geometric intuition, little suspecting that the
universe passed through a phase in which it had a larger
number of spatial dimensions.

The two-dimensional analog for an open universe is

likewise a cylinder whose cross section collapses to a
miniscule size while the distance between any two points

along the long direction increases.
As generalizations of these two-dimensional pictures,

we consider spatially homogeneous universes whose sur-

faces of homogeneity consist of direct products of two

subsp aces:

3 D 3 D
R(r) XS(g) or S(r) XS(g) ~

We furthermore assume these universes to be filled with

perfect fluids. The question then is: Do Einsteins equa-

tions for these (1+3+D)-dimensional universes predict
scenarios of the form described, i.e., can we find solutions
in which R eventually collapses while r continues to in-

crease?
It is the aim of this paper to provide a fairly complete

answer to this question for the first of the topologies men-
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tioned above, viz, R &S . The S &(S case will be
treated in a separate publication.

The paper is organized as follows. In Sec. II, the prob-
lem is set up, while in Sec. IIIA we solve, as a warm-up
exercise, the relevant Einstein equations for no curvature
in either of the spaces involved in the direct product but
for a general perfect-fluid energy-momentum tensor. In
Secs. IIIB and IV the equations are solved for positive
curvature in the compact space. The dimensionality, D,
of the latter is left arbitrary. Solutions are presented for
perfect fluids described by the following equations of
state: (a) p =p=0 (vacuum), (b) p=p (Zeldovich equa-
tion of state), (c) p=(3+D)p (pure radiation), and (d)

p =O,p&0 (pure "dust"). Section V contains a discussion
of the horizon problem in the context of these models,
while Sec. VI consists of a summary and a set of con-
clusions. (A reader interested only in the physics and not
in all the technicalities of the underlying solutions can
skip Secs. III and IV with no essential loss in continuity).

II. THE RELEVANT EQUATIONS OF MOTION

A complete delineation of the higher-dimensional ori-
gins of the universe would, ideally speaking, begin with an
isotropically expanding space, which for some dynamical
reason splits into a direct product of two subspaces at
least one of which is three dimensional. Such a "fission-
ing" of the universe with its attendant change in topology
would almost certainly require us to go beyond the realm
of general relativity and of Riemannian geometry. In
view of this, we shall, in this paper, pick up the universe s
evolution at a stage at which the fissioning has already oc-
curred.

Our ansatz for the metric accordingly is

p=(y —1)p. (2.3)

The cases of special interest then are (1) y=(n+1)/n,
corresponding to pure radiation, consisting of fermions
which have to be put in by hand in Kaluza-Klein theories
and possibly of some higher-dimensional graviton modes,
and (2) y=l, which represents a pressureless fluid. In
considering this value we shall be covering for the possi-
bility that, owing to the production of some superheavy
particles, the early universe may temporarily become
matter dominated. In addition to these we shall consider
the value y=2, i.e., p =p, which describes "stiff' matter
and the vacuum T&„0, fo——r both of which the equations
of motion can be solved exactly.

Having made definitive choices, for both g&„and T&„,
we can put down Einstein s equations, which for arbitrary
n take the form

8pvTx
(n —1)

(2.4)

Here G is the gravitational constant appropriate to n
dimensions. It has dimensions of (length)" ' and is relat-
ed to the (1 + 3)-dimensional constant G by

G =GVc (2.5)

where V, is the volume of the compact space today. For
our choice of S for the latter

(8+1)/2
V, = R,I ((D+ 1)/2}

(2.6)

The actual value of R, (or, equivalently that of
M~K ——R, ') will be treated as a parameter of the theory.

Written out explicitly Eqs. (2.4) read

Rpv=
2—~ Rmn (2.1)

r R
d—+D—=—

r R
8n.G(n y —2) a

(n —1)
(2.7a)

SMN

Tpv= Pgpv+(P+P)upuv —
~ (2.2)

where uo ——1, u; =0 (i = 1, . . . , n), and p will be assumed
related to p by

where the g „and g~z spaces will be assumed d and D
dimensional, respectively. d will eventually be set equal
to 3, but the number, D, of the extra dimensions, all of
which have been assumed spatial, will be left arbitrary
and will be treated as a parameter of the model. Lastly,
for convenience, we shall set the total number of spatial
dimensions, d +D, equal to n.

%e shall find that this direct-product topology persists
as we evolve backwards in time all the way to a cosmolog-
ical singularity. This is to be expected since we shall be
working entirely within the framework of general relativi-
ty.

As for the matter content of the universe in its higher-
dirnensional phase, we shall be most interested in the cases
of pure radiation and of dust, both of which are perfect
fluids. We therefore take our energy-momentum tensor to
correspond to a perfect fluid in n dimensions:

d r r+ d —+D—
dt r r R

=8~G y, (2.7b) .
(n —1) g"r

kD d R r R+ d—+D-
R 2 dt R r R

=8mG „, (2 7c)
—(2—y) a

(n —1) gr '

where we have set p=a/X"r. a is a constant with dimen-
sions of (length)"'" " '. X" is the total (n-dimensional)
volume (X"=r R ), and kd, kD are the curvatures of the
d- and D-dimensional spaces, respectively.

As mentioned in Sec. I, we shall in this paper be pri-
marily studying the topology R &(S, which corresponds
to k~ ——0. In this case we can always rescale r and R to
make kD ——+ 1, 0, or —1. Of these values we shall in turn
be interested principally in kz ——+1. Furthermore, since
the absence of curvature eliminates any natural length
scale from the corresponding space, we must explicitly in-
troduce one by focusing on a region of arbitrary size at a
fixed but arbitrary value of some convenient variable such
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8~G 8~G a „A"' '(To= 1)

(n —1) (n —1) gnr ynr
(2.8)

The physical significance of A will emerge clearly as
the scenario is further elaborated (cf. Sec. VB).

In Secs. III and IV we shall solve the set of equations
defined by (2.7) and (2.8) for a range of situations.

as R or the temperature, T. For a region of a different
size we must scale all relevant quantities by the ratio, ro,
of the latter to the one explicitly picked out above, the
comparison being made at the chosen value of R or T.

For clarity, we sha11 write rp explicitly in all our ex-
pressions. Lastly, we shall find it convenient to work in
terms of a quantity, A, which has dimensions of length
and is given by

r

d T' r'
+ d—+D

r r

+ d—+Dd A" r'
dy T

(2—y)
ny

yield an equation for o" alone:

0." 0"
(T (T lT

n" n(2 —y)
ny

whence

Equations. (3.2b) and (3.2c), together with

rr
d—+D g"

(3.2b)

(3.2c)

0.3)

(3.4)

III. SOME EXACT SOLUTIONS

In this section, we shall solve equations (2.7) and (2.8)
for kD ——0, T&~ 0, and ——y =2. In each of these cases the
equations can be integrated exactly. Although the solu-
tions so obtained are not of much interest physically,
working them through will nevertheless be useful in solv-

ing these equations for more realistic situations.

0' ~n —ld ~
O ( n(2 —y)+~ n(2 —y))1/2Op

(3.5)

(~n (2 —y) +~ n (2—y) )
1/2~or

Equations (3.2b) and (3.2c) can now be individually in-

tegrated to give

A. kg) ——0

We shall work in terms of dimensionless quantities:

1/2
(n —1)D n (2—y)/2

CTp (3.6a}

dr= Ady,

r=roAr(y),

R =RoAA(y}

R D/ny d/nAg(y)

(3.la)

(3.1b)

(3.1c)

(3.1d)

r I /2
(n —1)d

D
n (2—y)/2

CTp

n(2 —y)+~ n(2 —y)}
~lf

(3.6b)

Substituting these into Eqs. (2.7) and (2.8), we get

r" A" (ny —2)+
{Tny

(3.2a)

where we have used Eqs. (3.2a) and (3.3) to fix the con-
stants of integration to be +[(n —1)D/d]'/ pro"{

and + [(n —1)d /D]'/2oo" ' y'/, respectively. A further
integration turns Eqs. (3.6) into

ro
+o i —o1+[(n —1)D/d])/~r

(
n {2 —y), n (2—y) i n(2 —y)/2]+2[(n —1)D/1] i/2/n(2 —y)

1+[(n —

1)d/D](/iran

n(2 y) n—{2—y)i n(2 —y)/2] T2[(n —1)d/D](/2/n{2 —y)~~0' +op j—0'o

(3.7a)

(3.7b}

r~constxo'+[(n —1)D/d) / ~0
%~const X o " oo,

1/2

(3.8a)

(3.8b)

We can now look at these solutions for various limiting
values of y or equivalently of (T. For concreteness, we
shall stick to the first of the solutions above and will set

To —~o—1 and d =3 where a specific choice is called for.
Since [(n —1)D/d]'/, [(n —1)d/D]' )1 fo«)1,D
&0, we have as o~0,

A' —+constX 1—

(3.8d)

while for cr +oo, —

T,A ~ET~ oo

r', W'~o-' —"~/'~0 .

(3.9a)

(3.9b)

1/2
1 )d (n —1)[1+—[d/(n —1)D](/2)

D

(n —1)Dr'~const X 1+ —(n —1 ) I 1 —tD/(n —1)d]

(3.8c)

Thus, the universe begins from a "line-like"6 singularity.
The scale factor, r, for the d-diinensional space starts out
from zero with an infinite slope and increases monotoni-
cally for all values of y, while that for the D-dimensional
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space decreases from infinity [with R'(0) = —00], reaches
a minimum at

(for d =3), reverses and then begins to increase. At a
much later stage, the universe expands isotropically with
an ever-decreasing expansion rate.

B. T„„=O(vacuum) and y =2,D & 1

~D —1 (rd~D —1)' rd

~D —1 rd~D —1 d

(D —1)' cos Ir[(D —1)]' I
—(c1/c2)

sinIr[(D —I)]'~
J

(3.14b)

The substitution of Eqs. (3.14) into Eq. (3.11a) produces a
relation between the constants of integration,

2
As we shall see below both these cases can be treated

simultaneously.
The substitutions

c1 (d 1)
C2

D
(D —1)

=0, vacuum (3.15a}

(3.10a) D+
C2

(d —1)
d

D
(D —1)

2(n —1)
C

2

turn Eqs. (2.7) into

(3.10b)

(3.10c}

(3.10d)

y =2 . (3.15b)

Finally, we can further integrate Eq. (3.14a) to get

( 2( — 1'
1[(D 1)1y2r/2]

which, together with Eq. (3.13b), implies that

(3.16)

I"
rd

D 1 2 sin[r[(D —I)]'~ I

n ' ' [(D —1)' r/2]
(3.17)

D d
(D —1) d. ~D

0, vacuum

2(n —1)
(rd)2(~D —1)2 '

(3.11a)

(3.11b}

rd ~D —I

rd ~D —1
=0. (3.11c)

( d ~D —1) ()
d7

(3.12a)

(3.12b)

which in turn iInplies that

r A' =c]
and

(3.13a)

From Eqs. (3.11b) and (3.1lc) it immediately follows that

We note that for both the vacuum and for y=2 we
have only two independent constants of integration. This
is to be expected since, of the four constants correspond-
ing to the two coupled second-order differential Eqs.
(2.7b) and (2.7c), one is fixed by Eq. (2.7a) and a second by
requiring that ~=0 correspond to the initial singularity.

The properties of these solutions can now be easily de-
lineated. From Eqs. (3.15) it is clear that a =c1/
Ic2[(D —1)]' I can be either positive or negative. We
shall examine in detail only the physically more relevant
case a &0. (The value a &0 can be treated in a similar
manner. )

For y=2, we can have a & 1, a = l, or a & 1.
If a & 1, the universe begins in a line-like singularity

R —+ oo,r~0. The extra dimensions then contract mono-
tonically while the normal ones continuously expand until
the universe terminates at ro ml(D —I)'~——in the line-
like singularity R =0, r~ oo.

For a =1, R shrinks from (2c2/c2)' ' " at r=0 to
zero at r =ra, while r behaves as before.

Finally for a &1, R expands from the "point-like"
singularity r =R =0 at ~=0 to a certain maximum value
and then shrinks to zero at r11 m./(D —I)'~ . The q—u—ali-
tative behavior of r once again remains unaltered.

In all three cases X~O at both singularities and the
universe lives for a time

r 9F '=c2sin[r(D —1)' ) . (3.13b) 7r/(D —1)

Thus,

d

and

Cy

c2sinIr[(D —1)]'~ j
(3.14a)

A 1 (D —a) 1 (D+a)
(D —1)1~2 2 (D —1) 2 (D —1)

where 8 is the P function.
Finally, for the vacuum d &a & 1, and thus, here only
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dt = ASF(r)dw, (3.19a)

the first of the above behaviors is possible.
It should be mentioned that Eqs. (2.7) ean be solved

with equal ease for D =1. For completeness we give the
solution below:

' 1/2
d n —1 1 d
dt n Ao(r) d~ '

d {n —1) .1 d
dt n A o' dv

(4.1d)

rp

u =a,ee-~i4,

where

(3.19b)

(3.19c)

Equation (2.7b) then reads
I

d r' 0-"-' r' 1+r ~n —1 r ~n —1

which can be immediately integrated to give

(4.2)

C= ~

1 1 —d
2 d

vacuum

T

+1 1 —d (n —1)

rp

(3.19d)

(3.19e)

r' &+k
r n —1

(4.3)

(4.4)

where k is a constant of integration. Equation (2.7c) gives
r

yg g2 d R ' o."
(n —1) R dr R o" R

+ +

and ro, A'0 are constants.

IV. y=(n +1}/n (PURE RADIATION}
AND y=1 (DUST)

For both these cases, it is rather difficult to solve Eqs.
(2.7) exactly. However, the following alternative strategy
accords us all the information that an exact solution
would have provided.

%'e begin by putting down a power-series expansion for
the solution at ~=0. The expansion can be made as accu-
rate as desired by going to a sufficiently high order in r.
We shall find that exactly two coefficients (which corre-
spond to the two independent constants of integration in
all exact solutions) are left undetermined by the equations
of motion. On giving specific values to these arbitrary
coefficients, we get a complete set of initial data which
can then be integrated out to a second singularity at 7 p
with the help of any standard numerical integration rou-
tine. Finally, we make a second expansion at ~=~p. Once
again we find that some of the coefficients are not deter-
mined by Eqs. (2.7). For a given choice of initial data at
r=0, these coefficients are, however, fixed and a program
can easily be written to match the coefficients at the two
ends.

We thus have a numerical solution away from the
singularities and power-series expansions at the latter,
where, of course, a computer is not too convenient a tool
of study.

Let us impleinent this strategy in sequence for the
values y=(n +1)/n and y= l.

Itl

~n —l~n —1 2d
1 n —1

D{n —1)

(r+k) [o" ' (n —1)]=0—.. (4 6)
D

Similarly by writing the left-hand side of Eq. (2.7a) as

r' R d X" r 1'X 1 r'

d—+D +d — +Dr R dw r Dgn Dr
(4.7)

and substituting Eqs. (4.1), we get yet another equation
for o"

e —1 n —i+ 1 { n —i)2
D(n —1)

2d
D

(r+ k)a" ' +(n —1)o."

Adding d times Eq. (4.2) to D times Eqs. (4.4) and writing
X~/R as [r/o] i, we can eliminate R altogether:

2dlD
r (n —1)—o"

(4.5)
~n —1

Furthermore, by differentiating Eq. (4.5) and using Eq.
(4.3), we can derive the following equation containing
o." ' exclusively:

A. y=(n+1)/n (r+ k)'=0 .d(n —1)
D

(4.8)

X(r)=ra i"Ao.(~),
r(r) = roAr(w),

1/2

dt = Ao(r) dr,
1

(4.1a)

(4.1b)

(4.1c)

It proves expedient to make the following set of substi-
tutions: It can easily be checked that Eq. (4.8) is the first in-

tegral of Eq. (4.6) with the arbitrary constant of integra-
tion set equal to d(n —1)k /D. This is in accord with
the general property of Einstein's equations that the Rp„
equations are always consistent with solutions of the R;J
equations and act only to restrict the initial data.

Our next step is to expand the solutions to Eq. (4.8) as
the power series around r =0. We get two different power
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(4.9)

series, one for k =0s, or =0 and another
are not related b

er for k&0. Ther . ese two

tions.
not uncom

gps imitin
n inear systems of

The series f — 's

n in s o equa-

's or'=Ois
n -i (n —1) +ap'r +ai1 +a 1,r +a2rs+a3r'p+O(r'2 t

4.0

3.0

RADIATION DOMINMINATED UNIVERSE

3.0
6.0

C=i,o
o 10O

C=O
o=-& O

G= l.O

o=-1.0

where

4 ap 4d
5 (n —1) DD(n —1)

(4.10a)

I

2.0

o 1 Sd3 Qpa

7 (n —1) DD(n —1)
(4.10b)

&.0

=1 6d
27 (n —1} DD(n —1)

16d

0
0 0.5 1.0 1.5 2.0

i

2.5

etc., wh ile that for k&0 '
1S

(n —1)' —7- +r [ap+a r+ ag +''']

FyG 1 ~n —1

integration c
o. or variouus values of th
c and ao, as a

e arbitra c

(1) c=1 0 ao ———10.0 11) c =0

where

+2™i[b, + (4.11)
k)

d d(n —1)
D D

' I/2

j—
D(n —1)

c=

bp ———

(2d/D)(n —1)k
2d /D + [4d (n —1)/D)'

ap (m —1)(m —4)
c 2(m +1)

m (m —3)
c 4(m +2)

ap m Imd/[D(n —1)]—1

c (2m —1)(m —1)

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(rp+ k)

( —1) (Pc2 m —1)(m —4)
(m +1}

(n —1) m(m-Pc3

(rp+k) 4 (m +2)

(4.14a)

(4.14b)

(4.14c)

and

4d
D(n —1)

(4.12e)

Pc 2
m [m D(n —1—

(rp+ k) (2m-m —1)(m —1) D („1) (4.14d)

~+ (n —1) z
g +c2p+c3p+'

+c4P+'+d 0 + (4.13)

where

[In both casesases, a p is left un
a mtegration of Eqs. (4. 4

cond ero at f'o. has a sec
qs. 4.9) and 4

, w ereo" 'is lois plotted for som
1 of de precise

some sam le v

e arbitra
epends ori th

ry coefficients.
the specific

p gt,. I t off=s o =vp —~, this reads

p=3- 'd
D(n —1} (4.14e)

etc., an., and c2 has to be mo e matched to th h o
pansion fo k =

ca integration based on the ex a
or matchin g

u ions to the s

cients c and

s = /n Ther.
r some sampl

ao
p e values of

It is worth notin t

p the coeffi-

g
expansion

2t =,D —,a; =0 (i ) 1)

n eing 1nte r
s into an exa

'
nexact solution

e e y yields
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FIG. 2. The behavior of r, the scale factor of the ordinary di-

mensions, R, the radius of compact ones, and o, the average
scale factor, as functions of v. for d =3, D =6, c =0
(co———10.0) and for a universe assumed radiation dominated.
This is the first of the two types of behaviors displayed by r.
The shapes are generic for the class c =0, but the values and

slopes at various points depend on d and D. The universe does

not follow this solution out to the singularity at vo. Instead, at
some value of v., which depends on the parameters of the model

and which is indicated by the dashed line, the temperature T
falls below 1/R and the universe passes from the multidimen-

sional phase to a FRW one, in which it continues to the present

day. The behavior of T ~ 1/o. can be deduced by inspection:
The universe cools from T = 00, reheats until it changes phase,
and then cools again but in the FRW manner.

(n+1) I (n+1)g(n+1)
n 2" n~ 1 (n/—2)

1
1 — Nf (n ) +Nb (n)

2ll
(4.15g)

where Nf(n)[Nb(n)] are the number of effectively mass-
less fermionic [bosonic) degrees of freedom in n spatial
dimensions.

B. y=l

FIG. 3. The second class of solutions. These correspond to
c&0. Here R decreases from infinity with infinite negative
slope. At the dashed lines the universe once again becomes
FRW-like. The behavior of r and o. is qualitatively the same as
in Fig. 2.

cr =c~+2+aor (4.15a)
We shall now repeat this entire exercise for y= l. We

start with the following set of substitutions:

X=ro'~'Acr(r),

r = ro A ~/cT,

R =Acr /r,

(4.15b)

dt =Ad~,

X( t) = ro "A cr(~),

r(t) =roAr(w),
(4.15c)

(4.15d)
yn r dg n~n =-R =A

(4 15 )
Equation (2.7b) then becomes

' 1/D
n

r d

(4.16a)

(4.16b)

(4.16c)

(4.16d)

3mF3

M~' F,
(4.15f)

d
87

which integrates to

(4.17)

F„ is the numerical factor linking the entropy density of
radiation in an n-dimensional space with its temperature:
S(ro ——1)= IF„[X(ro——1)T]"I .

It can be easily checked that

r '7+@
tr

(4.18)

where z is a constant of integration. Equation (2.7c)
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gives:

(o ) d7 R o" R
+ + n

(4.19)

. y = 1:MATTE R DOMINATED UNIVERSE
I I I I

(i) C ~ 1.0 (ii) C= 0.0' (iii) C =1.0
o =-10.0 o =-3.0 o =-10

while Eqs. (4.16) and (4.18) jointly imply

&2d ID
D

n)2/D n

Eliminating r between Eqs. (4.18) and (4.20), we get

(4.20)

6.0

5.0

b 4.0

30
II Ill

-D
(a+a)+ 1 ——o" (n —o" )+o"o." =0.

D

(4.21)

Equation (2.7a) gives the first integral of Eq. (4.21) with
the constant of integration set equal to dna/D:.

2.0

1.0

0
0 0.5 1.0 1.5 2.0 2.5 3.0

o"o." + ——1 (o." ) — (r+I~)o"1 n 2 2d
D D

(r+ir) +(n —2)o"=0 . (4.22)
D

The solution to Eq. (4.22) has the following power-series
expansions at ~=0:

o"=cr+—2+apW+a)W+'+a2&
2

FIG. 4. o." for a matter-dominated universe. The arbitrary
coefficients have the following values: (i) c =1.0, ap= —10.0,
(ii) c =0, ap ———3.0, (iii) c =1.0, ap ———1.0.

y = I-MATTER DOMINATED
UNIVERSE

+bpH -'+ ~ ~ ~, (4.23)

where

c= n~/I 1+[1+n (D —1)/d]'~ I,
2 2d K

m =3— +D Dc'
(4.24a)

(4.24b)
1.2— d= 30

D = 6.0
c =0

a& ———ap (m —1) nm

c (m+1) 2
(4.24c) 1.0

a2=—a&

c 2(m +2)
nm

2
3n
2

(4.24d) 0.8

ap m (1 m /D)—
c (m —1)(2m —1)

etc., and for a.=0:

(4.24e) 0.6

on /+a ~+a Pnl —2+g Pm —4+. . . (4 25)
2

where

m =4(n —1)/n,

ap m(1 —m/D)
(2m —3)(n —2)

(4.26a)

(4.26b)

I l I 1 I

0.2 0.4 0.6 0.8

a pa q (m —1)[m (1+4/D) —6]
2(n —2)(3m —5)

(4.26c)

In both cases ao is not determined by the equations.
Finally, the expansion at rp, the second zero of o", in

terms of g=rp ris— FICx. 5. r, R, and a for the matter-dominated universe (case
1: c =0) as functions of the dimensionless time variable ~. N.B.
The behavior of these quantities is qualitatively the same as for
the radiation-dominated case (Fig. 2).



30 PERFECT-FLUID HIGHER-DIMENSIONAL COSMOLOGIES 2503

y =t- MATTER DOMINATED
UNIVERSE

and ends in one at 7 =1p. At both singularities, the n-
dimensional volume X"~0. If we introduce no mecha-
nism for generating entropy, the evolution of this universe
is adiabatic and the temperature T is simply given by

I.~(ro)/+n]
X(ro)

(5.1)

0.4—

I 1 l

0.2 0.4 0.6
l

0.8

o"=cia+—g +czP+c3P+'+
2

(4.27)

where

C)=
"1/2

u(~o+ a ) „(D 1)i+ 1+ Tp+ K

c,=, ~ ~ —2n+2
—czP ( —1) n

(~p+ii') (p+1)
2 2d P,D D

(4.28a)

(4.28b)

(4.28c)

and cz has to be matched to the choice of coefficients at
&=0.

The results of numerically integrating Eqs. (4.22) and
(4.24) are displayed in Figs. 4—6. We now have all the
solutions we need and can turn to an analysis of their
properties.

V. ELABORATION OF THE SCENARIO

A. The qualitative picture

FIG. 6. r, R, and o for the matter-dominated universe (case
2: c&0}. Note the similarity to Fig. 3.

where S(ro) is the entropy contained in a region charac-
terized by the size factor ro and I'„ is defined in Eq.
(4.15g). The temperature T is then infinite at both singu-
larities.

We, furthermore, have a whole class of solutions in
which r, the scale factor for the flat space, starts from 0
at ~=0 and increases monotonically to oo at ~=Tp.

The radius, R, for the extra compact dimensions, on the
other hand, displays one of two possible behaviors. It ei-
ther begins from ca at v=0 and shrinks monotonically to
0 at T=10 or it begins from R =0 at &=0, and increases
to a certain maximum value before collapsing back to zero
at v= Tp.

Having convinced ourselves that these behaviors are
generic, we can now specialize our considerations to a
radiation-dominated universe. In doing so, we shall not
follow the relevant solutions all the way into the singulari-
ty at v=70 Recall .that Eqs. (2.7) were obtained on the
assumption that the pressure is isotropic in all n dimen-
sions. This is so only as long as the size of each and every
dimension is large compared to the propagation wave-
length of the radiation, i.e., large compared to 1/T. As
we shall soon see, close to ~=~p, RT becomes equal to
one, and this assumption clearly breaks down.

Since 1/R is the minimum energy required to excite a
mode in the curved compact space, T'& 1/R implies that
the temperature has dropped below the threshold for
propagating any particle in the compact space. If there is
no conservation law preventing the decay of these excita-
tions, they will dump all their energy into lighter parti-
cles, i.e., particles propagating exclusively along the flat
directions. Henceforth, the extra dimensions will no
longer sustain modes and will for all practical purposes,
assume the role of spectators. We shall, however, require
that they stabilize at some value close to Rd „so as not to
cause a conflict with the current limits on the variation
of G. The precise mechanism for achieving this stability
is a topic for future research. Casimir energies computed
in the presence of fermions or zero-point gravitational en-
ergy effects could conceivably solve the problem. ' At
this point, we shall merely note that if this stabilizing
mechanism generates a constant effective pressure, "
1=1/R, , for the compact space, the universe will make
a transition to a (1+d)-dimensional FRW cosmology.
Indeed, beyond the point at which the extra dimensions
"deexcite, " the energy-momentum tensor changes and the
equations of motion read

We have seen that the solutions to Eqs. (2.7) and (2.8)
for k& ——0 have a series of properties which are common
to all the energy-momentum tensors we have considered.
In particular, the universe begins in a singularity at v.=0

I' R R,d—+D—=8mG
r R R

(d) (5.2a)
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d r r R
d—+D—

dt r r R

N —3

=8mG
R

(d)

(5.2b)
l(t)=r(t) f dt'

p r(t')

(a =constant) which implies that the horizon
' 1/2

3 r(t) . (5.4)

1 d R r
' R+ —+ ~—+D-

R dt R r R
R
R

(5.2c)
1

R

Furthermore, the entropy and density are related to the
temperature T by

where p( ) and p( ) refer to the d-dimensional pressure
and density, respectively (p(")=dp( ') since the radiation is
now effectively confined to a (1+d)-dimensional space.
Setting R =R„R=0 these equations clearly reduce to
those for a d-dimensional FRW universe.

B. Thermal history and the horizon problem

S(r)=F3(rT)3,
3P= 4F3T

whence
' 4/3

3a= —F3

(5.5a)

(5.5b)

(5.6)

8mG a
3 4 (5.3)

The existence of a multidimensional phase prior to
T~«„alters radically the thermal history of the early
universe. Had all dimensions been expanding, the radia-
tion could not but cool. However, with some dimensions
expanding and others shrinking, the n-dimensional
volume X", and hence the temperature T, can and, in fact,
do have more complicated profiles. We have seen that the
universe starts out infinitely hot, cools to a certain T;„,
and then reheats until it becomes effectively 1 + 3 dimen-
sional. Beyond this point, the radiation temperature
drops in the usual FR& manner.

The tremendous increase in the scale factor r, during
the latter half of the multidimensional phase, accom-
panied by an actual increase (rather than a drop) in tem-
perature, provides within this framework an explanation
for the horizon problem of the standard big-bang cosmol-

ogy.
The essential features of the problem' are as follows.

Light reaching us from the time of photon decoupling in-

dicates that the temperature of the microwave background
is the same at every point of this sphere of last scatter to
one part in 10 or better. ' %ithin the standard cosmolo-

gy, the universe has a finite lifetime, t „, which is long
enough to allow us to receive signals from this surface,
but not sufficiently long to allow diametrically' opposite
points to come into causal contact. Furthermore, as we
evolve the universe back in time, we find that the horizon
contracts faster than the scale factor, r, so that the size of
a causally connected region becomes increasingly smaller.
The conclusion then is that not only are the diametrically
opposite points not in contact today, they have never been
in causal contact at all. It is then nothing short of re-
markable that they have come out looking so nearly iden-
tical.

In view of the adiabatic evolution of the universe as-
sumed in the standard cosmology, the above question may
be conveniently rephrased in terms of entropy: "Does the
entropy falling within a causal horizon equal at any stage
the entropy of the observed universe?"

For a flat FRW space-time the entropy, Sh„, inside a
causal horizon for the radiation-dominated phase, is easily
calculated. Indeed, r (t) evolves according to

~'

r'

1 F3
=S(r)

(2~F, )'~' S(r)

1/3
3

P

T

—1/2
3 P

(2n )
(5.7)

The entropy S,b, of the observed universe receives con-
tributions principally from the backgrounds of cosmic
photons and neutrinos. Assuming that neutrinos decouple
at a stage where the only other massless particles are elec-
trons and photons, S„='(21/22)S&, whence

S,b, —2F3(3X10 yrX2. 7' K) &10' (5.8)

Comparing this to Sh„at T=10' GeV, e.g., we find
that the latter falls short by a factor -10

For the multidimensional scenario (and for w not too
close to zero),

l(t) & dt'
r(t) p r(t')

D n

rp (n —1)

' 1/2

f o'

(n —1)—o."

D/2d

d7.

=0(1) . (5.9)

Thus the entropy, Sh„, inside the horizon at
t~«„—S(rp ——1). Now S(rp 1) is genuinely a free pa——ram-
eter of the model. It fixes, e.g., the temperature curve,
T(t), of the radiation, and determines in particular the
lowest temperature, T;„,to which the universe cools:

[S(r =1)/F„]' " S(r =1)' "

(rp= 1) Ao

~S( r 1 )
2/n ( n —1)—

(5.10)
max

where

Putting (5.4) and (5.6) together we find that the entropy in
the volume l(t) is

3

SFRw S( )
l (t)
r(t)
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Mn =M Mp KK (5.11)

[This is to be contrasted with the flat radiation-dom'inated
FRW cosmology where T(t) is independent of S(rp —1)
and the latter is really not a free parameter. ]

It is useful at this stage to return to Eq. (5.9) and to
trace precisely where the large factor needed to solve the
horizon problem is coming from. To this end we first ex-

amine the exact solution (4.15) which corresponds to a
reduction from three dimensions to one. Furthermore, we
shall, for increased transparency, set c =0 and ap ———1.

In this case, the "deexcitation" condition idee„Tdeex ——1

implies that

A(~d„„)
O( +deex )

d/D
o(vd„„)

( rdeex }

—[(C1kdeex} ~deex]

S(rp ——1)

Thus,

g„,„=zp ~d „S(-r() 1)——
and

(5.17)

(5.18)

(1—zd~x )' =[F3/S(rp= 1)]'

whence

S(rp 1)——
Tdeex

A rdeex( &deex )
2 1/2

The horizon at this stage has the value

(5.12)

(5.13)

r(~dec„)=AS (r() ——1)

1)n +1/n(n —1)+D/nd —[2/n(n —1)]/(3—p)

(5.19)

The deexcitation temperature is similarly determined to be

[S(r =])/F ]'/"
Ao(v.d„„)

'd~x
l (td„„)=r(td„. ) r(t}

' 1/2~+deex 2

Mg —f (n + 1)/n (n —1)]+1/ng1/n —1
5deex

MS( 1 )
[2/n (n —1)][ [1/(3—p)]—1]

From (5.17}and (5.19) it is immediate that

(5.20)

[r(rdeex)Tdeex] -S(r()——1) . (5.21)
' 1/2

3~F3 2/3 ' 1/3 1/2

F3 F3 3

(5.14)

l(td „)-r(td „)XO(1)
=A (~p wd„„)—

7d, in turn, is the solution to

(5.15)

A(~d„„)
R(rd „)T(7d „)=

O(+deex}

S(r() 1)——
Fn

(5.16)

which implies that

whence F(I( td„„)Td„„—S(rp ——1).
Thus, the large factor in question arises from two

sources. We have first the factor, A, which measures the
lifetime of the higher-dimensional phase, and hence the
progress made by the horizon over its duration. Second,
as the universe moves towards deexcitation, r(t) [and con-
sequently l (t)] approaches a pole singularity. The factor
(1—~d „) ' thus introduced accounts for the rest of the
required large number.

The situation for arbitrary d and D is similar. We can
use expansion (4.13) to make the relevant estimates, since
for the interesting (large) values of S(rp 1), deexcitati——on
occurs very close to ~p. Keeping only the first term in
(4.13) and inserting this into Eq. (4.3) we get

For Td„x close to M, we see that it is once again the ra-
pid increase in r near rp following upon the expansion of
the horizon during the lifetime

~d8'„=A f o(~)dv-A (5.22)

of the multidimensional phase which causes an entropy
-S(rp= 1), to fall into a causal horizon at Td„„. [The
integral in (5.22) is evaluated numerically. ]

The horizon problem is therefore resolved if we choose
S(rp ——1) &S,b„which is an embarrassingly large number.
This is admittedly unaesthetic, but notice that the param-
eter to really compare with the natural mass scale M in
these models is

M[S(r I)// ]
—[(n+1)n/(n —1)]

If S(rp 1)=10 Iin, A ——'/M=10, 10 ', 10 for
n =3, 10, and 25, respectively. Clearly on reduction to
1 + 3 dimensions, the relative effect of S(rp 1) is vastly——
amplified.

It is enlightening to compare and contrast the above
resolution to the horizon problem with that offered by the
inflationary scenario. ' In the latter, we begin with a
small causally connected region, R, of the FRW universe.
As this universe cools to ToUT, the (constant) vacuum en-
ergy associated with the GUT transition dominates the ra-
diation energy. The universe enters a phase of exponential
expansion. In so expanding, it first supercools but later
reheats back to T„h,-O(MGUT). The exponential ex-
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TABLE I. For To „&Mp, Mxx = R, ' &fi(cap)M~[S(ro ——1)/F] "'" ' ' ' ' ~ = f&(c ao)MKK I'min &f2(c ao)
XM [S(rp=1)/F„] "",r„„;„)f3(c,ap)M „'[S(rp=1)/F].,

" ", where M",„'=(Mxx )" M~ and f; are
parameter-dependent factors which are of order 1 over a range of parameter values. All the tabulated numbers correspond to
S(r0 ——1)/F„=10

No.

sp

dim

Interesting

mass

scales M-" (GeV)

—2/n (n —1)

M,„ (GeV)
F„

' (n+1)/n(n —1)
S(r0 —1)

Mmax
Fn

(GeV-')

10

15

20
25

1014.8

1p16.5

10170
17.3

1p13.9

1016.0

1p16.7

1p17.1

1P—5.6

1p—10.5

1p—12.6

10

pansion inflates the region R to a much bigger region R'.
Since the horizon remains constant during the exponential
expansion, R is no longer within a single horizon. How-
ever, since R' emerged from the causally connected R, it
is homogeneous and isotropic. Furthermore, the process
of reheating generates an entropy in R' &S,b, .

Notice that the net effect of the inflation is to get at a
high temperature a universe much larger than the FRW
one. The multidimensional scenario provides an alterna-
tive mechanism for doing precisely this. However, it does
so without generating entropy. The collapse of the extra
dimensions allows r to increase without a drop in tern-
perature, so that from the point of view of the 1+ 3 di-
mensions which are eventually singled out, it feels as
though entropy is being generated. ' Furthermore, the in-
crease in r close to rp (which is where most of it takes
place for the higher-dimensional picture) is faster than ex-
ponential: for this increase r becomes infinite in finite
time rather than the infinite time required by exponential
growth.

Now that we have understood the significance of the
parameter A, we can conclude this section with specific
numbers. We shall set S(re= 1)=10 F„and shall look
at the interesting case in which deexcitation occurs before
the universe reheats to the Planck temperature, i.e., before
quantum gravity becomes of crucial importance.

If we supplement the expressions (5.10), (5.11), (5.20),
and (5.22) for T;„, MK~, Td„„, and w„„;„, respectively
with these inputs we get the values given in Table I for
the relevant factors of S(rp ——1) and M occurring in the
latter. The exact values of the remaining factors depend
on the specific choice for the arbitrary parameters ap and
c. However, for a range of reasonable values those factors
are of order 1.

VI. CONCLUDING REMARKS

A series of observations are in order at this point. To
begin with, it is hoped that this scenario makes the con-

cept of extra dimensions plausible, at the very least. The
idea of expanding dimensions is altogether commonplace,
while blueshifts, indicating contracting dimensions, are
eventually expected if our universe is closed. In view of
this, the idea of simultaneous expansion for some dimen-
sions and contraction for others is hardly outlandish.
Furthermore, if the universe undergoes such an evolution,

, the contracting dimensions can certainly be expected to
deexcite, and to thus effectively disappear.

Secondly, for the case considered, viz. , kd ——0, solutions
in which r and R behave the same way do not exist.
Indeed, if we set r=R in Eqs. (2.7), we find that Eqs.
(2.7b) and (2.7c) are mutually inconsistent.

Furthermore, although we have a variety of solutions to
the field equations, they all behave in an identical fashion
close to ~0. And it is on this behavior' that the more im-
portant conclusions of the scenario, viz. , the contraction
and deexcitation of the extra dimensions, the rapid in-
crease in r, etc., are based.

In any case, it is probably prudent not to take too seri-
ously the behavior of the solutions near v=0. Indeed as
our understanding of the extra dimensions grows, particu-
larly in the context of supergravity theories, 's we can hope
to discover mechanisms which spontaneously induce on
the universe a toroidal geometry with three spatial dimen-
sions distinguished from the rest. Once such a geometry
comes into existence, the above scenario takes over, and
soon all but the three dimensions "disappear. " In this
sense, the scenario moves us one step closer to answering
the question: "Why three spatial dimensions?"

It should be pointed out that the solutions investigated
in this paper are generalizations of the Kantowski solu-
tions Eq. (4.15) which had been worked out earlier for
1 + 3 dimensions. Higher-dimensional generalizations'
of the vacuum Kasner solutions have also been found to
have some interesting features. It is unlikely that this ex-
hausts the set of interesting generalizations. A more sys-
tematic search for the various possibilities should thus be
carried out by extending the Petrov classification of
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(1 + 3)-dimensional metrics to higher dimensions.
In summary, then, a higher-dimensional cosmology

which collapses into a (1 + 3)-dimensional FRW universe
has been developed. The underlying equations of motion
have been solved quite generally for the case of a flat
three-dimensional universe and it is found that the
behavior producing the scenario is quite generic. The hor-
izon problem has been solved modulo the fact that the
free parameter A has to be given a large value, which is
nonetheless very much smaller than in the (1 + 3)-
dimensional case, and which decreases the larger the num-

ber of extra dimensions introduced. Finally, the explana-

tion for there being only three dimensions has been ad-
vanced by one step.
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