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Repulsive and attractive planar walls in general relativity
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The method of a previous paper is generalized to yield all solutions to Einstein's equations for
planar-symmetric walls composed of surface energy density o. and tension ~, with constant ratios in
the physical range v./0. & 1. Special cases include domain walls, walls of cosmic strings, dust walls,
and (when ~ &0) pressure walls. Attention is focused on the sense in which a wall is gravitationally
repulsive when the tension is strong, the sense in which repulsion gives way to attraction as ~/o. is
reduced below the value 2, and the way in which these features are reAected in the motion of the

wall. Also studied is the way in which the unique static planar-symmetric solution fits within the
'

classes of solutions.

I. INTRODUCTION hab gab gagb ~ (2.1)

In recent papers' solutions to Einstein's equations
were obtained for certain solitonlike structures associated
with phase transitions that, particle-physics theories sug-
gest, might occur in the early universe. Attention was
focused on domain walls, three-dimensional timelike hy-
persurfaces whose stress energy consists of surface energy
density and isotropic tension in two spatial dimensions,
with the magnitude of tension equal to the surface energy
density. In Ref. 1 all solutions to Einstein s equations for
domain walls exhibiting spherical or planar symmetry
were found. Of particular interest was the sense in which
the gravitational field of a domain wall is repulsive. It
was found that observers who wish to remain next to a
domain wall must accelerate toward it, and that this
feature is connected with the strong tension in the wall.
The implications for the possible roles of domain walls in
the early universe were discussed briefly.

The purpose of the present paper is to extend the
methods of Ref. 1 to yield all solutions to Einstein's equa-
tions for planar walls with a constant ratio of tension r to
surface energy density cr satisfying rltJ& 1. (Outside this
range, some observers measure negative energy densities. )

This extension includes, in addition to domain walls
(~/o = 1), walls composed of isotropically distributed
cosmic strings (r/o = —,

'
), dust walls (w/o'=0), and pres-

sure walls (r/tr &0); and it permits exploration of the pre-
cise way in which repulsion yields to attraction as the ten-
sion is steadily decreased. Throughout this paper our no-
tation and units will conform to those of Ref. 1. Hence
A'=c= 1, and G~ denotes the gravitation constant.

II. THE BASIC EQUATIONS
GOVERNING PLANAR WALLS

As in Ref. 1, we seek solutions to Einstein s equations
for spacetimes whose sources are confined to infini-
tesimally thin, three-dimensional timelike hypersurfaces.
Denote such a hypersurface by S, and let P be its unit
spacelike normal. The intrinsic metric on S is

where g,b is the four-metric of spacetime. Let V, denote
the covariant derivative of spacetime, and let

bDa =ha Vb, n ab
=Da gb ——mba (2.2)

where nab is the extrinsic curvature of S. By familiar
methods, ' the Gauss-Codazzi formalism leads to the
equations

Sab = f dl Tab

( Yab hab Yc 4 hacDb

hacDbsr' Dam. b 0,—srabS' =——0, (2.3)

R+[PabP' (m ) )= ——16&6~ [S,bS' ——,'(S,') ],
where

I

1

Yab =tr+ab sr ab~ ~a—b = 2 ('tr+ab+~ —ab) (2.4)

Here S,b, the surface energy tensor, is the integral of the
stress energy tensor T,b through S, the subscripts + refer
to values on either side of. S, and R is the three-
dimensional Ricci scalar of S.

We assume that the surface energy tensor

Sab=tru'ub f(h b+u—ub) (2.5)

where u' is the four-velocity of an observer in S who sees
no energy flux and who measures surface energy density o.
and tension ~. Further, we assume that

(2.6)

where I is a constant (1. We exclude I & 1 because in
such a case, as one shows by using Eq. (2.5), observers ex-
ist who measure negative energy densities. (If I'&0, we
are dealing with pressure-rather than tension. ) Finally, we
assume that S is a "planar wall, " i.e., that it is homogene-
ous and isotropic in its two space dimensions and that the
geometry is reflection symmetric. It follows that W,b ——0
and that the geometry of spacetime is of the form

30 2452 1984 The American Physical Society



30 REPULSIVE AND ATTRACTIVE PLANAR WALLS IN. . . 2453

2v C
F'(I —Iz I

)G'«+ Iz I )

[F(t —iz I
)G(t+

I
z

I
)]' '

where F and G are specifiable and Cp is a constant.
A complete set of equations consists of Eqs. (2.3)—(2.6),

and either (2.8) or (2.9).

III. CLASS-I PLANAR WALLS

A. The solutions

A procedure parallel to that of Sec. IV C 1 of Ref. 1 en-

ables one to reduce the problem of finding class-I solu-
tions to that of solving the equations (assuming z&0 for
definiteness)

and

e'""=F'(t z)K(t +z)/F' —'(t —z),

v, I + =2m-G11, (1—21 )oe"'",
e~' '=F'(t)/4mG~oF(t),

!

~=o(t) =C,F-"-"'(I),

(3.1a)

(3.1b)

(3.1c)

(3.1d)

with the conditions F(t —z) and F'(t) &0. Here Cl is a
constant. The last of Eqs. (2.3) is not needed, because it is

implied by Eqs. (3.1). Also, note that Eq. (3.1d) expresses
the local conservation law that work done against tension

(by pressure) during expansion is stored in (removed from)
surface encl"gy.

Equations (3.1a)—(3.1c) imply that

K(t)= CpF'~2 '"(t), (3.2)

which conveniently replaces Eq. (3.1b). Equations (3.1)
and (3.2) then yield

Cl ——1/4nG~CP
'~ (3.3)

It follows that the generic class-I solution is of the form

F'(t —iz i)F'(&+ iz i )

F' (t —iz i)F ' (t+ iz I)
B(t,z)=F(t —iz I ),

(3.4)

o =1/4nGiv Cp' F' (t.),
F(t —

i
z

i ) &0, F'(t) &0 .

ds2=e ~''''( —dt +dz )+B(t, iz I
)(dx +dy ),

(2.7)
with the location of the wall given by z=O.

~ The solutions to the vacuum Einstein equations off the
wall separate into the two classes studied in Ref. 1. For
class I the generic vacuum solution is

B(t, iz i
)=F(t —iz i ),

(2.8)
F'(t —

I
z

I
)K(t + I

z
I )

e "=
F'"(I—iz I)

where F and K are specifiable functions. Throughout this
paper a prime denotes the derivative of a function with
respect to its argument. For class II, the generic vacuum
solution is

B(t, iz I
)=F(t —iz I

)+G(t+ iz I ),

+(1/2Cp ~ )F ~ (t —z)(x +y )

x"=F'~ (t —z)x, and y' =F' ~ (t —z)y,

(3.5)

for z &0, and similarly for z &0. (The special case I = —,
'

requires a slightly special transformation. ) In terms of the
new coordinates, the metric takes the Minkowski form

ds =—dt* +dz* +dx* +dy* (3.6)

The surface energy density on the wall is now given by

[41~G C
I' —I/2(t z )2(1—I')]—1 (3 7)

B. The motion of the wall

The problem of interpreting the solutions boils down to
that of determining the motion of the wall in the Min-
kowski coordinate system. Setting z=O in Eqs. (3.5)
yields

(4C )2I'—1

x' +y* +z* =I* + (t~ —zn )
" "' (3.8)

(4I —3)

for the location of the wall. Note that dt*/dt&0 on the
wall, since Eand E'&0.

In Ref. 1 the implications of Eq. (3.8) for domain walls,
i.e., for I =1, were discussed. It was noted that, in the
Minkowski coordinates, the domain wall is really not pla-
nar at all; but rather that, upon extension of the solution
into the region t*—z &0, the domain wall is bent into a
sphere that completely encloses the original z&0 side of
the wall. The sphere comes in from infinity, slows down,
turns around, and heads back out to infinity, all the while
maintaining constant outward acceleration 2mG~o. Be-
cause of reflection symmetry, a similar statement is valid
for the z&0 side of the wall. It was pointed out that this
behavior is permitted on both sides because of the lack of
demand for asymptotic flatness.

In this paper our interest lies in the implications of Eq.
(3.8) for I & 1. For such cases, it is easily seen from Eq.
(3.8), upon extension of the solutions, that the intersection
of the wall with a surface of constant t* is again a closed
surface completely enveloping the original z&0 side of
the wall. (All statements have analogs for z&0.) The
maximum and minimum values zm»(t ) and zm;„(t') of
z* on the wall are obtained by setting x =y*=O in Eq.
(3.8), which yields

t —z,„=O

and

(4C )2I' —1

+zmin =
3

(t zmin ) (3.9)

For the extended solutions, the surface energy density

Taub's analyses imply that these solutions are flat in
the vacuum off the wall and hence can be transformed to
Minkowski form there. To see this explicitly, one per-
forms the coordinate transformation

t —z'—=2C '~ F'~ (t —z),
t'+z'=[C '~'/( —' —2l )]F'~2 'r(t+z)
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(3.7) now blows up at z'=z', „. Another useful equation
is an expression for the derivative of z*;„,

dz';„(4C )~" '(t* —z';„)2 "—1

dt* (4C, )'r '(t' —z' )' '"+1 (3.10)

obtained by differentiating Eq. (3.9).
Equations (3.8)—(3.10) reveal the existence of several in-

teresting subclasses marked by distinctive wall motion.

1. ~&1 &1

Equations (3.9) and (3.10) imply that ( t'+z';„)~ —ao

and dz*;„Idt'~ + 1 as ( t*—z*;„)—+0+, and that

~+ oo. Thus the world line z'=z';„(t') comes in from
z*=—ao, all the while accelerating toward negative z'.
It turns around when the numerator in Eq. (3.9) vanishes
and then heads back out to z'= —ao. An observer fol-
lowing this world line experiences acceleration

a' =z*'„/[1—(z*';„) ] =2mG~(l —2I )cr (3.11)

toward the wall, according to Eqs. (3.7)—(3.10), in agree-
ment with the general result (2.15) of Ref. 1. Also Eq.

)fc(3.8) implies that (x* +y* ) at fixed z increases as t in-
creases, asymptotically approaching t* as t'~ 00.

2. &&r&43

Equations (3.9) and (3.10) imply that (t' +z*;„)~ 0+

and dz*;„/dt' ~ + 1 as ( t*—z";„)~0+,' and that

Thus the world line z' =zm;„(t ) emerges from the origin
in the positive z* direction, all the while accelerating to-
ward negative z*. It turns around when the numerator in
Eq. (3.9) vanishes and then heads out to z = —ao. An
observer following this world line accelerates towards the
wall in accord with Eq. (3.11). Also, Eq. (3.8) implies that

)fc(x +y ) at fixed z* increases as t* increases, asymptot-
ically approaching t* as t*~ao.

and that (t"+z') —+oo and dz Idt ~+ 1 as
( t*—z')~ op. Thus the world line z*=z';„(t")einerges
from the origin in the negative z' direction, all the while
accelerating toward positive z*. It turns around when the
numerator in Eq. (3.9) vanishes and then heads out to
z =+00. An observer following this world line ac-
celerates away from the wall in agreement with Eq. (3.11).

C. Summary

The properties of class I walls can be summarized as
follows.

In each case the wall is bent into a closed surface en-
veloping the original z&0 side of the wall. The geometry
is flat off the wall. At time t* the maximum and
minimum values of z' on the wall satisfy Eqs. (3.9). For
ratios r/o: I sat—isfying —,

' &I &1, the wall comes in
from z = —ao. For I & —,

' the wall emerges from the ori-
gin of the Minkowski coordinate system. For I & —,

' the
gravitational field of the wall is uniform and repulsive.
An observer at fixed x and y in the original coordinates
must accelerate toward the wall with acceleration (3.11) in
order to comove with it. (Vilenkin, working in the
linearized approximation, was the first to show that walls
with I & —,

' are repulsive. ) For I'= —,
' the wall is neither

repulsive nor attractive, and a comoving observer must
not accelerate. For I & —, the gravitational field of the
wall is uniform and attractive, and a comoving observer
must accelerate toward the wall with acceleration (3.11).
A similar statement is valid for the z & 0 side of the wall.

IV. CLASS II PLANAR %'ALLS

A. The solutions

A procedure parallel to that of Sec. IV C 2 of Ref. 1 en-
ables one to reduce the problem of finding class-II solu-
tions to that of solving the equations (assuming z&0 for
definiteness)

This special case, it turns out, marks the dividing line
between "repulsive" and "attractive" solutions. It merits
special attention not only for this reason, but also because
it corresponds to a wall of isotropically and uniformly dis-
tributed cosmic strings, topological structures of one spa-
tial dimension with tension equal to the linear mass-
energy density. Equation (3.9) implies that z;„=0for all
t*. In fact, according to Eq. (3.8), one obtains the solu-
tion at time t] from that at time to by multiplying each
spatial coordinate by (i*, /to). Thus the wall expands
away from the origin linearly in time t*, and an observer
moving with it does not accelerate.

v,
~ + ——2mG~(1 2I )cre-

e"'o'= [F'(t) G'(t)]/4rrG&o [F(t)+—G (t)],
and

(4.1b)

(4.1c)

o.=o(r) =C, [F(r)+G(t)] (4.1d)

along with [F(t —z)+G(t+z)] and [F'(t)—6'(t)] &0.
Again Eq. (2.3) is redundant.

Equations (4.1a)—(4.1c) iinply that at z=0

e'~"=C,F'(t z)G'(t +z)I[F(t z—)+G (t +z)]'~', —

(4.1a)

4. I&—

This case includes dust walls (I =0) and walls with
pressure (I &0). Equations (3.9) and (3.10) imply that
( t*+z';„)~0+ and dz*;„Idt*~—1 as ( t' —z';„)~0+,

and

+II G II +1 G I

G
+"-"'F G

='
E+G

1 I"—G'

(4irG~cr) F'G'(F +G) ~

(4.2)

(4.3)
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Ft +Gt Ftl
F' —G' F'

6 lt F' —G'
, +( —,

' —2I ) =0.F+6 (4 4)

If F'+ 6'&0, this equation implies Eq. (4.2). If
F'+ G' =0, Eq. (4.2) itself implies that I' = —,, since
F' 6'&—0. It follows that one obtains the class-II solu-
tions by solving the first-order Eqs. (4.3) and (4.1d), with
the proviso that I =

4 when F'+6'=0.
In all cases one brings a class-II solution to the canoni-

cal form of Refs. 1 and 3 by performing the coordinate
transformation

F(t —z)= —,'(X+ Y), G(t+z)= —,'(X —Y) . (4.5)

In terms of the new coordinates,

ds = 0 ( —dX +dY ) X(dx +dy )X1/2
(4.6)

The surface energy density of the wall is now given by

(4.7)

and the problem of completing the solution process again
boils down to that of determining the motion of the wall

in the new coordinates. Note, in this connection, that

which replace Eqs. (4.1b) and (4.1c). Differentiation of
Eq. (4.3) and substitution from Eq. (4.1d} yield

containing X=O, where a curvature singularity exists.
For I & —,

' the wall comes in from X=+ oo, rea, ches a
minimum X, and then heads back out to X=+ Oo. With
regard to the way observers must accelerate in order to
keep up with the wall, this motion is somewhat mislead-

ing. In fact, for ~ & I & —,
' observers comoving with the

wall must accelerate away from it, even though the wall

appears to be accelerating, in the X—Y coordinates, away
from the z&0 side. The explanation lies in the fact that
the geometry is not flat.

For I & 4 the motion consists of two pieces. On one

piece, the wall comes in from the limiting value of X at
which the right-hand side of Eq. (4.12) vanishes and hits
the singularity at X=O. On the other piece, the wall
emerges from X=0 and asymptotically approaches the
above limiting value of X.

If Co &0, X is a time coordinate, Y is a spatial coordi-
nate, and the motion of the wall is determined by

2

=1— 1

1+(2~6„C,)'C,X' -'" (4.13)

For all I the wall emerges from the singularity at X=O,
with Y increasing as time advances. The derivative
dY/dX asymptotically approaches + 1 if I & —,

' and 0 if
I & 4.

BY
Bt

BX =F' —G') 0,
Bz

2. I=qI

BY BX (, 6)
Bz Bt

(4.8) The value I =
4 is special because, whether or not

F'+ G'&0, Eq. (4.2) now implies

Hence Y increases with time t on the wall. Further, the
unit normal to the wall has components

(F' 6')e "—& 0, —g"= —(F'+ G')e ' . (4.9)

These expressions enable one to determine which side of
the wall in the X—Y coordinates corresponds to z ~ O.

G(t)= C,F(t)+C, , (4.14)

X= [(1+C2) Y+2C3]/(1 —C2) (4.15)

on the wall. A condition relating the constants, namely,

where C2 and C3 are constants. It then follows from Eqs.
(4.5) that

B. The motion of the wall
Co ——(1—C2) /(4m. G~) Ci C2, (4.16)

I. E'+6'~0

Combining Eqs. (4.1d) and (4.3}yields

1 (F' 6')'—
(4~6 C, )' F'G'(F+6)' (4.10)

follows from Eqs. (4.1d), (4.3},(4.5), and (4.15).
If Co &0, Cz &0 and the wall emerges from the time-

like singularity at X=O, unless C2 ———1. When C2 ———1

(i.e., F'+G'=0), the wall remains at the constant value
X=X,~~

——C3, and the solution is static. It is clear that
this yields the essentially unique static solution for planar
walls. Indeed, the coordinate transformation

Eliminating F and 6 via Eqs. (4.5) then yields

(2~6 C ) C [(dX/dY) 1]X (4.11)

dX
dY

=1— 1

(2 6 C )2
~

C ~X2I' —1/2 (4.12)

In the X—Y coordinates, the z ~ 0 side of the wall is that

on the wall. Note that dX/d Y=const if I = —,'. All solu-

tions with I = ~, whether or not F'+ 6'&0, are discussed

separately in Sec. IV B2.
If Co & 0, X is a spatial coordinate, Y is a time coordi-

nate, and the motion of the wall is determined by
2

X =1—4mG~CiZ, Y =4mG~Ci T,
brings the static solution to the form

—dT +dZ
ds

(1—4~6~oX„,u ~ Z)'

(4.17)

+(1—4~6~oX„»,' Z)(dx'+dy'), (4.18)

with o.=C~X,&&
. The choice X~,]~ ——1 yields the

form quoted in Ref. 1.
If Co & 0, C2 & 0 and the wall emerges from the space-

like singularity at X=O and follows the straight-line path
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as required.

(4.20)

of Eq. (4.15). Note that dY/dX&0 because F' G—'&0.
For all class-II solutions one easily shows that the ac-

celeration vector of an observer following the wall has
nonvanishing components

a = —(1—2I )2m.Gb ci(F' —G')e
(4.19)

a = —(1 2I )—2n Gzo(F'+ G')e

and hence that

tio is reduced below —,, and how the unique static solution
finds its place within the classes of solutions.

From the standpoint of the cosmology/particle physics
interface, perhaps the two most interesting solutions are
those for domain walls (r/o =1) and walls composed of
isotropically distributed cosmic strings (r/a= —, ). It is
clear from the behavior of the corresponding class-I solu-
tions, those free of curvature singularities, that the scale
factor of a domain-wall-dominated universe, with walls
stretched over the horizon (about one per horizon), will
expand like t (t=cosmic time) while the scale factor
of a string-wall-dominated universe will expand like t.
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