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One of the attempts that try to explain the smallness of the internal space in Kaluza-Klein
theories is the attractive idea of cosmological dimensional reduction proposed by Chodos and
Detweiler and by Freund. In these theories, the internal space shrinks to an unobservable scale by
the dynamical evolution of the anisotropic universe. However, if we consider a quantized matter
field, the higher-dimensional anisotropic space-time may be isotropized by the effect of particle
creation as suggested by Zel dovich in the case of a conventional four-dimensional space-time. Here,
%e show that this isotropization -process is rather rapid and the mechanism of cosmological dimen-
sional reduction does not work well in the case of space-time with M4)&S' topology. We also show
that the above result holds even if we take into account the adiabatic regularization term. We give
the analytic solution in the case of space-time with M4)& T topology under some approximation
and show that the idea of cosmological dimensional reduction in this case is also broken.

I. INTRODUCTION

The higher-diinensional theory of Kaluza and Klein is
one of the most interesting ways of unifying gravitation
and gauge interactions. Following the idea of this theory,
we consider that the higher-dimensional space-time is re-
duced to a four-dimensional space-time plus a compact
internal space. Gravity is expressed by the metric of the
four-dimensional space-time, and gauge symmetry is in-
duced from the symmetry of the internal space, the scale
of which is unobservably small (near the Planck length
lp ). ' Recently, in order to investigate whether this
scheme is valid, there have been many works on the
method of reduction of higher dimensions such as Freund
and Rubin's, and on the existence and the stability of the
solution of the higher-dimensional Einstein equations.

These static vacuum solutions may explain what the
present vacuum is, but they do not explain a large
discrepancy between the scales of the internal space (-lp )

and the physical three-space (cosmological scale), and they
do not explain how to get a vacuum with such a large
discrepancy. As for ideas on how to get rid of this
discrepancy, we now have two possibilities. One is a
method of considering a quantum instability of the inter-
nal space for a contraction. as shown by Appelquist and
Chodos, and the other is a method of using a dynamical
evolution of the higher-dimensional universe as proposed
by Chodos and Detweiler. The latter one, which we call
a cosmological dimensional reduction, is very attractive
for us because the evolution of the Universe may explain
the smallness of the internal space. We can consider the
following scenario. At first, a topological compactifica-
tion of higher-dimensional space-time occurs near the
Planck time by an unknown mechanism (e.g. ,
M"~M &(S ). At this time, the scale of the internal
space is nearly the same as that of the physical three-
space. Afterwards, by an anisotropic expansion of the
Universe, which originates in the initial compactification,
the internal space shrinks to an unobservable scale. This

shrinking stops or slows down from the other effect (e.g.,
quantum effect) at a late stage of the Universe, because a
rapid change is contradictory to the observation of chang-
ing fundamental constants. Chodos and Detweiler give a
very simple model (Kasner-type solution) in order to ex-
plain this scheme. For example, in the case of five-
dimensions the scale factor of the physical three-space ex-
pands as a (t) cc t '~ and that of the five-dimensional space
contracts as as(t) cc t

In the conventional four-dimensional Einstein theory,
Zel'dovich proposed the isotropization of the Universe by
a particle creation mechanism. If we consider a quantum
effect of a matter field, the initial anisotropic expansion
of the Universe, even if it exists, may be isotropized by the
creation of particles. Zel'dovich and Starobinsky and Hu
and Parker quantitatively analyzed the isotropization
process of the anisotropic universe which starts from a
Kasner-type solution initially. They show that the iso-
tropization of the Universe is rather quick, i.e, the charac-
teristic time of isotropization is less than 2&& 10 tp if the
initial time to & 3tr, where tI is the Planck time.

The model given by Chodos and Detweiler is just a
Kasner-type universe in higher dimensions. Also, in the
models by Freund and by Gleiser, Rajpoot, and Taylor, '

which are the solutions in more realistic Kaluza-Klein
theories, we treat the time-dependent anisotropic space-
times. In realistic Kaluza-Klein unified theory, we may
have to consider not only the Einstein Lagrangian but also
the Lagrangian of a matter field such as an antisymmetric
tensor field A„„z in 11-dimensional supergravity theory.
Then, the isotropization mechanism due to the particle
creation may destroy the idea of the cosmological dimen-
sional reduction.

In my previous paper, " I showed that this isotropiza-
tion process in five-dimensional space-time is rather rapid,
as in the case of a four-dimensional universe by Hu and
Parker. However, in that paper I did not take into ac-
count the closed behavior of the internal space and the
regularization term. The purpose of this paper is mainly
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to investigate whether these effects change the above re-
sult. Also, I consider a higher-dimensional case without
the curvature (Mq&&T ), where T is a D-dimensional
torus. And, I want to investigate whether the effect of the
particle creation is also important in cases of space-times
with the other topology. Therefore, in this paper, I shall
start by dealing with general anisotropic higher-
dimensional Einstein equations in the case of a space-time
with some syminetries. Following the method of Hu and
Parker, I give the energy density of created particles in
Sec. III. In Sec. IV, as a simple example, I show by the
numerical integration, how quickly the anisotropic
universe is isotropized in space-time with M4)(S topolo-
gy. Also I consider the effect of the adiabatic regulariza-
tion term. The energy density with the adiabatic regulari-
zation term is calculated in the Appendix. In Sec. V, I
give the analytic solution in the case with topology
M4& T under the approximation that the whole energy
is created at initial time. The case with the other topology
will be dealt with in a subsequent paper. In Sec. VI, I
point 'out the problems when we consider the particle
creation effect on more realistic Kaluza-Klein cosrnolo-
gies.

A„v——,'gyve'=8mG(Tpv)res —Agpv ~ (2.1)

where G is a (1+d+D)-dimensional gravitational con-
stant. ' (T„„)„sis an expectation value of a regularized
energy-momentum tensor of a quantized matter field. We
assume the space-time manifold has the metric form:

ds =g~vdx"dx"= dt +a (t)y~„—(x~)dx dx"

+b'(t)yM~(~')4 4",
where y „and yM~ are the metrics of maximally sym-
metric d- and D-dimensional spaces, respectively. a and
b are the time-dependent cosmological scale factors. It
follows from this assumption that the nonvanishing com-
ponents of ( T&„) are

(T )= p, (T" )=P,5"

(2.3)

( TM ) =Pb t)M i

where p is an energy density and P, and Pb are principal
pressures. The Einstein equations (2.1) become

0 1 d(d —1)
k

D(D —1) k0 2 2 d b2 D

+ [(da'+ DP') —d (a') —D (P') ]
1

= —8m Gp —A, (2.4)

II. THE HIGHER-DIMENSIONAL
EINSTEIN EQUATIONS

We consider a space-time manifold with one timelike
and (d +D) spacelike dimensions. The (1+d +D)-
dimensional Einstein equations with a matter field and a
cosmological constant A are

9F~ =
2

a"+ a'(da'+ DI3')
1 „d+D—1

R d+D
f

=8m'G P, — +T 2A
d+D —1 d+D —1

—1
kd

a

(2.5)

T 2A
d+D —1 d+D —1

(2.6)
4

where $0 9—F—O
—2'—A', a=lna, P=lnb, T= =(T&), and

kd and kD are the curvature constants of d- and D-
dimensional spaces, respectively [no, sum on m and M in
(2.5) and (2.6)]. A prime denotes a derivative with respect
to the conformal time 2), defined by

(2.7)

and R= (a"b )'—~(d+ ' is the geometrical mean of the
scale factors.

From the Bianchi identity, we get a conservation equa-
tion for the energy-momentum tensor, ( T"").„=0. From
(2.2) and (2.3), this equation becomes

V '(pV)'+dP, a'+DPb13'=0, (2.8)

where V—=a b =R + is the proper volume.
We can show that the conservation equation (2.8) is

equivalent to the constraint equation (2.4), if the con-
straint equation is satisfied at an initial time. Therefore,
we use Eq. (2.8) instead of Eq. (2.4) except for the initial
time. At the initial time we have to take into account Eq.
(2.4). The trace of the energy-momentum tensor is

T= ( Tg ) = p+ dP, +DPb . — (2.9)

(2.10a)

and

p P + [~ (d+D+1)( gd+D—+1)i+1

d +D D(a' P')—
(2.10b)

The first term on the right-hand side of Eq. (2.10) [i.e.,
p/(d +D)] is the pressure by a relativistic isotropic fluid,
like a photon gas, in ( d +D)-dimensional space.

If p, p', and T are given as functionals of the scale fac-
tors (2 and b, the Einstein equations (2.5) and (2.6) can be
solved as a Cauchy problem. We shall present explicitly
the functional forms of p and p' of the created particles in
the anisotropic expansion in Sec. III.

The Einstein equations (2.4)—(2.6) are rewritten in a
more convenient form by new variables, y =lnR and
z =ln(b/a), as follows:

From (2.8) and (2.9), the pressures P, and Pb are ex-
pressed by p and T as

P P + [g (d+D+1)(—~d+D+1)i+PenT]
d +D d(P' —a')
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(d +D)(d +D —1)(y')' — (z')'+
d+D

'2

d(d —1)kd+ —D(D —l)kD ——16rrGR p+2R A,R R
a b

(2.11)

'2 2

y "+(d +D —1)(y')'+ 1

d+D
R

d (d —1)kg+ —D (D —1)kDa b

=8rrGR dP, +DPb — T +, (2.12)d+D d+D —1 d+D —1
'

z"+ (d +D —I )y 'z'—
'2

R
(d —1)kd — — (D —1)kD ——8rrGR 2(Pb P~ ), —R

(2.13)

where

and

2
2D=exp Z

0 d+D

The field equation of P is

V~V"P —gA'P =0, (3.2)

where V& is the covariant derivative. The energy-
momentum tensor is given by

2
R 2d
b d+D

Tq„(V~/)(V——P) 2gq„(Vp—g)(V~/)+g 9q„
—/[V„V„(P')—g„„V V (P')], (3.3)

The terms of the matter field in these equations are, from
(2.10),

and

dP, +DPb — &=p —
d

d+D
d+D —1 d+D —1

(2.14)

In numerical integration, we use these equations
(2.11)—(2.15).

Pb P= — — [R ' + +—"( R + +')'+ 'T]b a D P

(2.15)

where Sz„A&„—,g——&„%.—The trace of the energy-
momentum tensor, T=T&~, vanishes on a classical level,
and the trace anomaly on a quantum level also does not
appear in the case of odd-dimensional space-times. We
consider odd-dimensional space-times, and then set T=O.

We shall quantize the scalar field and give the vacuum
expectation value of the energy-momentum tensor,
( T&„)„s. We introduce the harmonics h - (x) and

H (y) of d- and D-dimensional maximally symmetricL
spaces, respectively. Ir-(x) and H (y) satisfy the equa-

I L
tions

III. ENERGY DENSITY OF CREATED PARTICLES
D D Ir (x)= —kr h-(x) (3.4a)

We can consider quantum effects by two types of
matter. One is an effect by a rnatter field with a coherent
vacuum expectation value from spontaneous symmetry
breaking as proposed by Freund and Rubin. The other is
an effect by created particles from an anisotropic expan-
sion of a universe as considered in my previous paper. "
We shall deal with the former case, including considera-
tion of the effect of particle creation, in a subsequent pa-
per. In this paper, from now on, we consider only the
latter case, i.e., the energy-momentum tensor by particle
creation.

For simplicity, we consider a quantized conformal
massless scalar field P as the rnatter field. The Lagrang-
ian of the scalar field is

(3.1)

where

and

DMD H (y)= Ar H (y)— (3.4b)

and the orthonormal conditions

f d x V yh*-, (x)h, ,(x)=5-,

and

J d y ~yH' (y)H, (y) =5„

(3.5a)

(3.5b)

respectively, where y=det(y~„), y=det(yM~), and D~
and D~ are the covariant derivatives with respect to y „
and y~~, respectively. I and L are quantum numbers,
and kr and Ki are eigenvalues of harmonics h-(x) and

l
H- (y), respectively.

L
%'e shall set

d+D —1

4(d +D)

P=R(r)) ' + " X(rj,x,y)

and expand g by the above harmonics as

(3.6)
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X= g [&-, -X-, -„(q)h-, (x)H-(y)
l, L

+A-, -X'-, -(g)h'-, (x)If'-(y)] .

with

(3.7)
and

coi ——kt +d(d —1)/kg (3.12a)

From the field equation (3.2), we get the equation of X,
and then that of X, (g) as follows:l, L

X"+QX R(—D D +Dt)tD )X

cot. XL——
, +D(D —1)gkD . (3.12b)

9F(") and A'' ' are scalar curvatures of d- and D
dimensional maximally symmetric spaces, which are given
by

and

+JR', +, X=O, (3.8) A" '=d(d —1)k~ and 9F' '=D(D —1)kD .

Provided that the normalization condition of X isl, L

+(QiL, +Q)X- -—0,1, L 1, L
(3.9) ~+~ ~ —g~ ~+~ ~ =ll, L j, L j, L 1, L

(3.13)

where

dD(d +D —1)
4(d +D)

dD(d+D —1), 2

4(d +D)
(3.10)

the canonical quantization condition gives the usual com-
mutation relations of annihilation and creation operators
for A - and A . Here, we can define formally al, L 1, L
"vacuum" state

I
0& ) by the annihilation operators

A- -, i.e.,

and
2 2

COj COI

QjL,
—=8 +

a b
(3.11)

A -
I
0~ ) =0 for any I and L .

From (3.3), (3.6), (3.8), and (2.4) (the explicit form of $0),
the energy density is given by

1To ) R —(d+D+i) (X )2 QX2+R2 [(1 4g)(D X)(DmX) 4gXD DmX+g~(d)X2]
a

+ 2 [(1 4$)(DMX)(D—X) 4(XD~D X+/%—' 'X ] (3.14)

Since the vacuum expectation value of (3.14),
p= —(0&

I
To

I
0& ), is independent of the spatial coordi-

nates, x and y, p can be expressed as

f d X~V f d y~Y(0~ I
TO I0a }

Vd VD

(3.15)

where Vd —— x y and VD —— y y. Inserting
(3.7) into (3.14), and then into (3.15), we get the vacuum
expectation value of energy density formally as

R "+++' //[IX
2vdvD

l L
j, L

(3.16)

We notice that if the d-dimensional space is topologically
open (k~ &0), we have to change g ~ into some integra-

tion with the measure, e.g., in the case that kd ——0,

f d"k.
(2n.)"

Since the formal expression (3.16) includes the UV
divergence, we have to regularize the energy-momentum
tensor. However, in the case that a space-time is time
dependent ctnd is not conformally flat, we have no ap-
propriate regularization method except for the adiabatic
regularization. ' Even by the adiabatic regularization
method, it is difficult to give an energy-momentum tensor
explicitly as a functional of metrics unless we know the
explicit form of metrics. Therefore, we shall give a crude
estimation of energy density by the higher-dimensional
version of the method given by Hu and Parker.

We decompose the energy density p into a quantum

part pz(, ) and a classical part p, (,). We set L=( l,L).
q(t) is the quantum domain in L-space over which
cot, (:R'QL, ) & r~ '(—t) and c (t) is the classical one with
cot, ) rH '(t), where rH(t) is the horizon scale. In the low-
frequency region q(t) of momentum space, quantum ef-
fects such as particle creation are dominant. For the
high-frequency region c(t), where the WKB approxima-
tion is valid, the created particles can be treated as classi-
cal incoherent matter.

pz(, ) can be estimated by Eq. (3.16). In the low-
frequency limit, we can get the solution of Eq. (3.9) as fol-
lows. First, we define the functions ct- - (g ) andl, L
P- -(g) by



2486 KEI-ICHI MAEDA 30

and

X- -=(2QIL) a -exp —I Q«dq) + p exp I' Q«dg—1/2 'I I 'I I

l, L o
' I, L go

I ~ 1/2 'I
IX~ = i(—QI I /2) a- -exp i —QI Ld2) —P- -exp i QI Ldris, L L &o

' I, L &o

(3.17a)

(3.17b)

From Eqs. (3.9) and (3.17), we get the equations of a- - and P asI, L 1, L

CX —+ ~=I, L +~L
l 1g& + 2 (QI,L Ig)1—3- -exp I QI,Ld91, L 1, L gp

(3.18a)

and

1 i 1
"I

p'7 — —gp- -+ —,(QI L+ig)a, - -exp 2i— QI Ldri'
, L 011 2 I, L l, L ~0

(3.18b)

Setting p, (to) =0 . (3.23)

and

(3.19a)

—1/2I ~ ~ C1 QI, L +IQI,L gd ) C2QI, L
7

(3.19b)

From
J
a

J

—
J
P- -„~ = 1, which is deduced from

(3.13), the integral constants C1 and C2 satisfy

C1C2 +C1C (3.20)

We consider the initial state is vacuum. Then, we have to
take the initial condition that X -(2)}becom'es a positive1, L
frequency function at an initial time 2)o, i.e., a- - (go) = 1l, L
and P (go) =0. This condition determines the integral1, L
constants as

C1 = , QIL(bio) ' an—d C2 ——,' QIL(7)0—)' (3.21)

Since we can approximate the wave function X- -(7)) inI, L
the, quantum region q(t) by the above solution given by
Eqs. (3.17}, (3.19), and (3.21), we get the energy density,

pqI, I, inserting this into (3.16), as

g —(d+D+1)
Pq(&) 2y yd D

1 , 2

X g . Q2 —g+ f gdn
L Eq(t)

(3.22)

where the subscript I and L have been dropped and
Qo=—Q(bio).

We consider that classical particles do not exist initial-
ly, i.e.,

7I

exp 2i QII. g' =1
YIo

in the low-frequency limit, we find the general solution of
Eq. (3.18), i.e.,

Cl QI, L IQI, L gd i' +C2QI, L

As the quantum domain q(t) shrinks with time, some
part of the quantum particles, which satisfy the condition
cog ~ rH ', start to behave as classical particles. Let L,
be the maximum quantum number which satisfies
cog &rH '. The part of energy density by the particles
which become classical in the time interval from g to
g+Ag is given by

p(g+ &ri) = R (g)
R 2)+62)

d+D+1

[p, (ri)+ &pq(g)]

+p, (L (ri+ b, ri), ri+ b,ri)

R (g)
R (q+hq)

d+D+1

P(1) )

+gr R (d+D+1)
[p (L— ~)R d+D 1]+a

an

(3.25)

8/Bg denotes a partial derivative with respect to 11 under
fixing L (2) ). Then,

(pRd+D+ 1)l (pRd+D+ 1)8
(3.26)=a&

From (2.12)—(2.15) and (3.26), we can see that the source
term by the matter field in the equation for the mean scale
factor (R) is related to the total energy density p and that
for the ratio of scale factors (b/a) is related to the
creation rate of the quantum particles, B(pqR + +')/Bg.
Giving the initial data, we can compute p(g) and

5pq(ri) =pq(L (q), g) —pq(L ~(ri+bri), q) . (3.24)

As the classical particles in the domain c (t), we assume a
collision-dominated relativistic fluid with an "isotropic"
pressure P, =p, /(d +D). If newly created particles
strongly interact with each other in the high-density fluid,
this assumption may be valid. From this assumption and
the conservation of energy momentum (2.8), p, (t) is pro-
portional to R ' + +"(I). Then, the total energy densi-
ty at g+Ag is given by
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B(p&R"+ +')/Bg at any time as the functionals of
metrics from (3.22} and (3.25), and then can calculate the
time-dependent behavior of metrics a and b, including the
back reaction on the metrics of the created particles, by
Eqs. (2.12) and (2.13). From the behavior of a and b, we

can see how quickly the anisotropic expansion is isotro-

pized by the particle creation mechanism. Here, the "iso-
tropization" means that the expansion rate of the internal

space (P') becomes equal to that of the physical three-

space (a'}, because this type of isotropization is enough to
break the idea of the cosmological dimensional reduction.
In Sec. IV, we show a simple example by numerical in-

tegration of Eqs. (2.12) and (2.13).
Hu and Parker adopted the adiabatic regularization

method even in the estimation of the quantum part (the
low-frequency region) of the energy density. However,

the adiabatic regularization is valid in the high-frequency
limit and we do not know whether this method is also
valid in the low-frequency region. Therefore, we give in

the Appendix only the energy density with some part of
the adiabatic regularization terms, by which the initial en-

ergy density p~(to) vanishes and the initial state becomes a
true vacuum. We can compare the cases with and without

the adiabatic regularization terms, and can simultaneously

investigate whether the isotropization occurs even in the
case i'n which the Universe starts from a true vacuum

state.

IV. QUANTITATIVE ANALYSIS IN A SIMPLE MODEL

In this section, we consider first the space-time

M4XMD —where M4 is a conventional four-dimensional

flat universe and is not closed. MD is a D-dimensional

closed internal space.
From (3.22),

R —(a+4)1
pq(t)p

P

XQ'f dk Qz —Q
L

and then

+ f"Qdg'
' Qp

2

(4.1)

( R +)=
ag P& =16 3V

X g' f 'd k — 2QQ' —Q'
2Qp

L

+ Q f Qd'q'

3D(D+2), „2""
2(D+3)'

(4.3)

In order to solve the second-order differential equation
(2.13) with (2.15) and (3.26), the source term
((}/Bg)(p&R + ) must not include the term with the
second-order derivative. Then, inserting Eq. (2.13) into
(4.3), and then (4.3) into (4.2), we resolve the equation
with resp(x:t to ((}/Bg )(p&R + ) and re-express
(8/Bg)(p~R + ) by the terms without the second-order
derivative. We find

(4.2}

where g' 'd k denotes that the summation and the
L

integration are carried out in the region q (t).
From (3.10),

( RD+4) 1
1

6 (D+2 R ( +)y d3k
16~'V 8~'V (D+3) n,

L

where

X g f d'k 2QQ' —Q'+Q f Qdq'
L

(4.4)

Q'=—3D(D+2),
z

z' (D+2}y' +z2k D2(D+3}' b

Integrating over the wave number k, we get

2

p(t)= R ' +'1

16m VD

2
Rp

ap

2

g'Iz+ g' ((oz, Io }— g'IoR() Q
bp 2

(4 5)

and

B(pqR + )

an
1 6 (D +2) (D+q)

16m VD 8m V (DD+3)

I

X. D+3 D — g'Ip —3 — g'o)L I() +-R, R, 2 1

a b 2
L L

—Q'+Q f„Q gd' g'Io
L

(4 6)
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where ap ——a(gp), bp b——(gp)-, and Rp=R (qp).

I,=f'd k
'

Qp

2ao 2 ao 2km km +m m
ao k +[k 2+(aptot /bp) ]'~z

2 Q)L, ln
2 ao~i/bo

(4.7)

and

kI,= f—'d'k
Qp

2
7T ao 2 ao 2

km km + 2L2 Ro bo'

1/2 ap', k +[k '+(aptoL, /bp) ]2k —3
2 a)s +3 2 mL, ln

bp bp aocoL /bo
(4.8)

where

k =a(rH cot —/b )'~

integer which satisfies

coL, &b /ra (4.10)

About the energy density, as mentioned before we need
only its initial value, which is given by Eq. (4.5).

In the case of D= 1 (i.e., MD ——S' and kD vanishes),
coL, (2m/l) n——, where l is the circumference of the fifth
dimension, and

"maxg'= g'=2 g+(n =0) .
n n=l

n,„ is determined by

nmax = bl
27Tt'4

(4.9)

X=XDL
L=0L

where

(2L +D —1)(L +D —2)!
(D —1)!L!

is the degeneracy factor. L,„ is given by the maximum

I

In the case that MD =S ( D-dimensional sphere),
col [L (L +D———1)+2']/rD (rD is the curvature ra-
dius of D-dimensional space) and

y =lnR =
4 (31na+lnb) and z =ln(b/a) .

Constraint equation,

(y')' —(z'/4)'= (4~/3) GpR ' .

Dynamical equations,

y"+3(y')'= 2~GpR '
and

(4.11)

(4.12)

z"+3y'z'= —(32m /3)G (z'R 3) 'B(p R s)/Qg. (4.13)

(2) Energy density:

Here, we analyze numerically the case of D= 1, without
the cosmological constant, i.e., M4XS . This is too sim-
ple to draw some conclusions for more realistic Kaluza-
Klein cosmologies, but this example may give some in-
sight into the possibility or the difficulty of the cosmolog-
ical dimensional reduction. We shall give the analysis of
the more general cases in a subsequent paper.

The equations to be solved are, from Eqs. (2.11)—(2.15),
(3.25), (3.26), and (4.6), as follows.

(1) Einstein equations:
Definition,

5

p(g+ kg) = p(g)+hgR '
(p R'),

R g+hg 8'ti

—1

(p,R')=, 1 — R -'V'I,
~'tl . 16m. l 32m l

(4.14)

z' Rx—
4 a

n

2
R
b

'2
2& ~ 2

l 2
g'n'Io

n

—Q'+Q f Qdrt' Q'Io
n

(4.15)

where Q '= —»y'(z') and Q = ~ (z') . Ip and I2 are
given by Eqs. (4.7) and (4.8).

We shall see whether the mechanism of the cosmologi-
cal dimensional reduction in the Chodos-Detweiler ver-

sion works well. Then, we set the horizon scale rH ——t and
take the following initial conditions.

(3) Initial conditions:
Case (a) Without regularization term.
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(i) The initial energy density, which does not vanish, is

given by (4.5).
(ii) We put ao b—o—1—.—Because three-space has the

scale invariance and the scale of the fifth dimension is ex-

pressed by bol, where l is an undetermined parameter.
(iii) The initial expansion rates, yo and zo, are deter-

mined by the constraint equation (4.11) and the condition
that yp is the Kasner value, i.e., yp ———,qp. This condition

is slightly different from that in my previous paper, where
we imposed the condition of Po being the Kasner value.
This condition is better than the previous one in the case
that the energy density is created instantaneously because
the source term in the equation for z is the time derivative
of the energy density and z' may deviate from the Kasner
value even at initial time.

Case (b) With the regularization term.
(i) The initial energy density vanishes, i.e., p(to ) =0.
(ii) Same as for case (a).
(iii) yo and zo are Kasner values, i.e.,

QH/H )(

2.0.

1.5

1.0

0.5

0.0
1

hH/H

20

1.5

I

10
I

10 10 10 10 t/tp

1 4yp= 3'gp andzp= 39p (4.16)

As the undetermined parameters, we have 6, to, and l.
6-2mGsjRs, where Rs()/r) is the present scale of the
fifth dimension and Gz is the Newtonian gravitational
constant. Here, we consider two cases, that of Rs ——/r
and Rs ——10/p. to is the initial cosmic time when the
compactification occurs and the anisotropy of the space-
time appears, and then the particle creation starts. We as-

sume that tp is near the Planck time. Then, we consider
three cases, that of to ——tI, 2', and 3'. l is the initial
scale of the fifth-dimensional space. In my previous pa-

per, we assumed that the fifth-dimensional space is also
not closed. This corresponds to the limit of / —+ oo. So, in
this paper we compare the results for various values of /

in order to see the effect of the closedness.
First, we show the results of case (a). In Figs. l(a) and

'1(b), we show the behavior of a measure of anisotropy, de-

fined by

hH (d' —P') /2 z'

H (3a'+P')/4 2y'
(4.17)

If the expansion of space-time is isotropic, M/H van-

ishes. If the expansion is exactly Kasner-type, ~/H=2.
Therefore, we define the characteristic isotropization time

tz, denoted by the symbol + in the figure, by the time
when hH/H becomes unity. And we define another
characteristic time tE, denoted by the symbol 0 in the
figure, by the epoch when the fifth dimension turns from
a contraction to an expansion. We can consider that the
cosmological dimensional reduction is broken if tF or tF
is not so large. In Fig. 1(a), we take the parameters

ro —=//2m =/r and G =2m. (i.e., R5 ——/r). When we take
the parameter tp =tp ty 6.68tp, and tE —18.1tp. When

tp =2tp and tp =3fp tp 123tp and tE —337tp, and
575tp and tE 1579tp respectively. The isotropiza-

tion mechanism by the particle creation is rather effective.
In Fig. 1(b), the dependence of the initial radius of fifth
dimensional space ro(=—//2m) is shown in the case of
to 2'. The curves in ——the cases of ro=5/p 10/p and
10 /p coincide with each other. This means that the effect
of the closedness of the fifth dimensions disappears for

1.0

0.5

o.o (
1 10 10 10 10 &o'

Tp )5Ip as mentioned in my previous paper. When
ro = /p and 2/r, we can see the effect of the closedness,
but the result is not so different from that for the other
ro. In Fig. 2, we show the behavior of the cosmological
scale factors a and b If the exp.ansion is isotropic, i.e.,
a'=p', the scale factors behave as R cca cb cact2~s. We
show the line of t ~ by the dotted line as a reference. We
can see that the fifth-dimensional scale b shrinks at first,

a, bd

10

tp

10

10

case (a)..«e,
G~2w

FIG. 2. The cosmological scale factors, a and b, are plotted
with respect to t/tp for the initial time tp=tp 2tp and 3' in

case (a). The dashed line denotes the expansion law when the
expansion is isotropic (a, b ~ t ).

FIG. 1. A measure of anisotropy, AH/H, is plotted with

respect to t/tp for the initial time to tp, 2tr, and 3tr——[Fig.
1(a)], and for the initial scale of the fifth dimension ro Ir, 2/r, ——
5/r, 10/p, and 10'/r [Fig. 1(b)] in case la). + and 0 denote the
characteristic isotropization times tF and t~, respectively.
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h H/H &~

2.0—
a, b

10

1.5 10
2js

1.0.

0.5. 10

3tp

bH/H"
2.0

10
I

10
I

10

case b

10 t/t
10—

case(bj
r, = gp
G=20gr

FIG. 5. a and b are plotted with respect to t/tp for tp=tp,
2tp, and 3 tp in case (b) with G =20m.

1.5

1,0

0.5.

A H/H
29

1.5

1.0

0.5.

0.0
10 10 10 10 105 t/tp

(b)0.0 I I I l

10 10 10 10 t /'tp

FIG. 3. ~/H is plotted with respect to t/tp for tp=tp 2tp,
and 3tp [Fig. 3(a)], and for rp=lp, 2lp Slp and 10lp [Fig. 3(b)]
in case (b) with G =2m.

gradually turns from contraction to expansion, and
asymptotically expands as t . The expansion of three-
space is slightly decelerated and asymptotically is as t
too. The difference between the asymptotic scales of
three-space and fifth-dimensional space is about order 2,
which cannot explain the smallness of the fifth-
dimensional space. Then, the idea of the cosmological di-
mensional reduction is broken by the mechanism of the
particle creation.

Next, we show the result of case (b). The behavior of
5H/H in the case of G =2m is shown in Figs. 3(a) and
3(b). In Fig. 3(a) we set ro ——lp. The isotropization times
tF and tz are later than that of case (a), by the order 2.
The reason is that the final energy density of created par-
ticles becomes sinaller than that in case (a) by the order
1.5, by the subtraction of the regularization term. From
Fig. 3(b), we can see that the effect of the scale of the fifth
dimension becomes smaller as ro becomes larger, as in
case (a). If we assume that the electromagnetic field is ex-
pressed by the metric of the fifth dimension, the present
size of the fifth dimension is about 10lp. Then, we show
the figures in the case of G =20m. , i.e;, R5 =10lp [Figs.
4(a) and 4(b)]. In this case, the created energy density is
the same as the previous one, but the gravitational con-
stant is larger and then the effect of the created matter is
enhanced. Therefore, the isotropization times tp and tE

b, H /H

2,0
PR

10

1.5

1.0 10

t -tp
case (b)
p -S
G=20 m

2t

0,5. 10

V'
'~

0.0 I

10 10 10 10 10 t/tp

FIG. 4. The same figures as in Fig. 3 in case {b) with
G =2(hr. The dashed lines denote the analytic solution under
some approximation (see the text).

I

10
I

10
I I I

10 10 10'
yt,

FIG. 6. The energy density pR is plotted as a function of
t /tp for tp = tp 2 tp and 3 tp in case (b) with G =20m. The
dashed line denotes the law tE ac (pR )
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become smaller by the order 1, as seen in Fig. 4. Figure 5

corresponds to Fig. 2 in case (a). We can see the similar
behavior of the isotropization for a and b with that in
case (a). Finally, we show the energy density in Fig. 6.
The isotropization point tE is denoted by the symbol O.
It seems that there is some relation between t@ and the fi-
nal product of pR, which is tz o:(pR )r,„,~ " ' (denoted

by the dashed line in Fig. 6). The law is more precisely
held in case (a). Also, there seems to be the relation that
(pR }f& &]cero (for rp lp).——In Sec. V, we show that
similar laws are held in a more general case (i.e.,
Mq X T ) by the analytic solution.

V. ANALYTIC SOLUTION

and

(I )'= 2—K'F . (5.6)

Since Eq. (5.6) is reduced from Eqs. (5.4) and (5.5), the in-
dependent equations are Eqs. (5.4) and (5.5). We assume
K =Kp =const. From Eq. (5.5),

F=
2 Ko(n no—)'+Fo(n no—)+Fo (5.7)

r~=(F' )2 —2K F —= I' (5.8)

is constant. The measure of anisotropy hH/H is given by

where Fp and Fp are the initial values of F' and F at
g=gp. From Eq. (5.4)

As known from Fig. 6, the energy density of the created
particle becomes the classical one soon after on-set of the
particle creation, i.e., pR approaches to some constant
value rapidly. The reason is that the quantum region de-

creases rapidly with the expansion of the Universe.
Therefore we may approximate that pR =const. In this
section, we present the analytic solution in the case of
zero-curvature constants under the approximation of
pR + + =const in order to compare with the, numerical
result and to investigate the case of topology M4 X T .

We set

Since

1/2
d+D d+D —1

2 dD Kp(r/ gp)+—Fp

I
Z =—

we find

d+D r
[dD(d +D —1)]'

' 1/2
bH d+D d+D —1 I
H 2 dD F'

(5.9}

and

F= d+D Rd+D
d+D —1

[dD (d +D —1)]'~z

d+D

(5.1)

(5.2)

d+D
[dD (d +D —1}]'

(Fp + rp)[Kp(r/ —7]p) +Fp —r, ]
)& ln

(Fo —ro) [Ko('9—Ro) +Fo + rol
(5.10)

Z =8~6pR" +D+' . (5 3) The cosmological scale factors a and b are given by

The Einstein equations (2.11)—(2.15) become (kz ——kD ——0
and A=0)

D d
a =R exp — z and b =R exp Zd+D d+D

(F') —I =2KF,
F"=I/

(5.4)

(5.5) Inserting (5.7) and (5.10), we find

(5.11)

FI 0
a =ap 1+ (r/ ufo)+ (7J——qp)

Fp 2Fp

+ ~ (F +r )[K (~ ~ )+F r ] D/[dD(d+D —1))

(F,' —r, )[K,(q —q, }+F,'+ r, ]
(5.12a)

and
r

Fp Ep
b =bp 1+ (g —v]p)+ (i/ —gp)

0 0

(Fp + ro)[Ko(n —no)+Fo —ro]
(Fo —ro) [Ko('r/ —'9o) +Fo + ro]

(5.12b)

where

ap ——

and

bp ——

' 1/(d+D —1)
d+D —1

Fpd+D
D

eXP Zp (5.13a)

1/(d +D —1)
d+D —1

Fpd+D exp zp . (5.13b)
d

d+D

Given Fp zp and Fp as initial data, ap, bp, and I p are
determined by Eqs. (5.8) and (5.13), and then the analytic
solution (5.9) and (5.12) is given by using the conformal
time g.

Since the cosmic time t is related to g by

t =to+ f R dr/',

we find
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t=t + d
d+D

1/(d +D —1)

f ~( i)1/(d+D —1)d
gp

I () (d +D —1)I
tE tp+

Eo 2(d +D)J 0

I () (d +D —1)I ()

I(.0 2(d +D)I( 0

(Ko/I 0)('g 'go)+F0 /Fo
(g2 1)1/(d+D —1)dg

Fo/j 0

(5.14)

This integral is given by hypergeometric functions. By
Eqs. (5.9), (5.12), and (5.14), we can compare the analytic
solution with the numerical results. In case (a), if we take
I(.0 the same value as the numerical one, the behavior of
a, b, and EH/H is exactly the same as the numerical one.
The reason is that the energy density is almost created at
initial time 2)0 in case (a) and the approximation of
J =const is just valid. Even in case (b), in which the en-

ergy density initially vanishes and is created afterwards,
the behavior of a and b is exactly the same as the numeri-
cal one. Only the behavior of b.H/H is slightly deviated
from the numerical one at the early stage, as denoted by
the dotted lines in Fig. 4(a), but it also coincides soon with
the numerical one. This shows that the approximation of
I(.=const is valid even in case (b).

Using this analytical solution, we shall investigate the
space-time with M4 &( T topology.

First, we have to estimate the created energy density
from Eq. (4.5). We put ao bo 1. ——We c——an consider two
cases: one case is that ro & rH( -to) and the other case is
that ro & re In the fo.rmer case, n,„=0and then

4
D+4 1 1

pR +-
16m. (2~ra) ro

1

(2m. ) + r t
(5.15a)

In the latter case, n,„-rp/ro and then

RD+4 1 0
P

16m (2n.ro) ro

D 4
1

7r
tp

1

)D+4 r D+4 (5.15b)

' 1/2
d(d+D —1)

Ko(rIE —bio) =
D

(5.16)

and then, from Eq. (5.14),

The factor H/(2m. ) +4 is 1.01X10 3 for D= l. In the
numerical calculation, pR -9.2&10 for rp ——1 and
to = 1 in case (a). So, the above estimate is not so bad.

Using Eq. (5.15), we shall estimate the characteristic
isotropization time t@. tE is defined by the time when p
vanishes. Since p':y'+ [d l(d +D) ]z'—=0, hH/H

—z'/2y'=(d +D) l2d at tE. From Eq. (5.9), we find

d+D —1

2(d +D)

' 1/(d+D —1)

XI(. d+ ' ' + "I. ' + +"/'"+ " (5.18)

Setting d=3 and I 0-tp ', and taking Kp as the value
given by Eq. (5.15), we get

1/(D+2)
D+2

2(D+3)
—(D+3)/(D+2)

1 6
2m. (2~p, )D

(3D+8)/(D+2)
0 or rp&tp

X '

(i /p )(D+3)/(D+2)t (3D+8)/(D+2)
p or rp ~ tp.

(5.19)

When D=1, G =2m, ro=Ip, and to tp (see ——Fig. 1), Eq.
(5.19) gives tE -9.4tp. And the dependence of to is
tE ~ tp" and Kp - tp ", and then we have tE -Kp
which is just the law from the nuinerical result. If we
consider the regularization term, the energy density be-
comes smaller than that of Eq. (5.15) by the subtraction
terms. However, the above law is held even in this case.
Then, the dependence of to etc., on the energy density
may be kept and the qualitative behavior is quite similar
to case (a). The difference may be only the delay of the
isotropization time by the decrease of the energy density.
We can see how much it is delayed from Eq. (5.18). If we
put D=7, G =(2m), rp=lp aild ro —rp, Eq. (5.19) gives
tE 8.05tp and tE tx tp, From this, we expect that
there is not such a large difference between the case of
D=1 and the other case, but that they are almost the
same. Therefore, also in the case of M4X T, the idea of
the cosmological dimensional reduction may be broken.

VI. CONCLUDING REMARKS

In Sec. V we concluded that if we consider the particle
creation effect, the cosmological dimensional reduction is
difficult in simple models (M4X T ). However, in order
to confirm this result in the more realistic Kaluza-Klein
model we have to consider the following things:

(1) the regularization problem,

[d(d +D —1)!D]+
(g2 1)1/(d+D —1)dg

Fo/1 0
(5.17)

The initial values of I 0 and Fo are to
' if they are Kas-

ner values. Since we shall start from the state near the
Kasner universe, Fo/I 0-1. Then, the integral of the
above equation is almost independent of the initial condi-
tion and gives the numerical value of order 1. Then, we
find
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(2) the topological effect (or curvature effect),
(3) the effect of the anisotropic coherent matter

(Freund-Rubin matter).
For (1), our method is too crude. Recently, Appelquist
and Chodos have shown that the five-dimensional static
Kaluza-Klein vacuum (M &&S') is unstable for a contrac-
tion of the fifth dimension when we consider a quantum
effect of gravitational field. This instability is due to the
Casimir effect. We expect the Casimir effect also in the
case of the scalar field. This Casimir effect may prevent
the fifth dimension from turning to expansion by the par-
ticle creation effect. In order to treat both effects sys-
tematically, we have to regularize correctly the energy-
momentum tensor or the effective action. However, we
have no complete regularization method in the case that
the space-time is time dependent and not conformally flat.
Recently, Randjbar-Daemi, Salam, and Strathdee, ' and
Gilbert, McClain, and Rubin, ' and M. Yoshimura' gave
the effective action in time-dependent background
geometry under some approximation. These methods are
good approaches. However, from the point of view of the
cosmological dimensional reduction, the actions of Refs.
14 and 15 are valid at a late stage, but may not be valid at
an early stage, i.e., just after the compactification. (The
scale of the internal space is nearly the same as that of
physical three-space. ) The action by Yoshimura may be

useful even at an early stage, if the Universe is not in the
vacuum state but in the thermal equilibrium state at ini-
tial time.

As another approach, we can consider the following. If
the deviation from the conformal flatness is small, i.e.,
space-time has small anisotropy, we can treat the problem
by the perturbation and can also regularize the effective
action by the dimensional regularization. ' This approach
may confirm the isotropization by the particle creation
dealt with in this paper. We shall show this result else-
where.

Secondly, the topological effect (or curvature effect)
may be more important, because the realistic Kaluza-
Klein theory predicts the internal space has a curvature.
The effect of curvature may change the dynamical
behavior of the metric. Then, does the particle creation
have an effect on this behavior? Also, the existence of an-

isotropic matter may change how the particles are created.
These problems are in progress.
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APPENDIX: ENERGY DENSITY WITH ADIABATIC REGULARIZATION TERM

Adopting the adiabatic regularization method proposed by Fulling, Parker, and Hu, ' we write down the regularized
energy density as follows:

"+ + )yy ~y'
~

+(Q —Q) ~y
2Vd Vg) 7, L 2Q 4 Q

I L
2

'2

1 1 Q' 1 Q'
+ 62(2) — E2(3) —4 Q (E2(2)) —

2 QE2(2)
J

(Al)

where the definitions of e2(2) and e2(3) are the same as in Eqs. (2.40) and (2.41) in Ref. 18 and 0=Qt I .
The energy density in the quantum region q (t) is

d D L Eq(t) p go

2 Qp —Q—
2

1 1 Q'

2Q 4 Q

'2
—Q +2Qf

(A2)

where Qo ——Q(go).
As mentioned in the text, we take into account one part of the regularization terms, i.e., —Q+ (1/2Q)Q, by which the

initial energy density vanishes. Following the text (Sec. IV), we assume the space-time is M4 XM2), where M4 is four-
dimensional flat universe and is not closed. From (A2),

pq(t) = 1

16m Vg)

and then

R ' '+g'f dk Q —Q+ I Qd
2Qp go

L

Qp —Q+ Q (A3)

L

2QQ' —Q'+ Q
1, , Q'

(A4)

In the same way as in the text, we reexpress ()(pqR + )/Bq) by the terms without the second-order derivative.
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The result is the following:
' —1

( R +)= 1 — R ' +'g'(I J)—16~'v 8~'v (&+3)

2 2z' R R, p g)( ~ D g I2 —J2 — K2 —3 — g' rol. Io Jo —— KoD+3 a 2
)

b 2

——,'g'g (I,—Z, )+-,'g f gd~'g'I,
L L

(A5)

where Ip and I2 are the same as in the text,

1 a
Jp =— d k—=2~0 R

a 2
k +a/rH

(A6)

k
0 2 R

r

Ko —=f dk =4m
Q3 R

2

3
k rH k +a/rH

+1n
a acoL /b

2

'km 2km 3
2 ~L,

&Il b

2
Q+3 1
$2

k +a/rH
acoL /b

(A7)

(A8)

and
3

k 2

K2= f d k s
——2m — km +2 2col.O' R a

k~+a/rH—3 mL ln
aa)I /b

(A9)

~Throughout this paper, the Planck time tI and the Planck
length Ip are defined by the four-dimensional Newtonian
gravitational constant G~.
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