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It is shown that anti—de Sitter spacetime is the unique solution to R, =Ag,, with A <0 which is
strictly stationary and asymptotically anti—de Sitter. Thus, in the absence of horizons, there are no
soliton solutions to Einstein’s equation with negative cosmological constant. The analogous state-
ment for de Sitter spacetime (A > 0) is discussed and some preliminary results are obtained.

I. INTRODUCTION

There has been considerable interest recently in the ef-
fects of a nonvanishing cosmological term in Einstein’s
equation. For example, in the maximally supersymmetric
phase of gauged extended supergravity theories' a nega-
tive cosmological constant A arises which is equal to

A=—3e?/47G , (1.1)
where e is the gauge coupling constant. In inflationary
cosmological models,? a posxtlve cosmological constant of
magnitude

A=87GV (1.2)

arises, where V is the value of the effective potential for
the scalar fields at the origin. It is therefore of interest to
determine the ground states of these theories and ask
whether or not there exist additional regular finite-energy,
time-independent solutions of the classical equations of
motion, i.e., the analog of “solitons” in flat-space theories.

If A=0, then the answers to these questions are by now
- well known. The ground state is Minkowski spacetime:
It has the lowest energy among all asymptotically flat
vacuum solutions.®> Furthermore, there are no solitons
that are strictly stationary in the sense that they admit an
everywhere timelike Killing field, regardless of the topolo-
gy of the manifold.* Minkowski spacetime is the unique
strictly stationary, asymptotically flat vacuum spacetime.
If one allows the Killing field to become spacelike in the
interior, the black-hole uniqueness theorems show that the
only solutions are the Kerr family.

If A<O, then it has recently been shown that the
lowest-energy solution to R,,=Ag,, is anti—de Sitter
spacetime.’ In this paper we show that again there are no
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solitons without black holes. More precisely, we prove
that anti—de Sitter spacetime is the unique strictly sta-
tionary, asymptotically anti—de Sitter solution to
R,, =Ag,. It turns out that although the proof of the
positive-energy theorem required relatively minor modifi-
cations to be extended from A=0 to A <O, the same is not
true for the soliton result. A completely different tech-
nique must be used.

To see why, recall the proof that there are no strictly
stationary solitons when A=0. There are, in fact, at least
three separate arguments. The original proof* consisted
of first showing that a strictly stationary spacetime must
be static, that is, possess a further time-reversal invari-
ance. One then writes the field equation in terms of the
norm of the Killing field — V2 and the induced metric A,
on the three-surface orthogonal to the Killing field. One
component of the field equation states that ¥ must satisfy
Laplace’s equation. Asymptotic flatness implies that V is
constant, and the remaining components of the field equa-
tion then require A, to be flat.

Using the positive-energy theorem, it is now pos31b1e to
give two additional proofs of this result. Perhaps the sim-
plest is to use Komar’s expression for the total energy in
terms of a surface integral at infinity of the derivative of
an asymptotically timelike Killing field.® Converting the
surface integral to a volume integral by Stokes’s theorem,
one sees immediately .that the energy vanishes if R,,=0.
The positive-energy theorem then implies that the space-
time is flat. Another proof of the absence of solitons uses
a scaling argument which was discussed in the context of
flat-space field theories by Derrick,’” and in the context of
curved space by Schutz and Sorkin.® The idea is to first
show that any stationary solution must be an extremum of
the total energy. One then notes that rescaling the metric
gap by a constant A2 rescales the energy by A. Hence the
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energy must vanish, and the spacetime is flat. [Strictly
speaking, rescaling the metric by A? violates the boundary
condition at infinity, since the energy is extremized only
for perturbations which vanish asymptotically like r 1.
However, this is easily corrected by a coordinate transfor-
mation. To be more explicit, if x# are asymptotically
Cartesian coordinates, then g,,(Ax*) satisfies the ap-
propriate boundary condition and rescales the total ener-

gyl
This scaling argument can in fact be extended to the
case of gravity coupled to certain matter fields. These in-
clude Abelian gauge fields and massless scalars (but not
non-Abelian gauge fields). In particular, the scaling argu-
ment rules out the existence of solitons in ungauged ex-
tended supergravity theories. Here the Lagrangian densi-
ty is '
R

R =

_ 1 Aga B/ o
= 162G G4p(@)V,p Vi g

"~ 887G
— i+ M(Q)F} Fi™ —g + Nij(@)Fip Flze®d | (1.3)

where the dimensionless scalars ¢* take their values in a
Riemannian manifold with metric G 5(¢), the F,, are
the field strengths of the Abelian vector fields, and M;;
and Nj; are functions of @. Since G, and M;; are posi-
tive definite, these models satisfy the dominant energy
condition and therefore the positive-energy theorem ap-
plies. Rescaling the fields by g, =A%, FLp=AFL,
@ =g takes solutions into solutions. However, the en-
ergy of the new solution is A times the energy of the old
solution. Thus, by the above argument, stationary solu-
tions must have zero energy and hence must be flat.

It is easy to see why the above proofs do not generalize
to include A <0. In the first case the equation for V is
changed, so that no direct information about #4,, can be
obtained. In the second case, the direct analog of the Ko-
mar formula diverges at infinity when A <0 and is not re-
lated to the total energy. In the last case, the cosmologi-
cal constant breaks scale invariance. Nevertheless, we will
show in Sec. II that one can combine a direct analysis of
the field equation with the positive-energy theorem to rule
out the existence of solitons.

The case of positive cosmological constant A >0 is
qualitatively different from A <O due to the presence of
cosmological event horizons. In this case the natural
ground state is the maximally symmetric de Sitter space-
time. It has been conjectured’ that the de Sitter solution
is the unique stationary solution with a single horizon. In
Sec. III, we discuss this conjecture and obtain some partial
results including an upper bound on the area of the hor-
izon and a proof that any solution which is stationary in-
side the horizon must be static.

II. THE ANTI-DE SITTER CASE

The anti—de Sitter metric may be written in the mani-
festly static form

ds?’= —(1+r%/a?®)dt*+(1+r*/a?)~1dr?
+rXd6*+sin’0dg?) , 2.1
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where A= —3/a?. Since we shall work on the covering
space, the coordinate ¢ takes its full range — o0 <? < 0.
The Killing field d/0¢ is clearly timelike everywhere.

An example of a spacetime which asymptotically ap-
proaches anti—de Sitter spacetime is the Schwarz-
schild—anti—de Sitter metric:!°

-1
2 2
+ ll_—_}.r— ’ dr2+r2(d02+sin26d(p2).

(2.2)

This spacetime has a Killing field 3/0¢ which is timelike
for r>ry, where ry is the unique positive root of the
equation goy=0. It is null at »=ry which represents the
horizon of a black hole, and spacelike for » <r,. The
quantity M is the total Abbot-Deser mass for the space-
time.’

We define a spacetime to be. asymptotically anti—de
Sitter if there exists a chart ¢,7,0,¢ defined outside of a
spatially compact world tube such that the metric has the
following asymptotic behavior:

ds’>=dsg*+0(r=2)dt>*+0(r —®)dr?
+ O(r)(remaining differentials not involving dr)

+O(r~")(remaining differentials involving dr) ,
(2.3)

where ds,? is the metric in (2.2). This definition is fairly
weak in the sense that known exact solutions, e.g., the
Kerr anti—de Sitter metric, approach ds,? faster than that
required above. However; the above falloff is all that will
be needed to prove our main result. Another definition of
asymptotically anti—de Sitter spacetimes has been given!!
in terms of a conformal completion. We believe that any
spacetime satisfying this condition will also satisfy (2.3),
but this has not yet been proven.

We now restrict ourselves to strictly stationary space-
times, that is, those admitting an everywhere timelike Kil-
ling field which approaches d/9¢ asymptotically. Our
main result is the following.

Theorem: The only strictly stationary asymptotically
anti—de Sitter solution to R,, =Ag,, is anti—de Sitter
spacetime.

To prove this, we first establish the following lemma.

Lichnerowicz lemma:'* A strictly stationary asymptoti-
cally anti—de Sitter solution to R,, = Ag,, must be static.

Proof: Define the norm and twist of the Killing field
K by

—V?=KK, , (2.4)
©s =7 €acaK VK?, (2.5)

where €, is the alternating tensor. The field equation
and Ricci identity yield

Via@p1=0 , ' (2.6)

whence



w0a=V,U . 2.7

(One can ensure that U will be globally well defined by
working on the universal covering space of the manifold.)
~ Equation (2.5) implies that

a
V. ‘;4 =0, (2.8)
so that
Uol?k?] oo, .,
Ve T T 29

One now integrates (2.9) over a nonsingular spacelike hy-
persurface = in M whose boundary is a large two-sphere
S. By Stokes’s theorem

Uw®K?® %o
gss =2 —dSu= | 1T ¢ kb3, .

P . (2.10)

It is easy to verify that for any metric satisfying (2.3), the
left-hand side vanishes as S goes to infinity. Since
K%,=0, w, is spacelike everywhere. The vanishing of
the right-hand side therefore implies that w,=0 on X.
But X is arbitrary, so w, =0 on M and the spacetime is
static. '

We now proceed to the proof of the theorem. Let A
be the induced metric on a static slice 2. The field equa-
tion R, = Agg is equivalent to

DWW=—AV,
3Rab = V‘_IDan V+Ahg ,

(2.11)
(2.12)

where D, and *R,, are the covariant derivative and Ricci
tensor of the metric A,,. We now use an identity due to
Lindblom'? which follows from (2.11) and (2.12):

DUV='D (W —W,)]
= % VsW_lRabcR abe
+2 VWD (W —Wo)DAW —W,) ,

(2.13)
where
W=D,VDV , (2.14)
Wozi;—(1~V2), (2.15)
and
Rgse =2D( Ry + Fhare DoRow (2.16)

The tensor R, is the analog of the Weyl tensor in three
dimensions: It vanishes if and only if A, is conformally
flat. The function W — W, vanishes for anti—de Sitter
spacetime. Thus, the right-hand side of (2.13) is non-
negative and vanishes for the anti—de Sitter solution. In-
tegrating over = we obtain

gSS V=1n°D,(W—Wy)dS >0, (2.17)

where S is the two-sphere at infinity and »n¢ is the unit
normal to S in =. Since our boundary condition requires
all metrics to approach the Schwarzschild—anti—de Sitter
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metric asymptotically, we may evaluate W — W in this
surface integral using (2.2). This yields

4M

W—Wo=—7+0(r"?). (2.18)
a‘r
Since ¥V ~'n°D, =09/3r, we obtain
demM . 2.19)
a

This contradicts the positive-energy theorem for asymp-
totically anti—de Sitter spacetimes® unless M =0 and the
spacetime is exactly anti—de Sitter. This completes the
proof of the theorem.

It is natural to conjecture that if one allows horizons,
then the only stationary solution which is nonsingular
outside the horizon, is the Kerr anti—de Sitter spacetime.

III. THE DE SITTER CASE

It seems natural to assume that solutions to R, =Ag
with A > 0 will be spatially compact, i.e., diffeomorphic to
SXR, where X is a compact three-manifold without
boundary. If this is the case, then it follows by integrat-
ing Eq. (2.11) that the spacetime cannot be globally static.
There must be a surface where the Killing field becomes
null. For example, in de Sitter spacetime—obtained by
setting a*= —a? in (2.1)—this null surface is the cosmo-
logical event horizon. Intuitively, the horizon occurs be-
cause of the rapid expansion of space caused by the A
term. If matter is present, then the cosmological repul-
sion may be balanced by gravitational attraction resulting
in an (unstable) globally static solution. An obvious ex-
ample is the Einstein static universe. However, in the ab-
sence of matter, it appears that horizons are a generic
property of stationary solutions. Therefore, in attempting
to formulate a uniqueness theorem for de Sitter spacetime
analogous to the one proved in Sec. II, we must incorpo-
rate the horizon explicitly into our boundary conditions.

A general solution to R, =Ag,, may have several hor-
izons. In this section, we shall restrict consideration to
the region -of spacetime inside a single horizon. Thus, we
consider spacetimes with boundary such that (i) H =dM
is a smooth, connected, null three-surface and (ii) there is
a Killing field K? which is timelike in M and tangent to
H. We will call these stationary “single-horizon” space-
times. Notice that condition (i) excludes the presence of
black holes inside a cosmological horizon. Since there is
no asymptotic region, there is no preferred scaling for the
Killing field K°.

The analog of the uniqueness theorem proved in the
previous section is the following.

Conjecture (“cosmic no hair”): The only stationary
single-horizon solution to R,, =Ag, is de Sitter space-
time.

Some evidence for this conjecture was given in Ref. 14
and a possible new approach is discussed in Ref. 15.
There is also evidence which indicates that generically any
solution will approach the de Sitter metric within the hor-
izon of every timelike world line reaching infinity.!%!6
We have been unable to establish this conjecture, but we
have some partial results which may help in this direction.
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To begin, we prove the following lemma.

Lichnerowicz-Hawking lemma: A stationary single-
horizon solution to R,;, = Ag,, must be static.

Proof: The only difference to the A <O case is that the
integral at infinity on the left-hand side of (2.10) is re-
placed by one over (a cross section of) the horizon H.
Since K*“ is tangent to the horizon, »® must vanish there.
Thus U may be chosen to vanish on H, whence U/V* has
a finite limit (if the horizon is nondegenerate, i.e.,
V,V?5£0). Therefore, the left-hand side of (2.10) vanishes
and so w?=0 everywhere. This argument is essentially
identical to the standard black-hole argument given in
Ref. 12. _

Since the field equation is identical to the one in Sec. II
(except for the sign of A), a static solution still satisfies
Egs. (2.11), (2.12), and therefore the Lindblom identity
(2.13). Evaluating this identity in the present case, one
finds that area A4 of the horizon must satisfy the inequali-

ty
A< 12w/A (3.1

with equality if and only if the metric is de Sitter. We
shall not show this in detail because we will soon see that
this result can be obtained in several ways, some of which
are rather simpler and perhaps more illuminating. Obvi-
ously, in order to prove the conjecture, one must establish
either equality in (3.1) or another inequality going in the
opposite direction, just as Israel did in his proof of the
uniqueness of the Schwarzschild solution.!” Unfortunate-
ly, we were unable to do so. However, the inequality (3.1)
seems to have independent physical interest which we
shall discuss below.

Perhaps the simplest way to derive inequality (3.1) is by
reformulating the problem in terms of four-dimensional
Riemannian geometry. Consider a static single-horizon
solution to R,, =Agup,

ds?=—Vdt? + hgydx®dx® . 3.2)

At the horizon V=0, h,, is regular, and k=n°D,V is a
positive constant (where n? is the unit inward normal).
Integrating Eq. (2.11) over a static ball B yields

kA=A fB V. (3.3)

We now analytically continue ¢ =iT in the metric (3.2). A
conical singularity at ¥ =0 can be avoided by identifying
T with period 27/k. We thus obtain a smooth positive-
definite metric on a compact four-manifold N. Since (3.2)
satisfies R,, = Ag,y, the same will be true of the metric on
N. For example, starting with the de Sitter metric, one
obtains the standard round metric on S*.

In fact, we now show that the Euler number X and Hir-
zebruch signature 7 of N are always equal to their values
for S*. The Euler number of N is equal to that of 3B
since the horizon is a “bolt” in the terminology of Ref. 18.
Since 3B is an orientable two-manifold, X can be 2, O,
—2,... . But by the Gauss-Bonnet theorem for spaces

satisfying R, = Agup,

Y= 1 . fN (Cabch“b”d-i- %AZ) , (3.4)
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X must be positive. Hence X =2 and we have established
the following lemma.
Lemma (“spherical topology”): The horizon of a sta-

tionary single-horizon solution to R,;, = Ag,;, has topology

SZXR.
The signature 7 of N is

= ﬁ [ - Rabea € RP™ . 3.5)

Time reversal T——T 1is an orientation reversing
isometry of N which changes the sign of the integrand in
(3.5). Hence 7=0. If N is a simply connected spin mani-
fo}d, then (X =2, 7=0) imply that it is homeomorphic to
S°.

The inequality (3.1) is now an immediate consequence
of the Gauss-Bonnet theorem (with X =2) and Eq. (3.3).
From (3.4) we obtain'’

VaA? <2472, (3.6)

where V, is the four-volume of N, with equality if and
only if g,, is a metric of constant curvature. Using (3.3)
we can evaluate Vy,

4 __2__ 3 _27TA
V4=fNV§d = BV\/'h‘dx_——A . B

Combining (3.6) and (3.7) we recover the inequality
A <127/A. Notice that by reformulating the problem in
terms of Riemannian geometry, we see that the cosmic-
no-hair conjecture is a special case of the conjecture that
there is only one Einstein metric on S*.

To understand the physical significance of (3.1) it is
useful to consider time-dependent solutions to R, =Aggy,.
In this case it can be shown that the area of the cosmolog-
ical horizon is nondecreasing.’ This result also applies to
solutions with matter providing T, satisfies the weak en-
ergy condition. Thus if a solution eventually settles down
to the static de Sitter metric inside the horizon, then the
area of the intersection of the horizon with any spacelike
hypersurface must be less than 127/A. In other words,
the area of the horizon should satisfy 4 <127/A in-
dependently of the stationarity assumption.

There is a close analogy between this inequality and
Penrose’s inequality’® for black holes in asymptotically
flat spacetimes:

A<167M? (3.8)

where A is the area of a black-hole event horizon and M
is the total Arnowitt-Deser-Misner mass. In fact the
above argument motivating inequality (3.1) for time-
dependent spacetimes is virtually identical to the one
given for (3.8). The only difference is that one considers
spacetimes that settle down to the Schwarzschild solution
rather than the de Sitter solution. We emphasize that nei-
ther of the above inequalities has been proven rigorously.
Jang and Wald?' have given an argument in support of
(3.8). We now show how this argument can be modified
to support (3.1).

Consider a time-symmetric surface B in a single-
horizon spacetime. Let s label a sequence of nested topo-
logical spheres centered on a point p. Set
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4A

2R—p2— 3

fls)= f da4 , (3.9)

where R and 7 are the scalar curvature and trace of the
extrinsic curvature of the spheres. Define ¢ by
¢n°D,s =1, where n° is the unit outward normal to the
spheres. Suppose one can choose the spheres such that
¢p =1, and s =s is the horizon dB. Then, differentiating
(3.9) with respect to s, one can show?!

d b in
gsj:=—%f+ J CR—2A+p %, — 552

+2¢~2D,¢D °p)dA . (3.10)
Since the integral on the right-hand side is non-negative
we find that fe®/? is an increasing function of s. Since
f—0 as the spheres shrink to a point, we conclude that
f>0. Evaluating f on the horizon (p=0), we obtain
A <12w/A. This argument can also be applied to space-
times with black-hole horizons in both the A>0 and
A <O cases.

Finally, we comment on the possibility of stationary
solutions to R,, =Ag,, with more than one horizon. The
only example known to us is the Kerr—de Sitter metric
which also includes the Nariai metric?? as a limiting case.
This solution has two horizons and corresponds intuitive-
ly to two black holes placed at antipodal points on a
three-sphere. In the Nariai case, the horizons are symme-
trical and can be viewed as two black holes whose gravita-
tional attraction is balanced by the cosmic repulsion. It
seems plausible that other more exotic examples could be
constructed by placing a number of black holes at the ver-
tices of a regular polytope in S°, in a manner similar to
that described by Lindquist and Wheeler.?? If stationary
solutions could be constructed in this way, then unlike
Kerr, and perhaps Kerr—anti—de Sitter, the Kerr—de Sit-
ter solution would not be unique.

ACKNOWLEDGMENTS

It is a pleasure to thank S. W. Hawking for discussions.
One of us (G.T.H.) wishes to thank D.A.M.T.P. for its
support and hospitality while this work was begun.

1A. Das and D. Z. Freedman, Nucl. Phys. B120, 221 (1977).

2A. H. Guth, Phys. Rev. D 23, 347 (1981). .

3R. Schoen and S.-T. Yau, Commun. Math. Phys. 65, 45 (1979);
79, 47 (1981); 79, 231 (1981); E. Witten, ibid. 80, 381 (1981).

4R. Serini, Accad. Naz. Lincei Mem. Cl. Sci. Fiz. Mat. Nat. 27,
235 (1918); A. Einstein and W. Pauli, Ann. Math. 44, 131
(1943); A. Lichnerowicz, C. R. Acad. Sci. 222, 432 (1946);
Theories Relativistes de la Gravitation et de I’Electromag-
netisme (Masson, Paris, 1955).

SL. F. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982); P.
Breitenlohner and D. Z. Freedman, Phys. Lett. 115B, 197
(1982); Ann. Phys. (N.Y.) 144, 249 (1982); G. W. Gibbons, S.
W. Hawking, G. T. Horowitz, and M. J. Perry, Commun.
Math. Phys. 88, 295 (1983); G. W. Gibbons, C. M. Hull, and
N. P. Warner, Nucl. Phys. B218, 173 (1983).

6A. Komar, Phys. Rev. 113, 934 (1959).

7G. H. Derrick, J. Math. Phys. 5, 1252 (1962).

8B. F. Schutz and R. Sorkin, Ann. Phys. (N.Y.) 107, 1 (1977).

9G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738
(1977). )

10F. Kottler, Ann. Phys. (Leipzig) 56, 401 (1918).

115, W, Hawking, Phys. Lett. 126B, 175 (1983); A. Ashtekar

and A. Magnon, Class. Quantum Grav. 1, L39 (1984).

12B, Carter, in Black Holes, edited by C. DeWitt and B. S.
DeWitt (Gordon and Breach, New York, 1973).

13L. Lindblom, J. Math. Phys. 21, 1455 (1980).

14W. Boucher and G. W. Gibbons, in The Very Early Universe,
edited by G. W. Gibbons, S. W. Hawking, and S. T. C. Siklos
(Cambridge University Press, Cambridge, England, 1983).

15W. Boucher, in Classical General Relativity, edited by W. B.
Bonnor et al. (Cambridge University Press, Cambridge, Eng-
land, 1984).

16R. Wald, Phys. Rev. D 28, 2118 (1983).

17W. Israel, Phys. Rev. 164, 1776 (1967).

183G, W. Gibbons and S. W. Hawking, Commun. Math. Phys.
66, 291 (1979).

I9R. L. Bishop and R. J. Crittenden, Geometry of Manifolds
(Academic, New York, 1964); R. L. Bishop and S. I. Gold-
berg, Proc. Nat. Acad. Sci. U.S.A.49, 814 (1963).

20R. Penrose, Ann. N.Y. Acad. Sci. 224, 125 (1973).

21p, 8. Jang and R. M. Wald, J. Math. Phys. 18, 41 (1977).

22H. Nariai, Sci. Rep. Tohoku Univ. Ser. 1: 35, 62 (1951).

23R. W. Lindquist and J. A. Wheeler, Rev. Mod. Phys. 29, 432
(1957).



