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Dynamical calculation of quark, lepton, and gauge-boson masses
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A model is proposed in which fermion and gauge-boson masses are calculable. Fermions get their
masses from their own condensates and the low-lying gauge bosons such as Z or 8'get their masses

from the condensate of fermions of higher generations. The short-distance contribution to chiral-

symmetry breaking is important, in contrast to the technicolor theory. We have no difficulty con-

cerning the flavor-changing neutral current.

INTRODUCTION

Spontaneously broken chiral symmetry in various
theories has been studied extensively in the past partly in
order to understand the origin of fermion masses. Nambu
and Jona-Lasinio studied in their classical paper the
mechanism of dynamical mass generation in the theory
with four-fermion interaction. Johnson, Baker, and Wil-

ley initiated the study of chiral-symmetry breaking in
QED. Lack of asymptotic freedom makes the introduc-
tion of some kind of cutoff unavoidable in these theories.

After the discovery of asymptotic freedom people
started working on chiral-syrnrnetry breaking in non-
Abelian gauge theories making use of the Schwinger-
Dyson equations. The existence of "regular" and "irregu-
lar" solutions has been shown in these theories. The regu-
lar solution corresponds to the case of spontaneous
chiral-symmetry breaking and the irregular one to the
case of explicit bare mass term in Lagrangian.

On the other hand, the investigation of chiral-symmetry
breaking in lattice gauge theory has also been started. It
is rather difficult, however, to understand chiral-

symmetry breaking without knowing the short-distance
behavior of a given theory because the chiral symmetry
concerns the existence or absence of bare mass term in the
Lagrangian.

If we turn our attention to the phenomenological side,
we notice that we do not have a satisfactory understand-
ing of quark and lepton masses yet. Explicit introduction
of Higgs bosons avoiding the dynamical approach leaves

many arbitrary parameters unexplained.
Technicolor theory has been proposed to reinedy this

situation but not without much difficulty of its own. The
appearance of a relatively large flavor-changing neutral
current is rather hard to overcome.

I would like to describe a model in this paper which is
similar to the technicolor theory at least in its spirit. The
essential difference is the importance of short-distance
contributions to the chiral breaking in our model, in con-
trast to the technicolor case.

Let us discuss some general aspect of lepton and quark
masses in our dynamical approach. Our model, which is
a gauge theory without elementary Higgs field has also
the chiral syxnmetry by nature or by an assumption.
%'hat causes the mass difference between electron and

muon, for example, in such a theory? .We know experi-
rnentally that there is no interaction in the relatively-low-

energy region that is strong enough to cause the e-p mass
difference. We must, therefore, have some gauge interac-
tion which is important on1y in the high-energy region yet
to be reached, and is sufficiently strong to cause the mass
difference. We note that the Schwinger-Dyson equation
with constant running coupling gives a logarithmically
divergent self-mass. Asymptotically free theory gives fin-
ite answer to the self-energy but the fact that the coupling
decreases as slow as (logg )

' shows that the high-energy
contribution to self-mass is still very important.

In the case of quarks the long-distance QCD contribu-
tion to the masses is separated out as the constituent
quark mass. The current-algebra mass is defined to be the
contribution from the short-distance gauge interactions
including QCD. As a possible source of the gauge in-

teraction the "generation gauge interaction" is examined
in this paper together with the usual QCD and quantum-
flavor-dynamics (QFD) interactions. We know that the
generation gauge interaction must be completely broken at
the energy scale yet to be reached. For the purpose of
breaking the generation group a technicolor1ike interac-
tion is introduced. We also need an additional interaction
to break the grand unified symmetry at approximately
10' GeV.

In contrast to the technicolor theory, however, the Z
and W masses originate from the condensates of higher
generation of quarks which have masses in the TeV re-

gion. QCD coupling starts to increase as a function of en-

ergy in the TeV region until the energy reaches the grand
unification scale because of these higher generations of
quark s.

In Sec. II some basic properties of the Schwinger-

Dyson equation are discussed. We propose our model in

Sec. III. We also show that the model satisfies such basic
conditions as the asymptotic freedom or the absence of
triangle anomaly. In Sec. IV we discuss the possible pat-
tern of symmetry breaking. Section V gives an approxi-
mate solution to the Schwinger-Dyson equation derived in
Sec. IV. %'e can understand the existence of hierarchy by
just looking at the solution. The result is also compared
with experiment. The property of the solution in general
is satisfactory except for a few discrepancies with experi-
rnent. I do not know at this moment whether this is due
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to the approximation adopted or to the inadequacy of the
model. We discuss briefly the problem of Z and W
masses in Sec. VI. Some other models we considered are
presented in Sec. VII. Finally, general discussions and
conclusions are given in Sec. VIII. Numerical analysis of
the Schwinger-Dyson equation is presented in the Appen-
dix.

II. SCHWINCyER-DYSON EQUATION

Our tool for attacking the problem of chiral-symmetry
breaking is the Schwinger-Dyson equation (hereafter re-
ferred to as the SD equation). The SD equation in non-
Abelian gauge theories has been extensively studied in the
past and its basic properties are well understood. Let us
summarize these properties below.

PL, and g~ denote the left-handed and the right-handed
massless fermion fields, respectively. Indices a and i refer
to the gauge group G. We write the renormalized propa-
gator b, for this fermion system as

where we have taken the Landau gauge (A @=A~—:0) for
convenience. g (k ) is the gauge coupling and F is the
representation matrix

0

(F(+ ))&
m j. (4)

If we perform the perturbation expansion, there appear
divergences from the integral and these are canceled by
mo(A) in front. The chiral symmetry is implied by
mo(A)—=0 for all values of the cutoff parameter A. A
peculiarity of non-Abelian asymptotically free gauge
theory is

In order to understand the nature of this equation we
write its cutoff version with the explicit bare mass

4&=~o«)+,. f g'F~&[(p —k)' —&'] 'F~

& —Xs (1+2)~p
1 $5 8

2
lirn mo(A)= lim (logA) '=0,

A~ oa A —+qp

+75 p
l

1 +gs (I+~V

& —rs pgPp

l+ Vs

2

(2)

8 is nonvanishing only when the chiral symmetry is bro-
ken. The SD equation in the ladder approximation (Fig.
1) reads

and

X;,(p) =O((logp ) '), (7)

due to the renormalization effect. This means that wheth-
er we start from a chiral-symmetric theory or from a
theory with explicit bare mass term we end up with the
same SD equation (3) in the infinite-cutoff limit. This is
why we expect two types of solutions for the equation (3);
one which corresponds to the case of explicit bare mass
(irregular solution) and the other corresponding to the
broken chiral symmetry (regular solution). These solu-
tions behave differently in the high-energy limit:

8
X=

&
—— fg (k )F X[(p —k) —X ]

2(2m) I

d4k
X+m

k
(3)

&,(p) =O(p '(logp)'),

when g (k )=O((logk ) '). c is a number which de-
pends only on the structure of the gauge group.

After Wick rotation, Eq. (3) reads

&(p)=,fg'(p —p')'F &(p')[p'+&'(p')] 'F
2(2m) (p —p')'

where the integration variable was changed from k to p =p —k. Subtracting X(po ) from both sides, we obtain

g'[(po —p')']
dd p

(po —p')'

(9)

(10)

This equation has a unique iterative solution for an arbi-
trary value of X(po) with the asymptotic behavior

(logp) ' (Fig. 2). The solution behaves like the curve (a)
of Fig. 2 when X(po) is sufficiently large. It will, howev-
er, behave like the curve (b) when X(po) is sufficiently de-
creased. We have thus the unique value of X(po) which

FIG. 1. Ladder approximation to the self-energy part.

I

separates the case (b) from the case (a). This value of
X(po) gives the regular solution [curve (c)] with the
asymptotic behavior (p ) '(logp)'. This situation was
checked numerically (Appendix) in the case of QCD al-
though I have no rigorous proof to justify it.

Now let us proceed to the case of massive vector bo-
sons:

&(p)=,fg'[(p —p')']F &(p')[p'+&(p')']
2(2m)

XF d p
(p —p') +m
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g( p2) g ~(logp ) '. Suppose that the coupling behaves as
shown in Fig. 3. The effective cutoff energy is approxi-
mately A in this case which could be as large as the grand
unification mass. The contribution from short distances
will be very important in such a situation. In the next
section we will construct a model where this situation is
realized. Finally, we observe that the solution to Eq. (14)

p2

FIG. 2. Behavior of the solution to Schwinger-Dyson equa-
tion.

X=A exp( —16&/3g 2),

shows that we can have a very small mass although A
may be as large as 10' GeV, thus providing a possible
solution to the hierarchy problem.

III. CONSTRUCTION OF THE MODEL

The question to be answered is if this equation always has
a nontrivial solution. To see this let us examine the fol-
lowing equation which is closely related to Eq. (9}:

2-i dp
2(2m ) P +Pl

After integration we obtain

(13)

1=
2(2~) p +X p

(14)

when m =0. In this case the integral can be made arbi-
trarily large by making X small. It, therefore, has a solu-
tion for any value of g . Physically, infrared instability in
this case is sufficient to make the normal vacuum unsta-
ble. I.et us pay attention to the upper end of the integral.
The integral can be made as large as we want by making
A sufficiently large. This is true whether the vector boson
is massive or not. In the asymptotic free theory the cutoff
is naturally provided by the renormalization effect:

g2 ( p2)

p
2

FIG. 3. Behavior of a running coupling which is asymptoti-

cally free and also infrared finite.

where k =(3/16~ )g, /=X /m, and A, =A /m . The
right-hand side of this equation is a decreasing function of

for g&0. It, therefore, has a solution only when

1/k &in(1+A, ). A more rigorous argument shows that
Eq. (11) also has a solution when the coupling is larger
than a certain critical value.

Equation (12) reads

Our model consists of gauge bosons and fermions
which belong to a certain representation of a gauge group
G. G is a product of semisimple groups including grand-
unified group U and also the "generation interaction"
group G~. We assume that the group U is broken down
to SU(3) X SU(2) XU(1) at =10' GeV and then down to
SU(3) XU(1) at =10 GeV. The group Gi should be com-
pletely broken at —10-10 TeV or even higher. The only
possible origin of the mass of all the fermions and gauge
bosons is the ferrnion-pair condensation since we have no

elementary Higgs scalars.
Our basic assumption is that all the "low-lying fer-

mions" get their masses from the condensation of them-
selves. The attraction which binds these fermions and an-
tifermions into pairs comes from the short-distance of
both the unification and the generation gauge interactions.
Specifically, the long-distant part of QCD will be neglect-
ed or only partly included. Thus, the mass of fermions
which have QCD interaction will be close to the so-called
"current-algebra mass. "

Besides these two gauge interactions U and G
I

we need
at least one more very strong interaction which gives rise
to a condensate comparable in magnitude to the unifica-
tion scale. This condensate breaks U down to
SU(3) X SU(2) XU(1) and also Gi down to some smaller

group 62. We call this group ( T„) the "unification tech-
nicolor group. " T„plays the role of the conventional
technicolor group except that it violates U&G~ at the
scale of 10' GeV rather than SU(2}XU(1) at the scale of
10 GeV. If the group G2 is an identity, this will be the
whole story. But it turns out that Gz is nontrivial in our
model. We, therefore, need one more gauge group Tz
which violates G2 completely. We call this group (T~)
the "generation technicolor group. "

Our gauge group, therefore, is UG& TU T&, i.e., we
assume the existence of four fundamental interactions:

(1) Unified gauge interaction of strong, weak, and elec-
tromagnetic forces.

(2) Gauge interaction which exists among different gen-
erations.

(3) Technicolorlike interaction which breaks both
U(3G~ to much smaller groups at =10' GeV.

(4) Technicolorlike interaction which breaks the genera-
tion group completely.

We do not consider the unification of all these interac-
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IU. PATTERN OF SYMMETRY BREAKING

We now apply a general method described in Sec. II to
the specific model of Sec. III. No rigorous argument will

be given regarding the stability of the solution we present.
This problem is worth looking into only when our model
is phenomenologically adequate. We, therefore, concen-
trate on the phenomenological side of the model in this

paper.
The largest condensates me expect are

((1,5, 1,2), (1,5, 1,2)}, (21)

and

s [(3,2)(1)+(3*,1)(—4) + (1,1)(6)], (26)

(5,5)= [(3',1)(2)+(1,2)( —3)] [(3",2)(2)+(1,2)( —3)],
(27)

again we do not know its stability against other solutions.
We assume the existence of a mass scale Mi where the
generation group SU(3) XSU(2)z XU(1)g breaks down

completely.
A scenario for the fate of 10 generations of low-lying

fermions will now be given. First of all we have

(10,10)=[(3,2)(1)+(3*,1)( —4)+(1,1)(6)]

((5,1, 1,2), (5, 1,1,2)} . (22) and

T,„ interaction is assumed to be so large that these con-
densates violate U and Gi down to SU(3) XSU(2) XU(1)
»d SU(3)z X SU(2)g XU(1)g, respectively. If we write
down the SD equation for ((5,1, 1,2), (5, 1, 1,2) }, for ex-

ample, we immediately see that the solution can have one
of the following three forms with respect to the SU(5)„
representations:

b b

(5,5)=[(3',l)(2)+(1,2)( —3)] [(3,1)(—2)+(1,2)(3)],
(28)

where the first bracket refers to the color-electroweak
group and the second bracket refers to the generation
group. Let us first discuss the quarks of charge —', . The
strongest attractive force will be present in the following
channels:

([(3,2)(1),(3,2)(1)]I3[(3',1)(—4),(3*,1)(—4)]}, (29)

and

([(3,2)(1),(3', 1)(—4)]s[(3*,1)(—4), (3,2)(1)]& . (30)

or (23)
Either in Eq. (29) or in (30) the first entry in the bracket
refers to the color-electroweak group and the second one
refers to the generation group. Only one component of
the SU(2) doublet will have this type of condensation.
The other component can be transformed away. Thus, six
out of ten generations of —', quarks become massive

through this condensation. The next higher condensation
mill be

The first choice does not violate SU(5)„at all, the second
choice violates it to SU(4) XU(1} and the last choice down
to SU(3)XSU(2) XU(1). If the relatively small force due
to SU(5)„gauge-boson exchange is important besides the
strong SU(2)«, we would have the first choice. We sim-

ply assume in this paper that the third choice is most
stable, or, if it is not, then the time required to decay into
the stable state is long enough.

The generation group SU(3) XSU(2) XU(1) should be
broken completely above the TeV region. This will be
done by the condensate of

((1,5,5, 1),(1,5, 5, 1)),
which is reduced to a matrix

(24)

((3,1)(2),(3,1)(2)} ((3,1)(2),(1,2)( —3)}
((1,2)( —3),(3, 1)(+2)} ((1,2)( —3),(1,2)( —3)}

(25)

with respect to the SU(3)g X SU(2)g XU(1)z representation.
Each element of the matrix behaves as a singlet in SU(5)tg
representation. We see that the off-diagonal element
should be nonvanishing in order that no residual symme-
try exists. There exists such a solution except that here

([(3,2)(1),(3,2)(1)]s[(3*,1)(—4), (3,2)(1)]} . (31)

There is another solution where the role of generation
group and the color-electroweak group is interchanged.
We suggest that solution (31} is more stable due to the
fact that the generation group is already completely bro-
ken while SU(3), gives a strong attraction in the long dis-
tance. This condensate exhausts three out of remaining
four generations. The smallest condensate is given by

([(3,2)(1),(1,1)(6)][(3*, 1)( —4),(1,1)(6)]}. (32)

([(3,2)(1),(3,2)(1)][(3*, 1)(2),(3*,1)(2)]}, (33)

([(3,2)(1),(3*,1)(—4)][(3', 1)(2),(3,1)(—2)]} . (34)

These six generations of quarks will be as heavy as six
heavy generations of charge —', quarks. The remaining
four generations of quarks have the origin of masses from

We see that the generation interaction gives a repulsive
force in this channel in contrast to all the other nine chan-
nels. This is the reason why the u quark is so much
lighter than the other quarks.

For the charge ——, quarks we will first have the fol-
lowing condensates



30 DYNAMICAL CALCULATION OF QUARK, LEPTON, AND. . .

the condensates

([(3,2)(1),(3,2)(1)+(1,1)(6)]

[(3, 1)(2),(1,2)( —3)+(1,2)(3)]) . (35)

Ten generations of leptons have the same group structure
as charge ——,

' quarks for the condensates except that the

color-electroweak part transforms like (1,1)(6) or
I

(1,2)( —3) instead of (3,2)(1) or (3*,1)(2).
Let us now write down the SD equation for the conden-

sates mentioned above. Indices a, b, c, . . . hereafter denote
color SU(3), m, n, . .. denote electroweak SU(2), u, P,y, . . .
refer to the generation SU(3), and 1M, v, . . . refer to the gen-
eration SU(2). Indices for each wave function in
B =(fit~) will be separated by a semicolon as in B .&.

Corresponding to the condensates in Eq. (29) we have

- d4k
Bamap f 2Fa Ba'map [( k)2 B b'p'; Ba"m a'p''

]
—1Fb"

;bP (—,4 3 ia';b'P' P a"m'a'p';b p ib 22 277)
4+,fg3'F,'.B'- ",b&[(p k)—'+B" ...-„B'- p, b~.]-'F,,

2
d kBamap [( k)2 B b'p', Ba m ap ] 1 d k

2( 2~)4 3O
b'Ir' P'+ 'a'm 'a'p';b p

4

f B p [( k)2 Bb'p', ' ' ' '
1 d k

(36)

where F, stands for SU(3) matrices of fundamental representation, p; for the SU(3) gauge-boson masses close to M, ,
and I o for U(1)s gauge-boson mass, which is also close to Ml. Z and W masses will be neglected. Equation (30) leads to
a SD equation similar to Eq. (29) with the replacement of indices:

gama@, yam ap
;bP P;b

Equation (31) gives a SD equation with the force in the 3 X 3 channel of generation group:
4

Bamap pv ff 2Fa Ba'map gv'[( k) +2B
' OBa "m'ap' iiv] —lFb"

4

+ f F B ma p P'v
[(p —k) +B b

B~
a m'a"p' "P'v] —

( FB )
2(2m. ) '+p

d ki II I I tl

+ g2 Fp B' " b~ [(p k) +B p—p - ~ ~ -B' " b~ ] '( F)—

(37)

2 d kamap pV[( k)2 B O' Ba'm'a'p' 13v] —1 d

2
Bamap p'v'[( k)2 B b ' Ba'm'a'p' 13v] —1 (38)

The lightest charge —,
'

quark (u quark) is described by the SD equation:
4

Bam f 2Fa Ba'm [(~ k)2+B b' Ba"m' ]
—1Fb"d

)4
3 ia';b' P-;a"m';b" ib

2 d4kf Bam [( k)2+B b' Ba'm' ]
—1 d

)4 15 ~
', a m;b

4

f 3 g 2Bam [(& ) k2+bB' Ba'm' ]
—1 (39)

2(2m. )

We also have SD equations for charge ——, quarks and leptons. We do not bother to write down al} these equations
here but make a few remarks in passing. The two-body force in the ——, quark-antiquark channel has a contribution
from the QCD interaction, whereas the lepton channel has only U(1)z interaction besides, of course, the force due to the,
generation interaction. The generation interaction is common to the quark channel and to the lepton channel. This does
not necessarily mean that we have to take the same type of solution in each case. As will be discussed in the next section
we have to choose different type of solution 1n each case to explain the experimental fact.

V. APPROXIMATE SOLUTION TO SD EQUATION AND PHENOMENOLOGY

Equation (36) has the solution of the form

gama@ ga gag2mg2p~
;bP—b Pi (4O)
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Substituting this form in Eq. (36) we obtain

22m-' 22~' +

22~' 22~' +
(41)

1= f& (A, )ln + 2g3 (A )ln (42)

where fi and gi contributions are neglected for the mo-
ment. This has the solution

—4m
2

B =A, exp f3'«s)
g3 (A, ) A,

exp ln (43)

where p; and po are replaced by the approximate value
M ~ . This equation has a unique "regular solution"
which corresponds to the case of broken chiral symmetry.
One can solve this equation numerically without much
difficulty. The method is to first subtract at some point
ko, obtaining an equation similar to Eq. (10) of Sec. II.
Then one solves this equation iteratively changing the
value of B(ko ) until one gets the solution of type (c) as
is illustrated in Fig. 2.

Since our object is to see if our model is phenomenolog-
ically sound, we are satisfied with the following crude ap-
proximation: Instead of using the coupling of Eqs. (16)
and (17) we use f3 (A, ) or g& (A, ) where A, is presum-

ably close to Mo and we cut off the integral at A, . Then
Eq. (41) reduces to

and

Bo A——,exp[ 4m —/f 3 (A, )]

g3 (A, ) A, 9g2 (A, ) A,
&( ex — ln + ln

4f3 (A, ) Mi 16f3 (A, ) Mi

A =A, expI[g3 (A, )/f3 (A, )]l (nA, /Mt)J,
B =A, expI [ 2 g& (A, )+ —,', g2 (A, )]

Xln(A, /Mi)/f3'(Ag) j,
C=A, exp[[, g3 (A, )+—„gz (A, )+ —,', gi (A, )]

Xln(A, /Mi)/f3 (A, )I,

(47)

(48)

(49)

D =A, expI —[3gi (A, )/f3 (A, )]ln(A, /Mi) J, (50)

All the other SD equations can be approximated in a
similar manner. We summarize the result for the solution
of the case of charge —', quarks in Table I. In Table I the

group representation is with respect to the generation
group. We also have

Equation (31) has a solution with the following tensor
structure:

(44)

and

—9 gi'«. )
E =A, exp lnA, /Mi

f3 (A, )
(51)

where we can set Bi ——Bz ——0. The first term corresponds
to 3*E3&3and the second term to 6&3)&3. Representa-
tion 6 has the repulsion from the generation interaction.
The approximate solution reads

B3 A, exp[——4m /f3 (A, )]-
g3 (A, ) 9g2 (A, )

Xexp lnA, /Mi+ lnA, /M,
2f3 (A, ) 16f3 (A, )

where

A, =A, [exp 4m /f3 (A, )]—. (52)

mr=B

We have, therefore, six generations of charge —', quarks
with the mass =A. Third (top quark) and the fourth gen-
eration of quarks lie very close to each other.

(45) and

(3', 1)

TABLE I. SoIution in caseof charge 3 quarks.

(3 , 1)

(3,2)

C
D

D
D
D
E
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TABLE II. Solution in case of quarks of charge ——,.

(3,1)(-2) (3,1)(2) (1,2)(3) (1,2)(—3)

(3*,1)(—4)

(3,2)(1)

(1,1)(6)

m, =B+2D /B .

Charm and up quark masses are m, =C and m„=D /C,
respectively.

For the quark of charge ——, we choose a solution
shown in Table II. In Table II we have

and

C =A, exp [4gp (A, )+ —,'~g) (A, )]ln

(58)

A =Agexp [g3 (A, ) —g) (A, )/10]
f3 (A, )

X ln(A, /M) )

=A, exp — [—,', gz (A, )+ —,', g& (A, )]
f3'(A, )

X ln(A, /M)) (55)

The important difference between the charge ——,
' quark

and the lepton is the interchange of (1,2)(3) and
(1,2)( —3). This choice is made purely for the
phenom enological reason. Leptonlike choice for the
quark would give m, which is less than md or equivalent-
ly an unacceptably large value for the Cabibbo angle. On
the other hand, e/p ratio would become too large if we
use quarklike solution for the leptons. Stability of the
solution will not be discussed here as before.

For the low-lying four generations of charge —,
'

quarks
we get the following expressions:

and

2—9 g1
G =A, exp ln(A, /M& )40f2 and

m =m =AZ' F 'X
g Z — y9/16X3/16

C S

(59)

(60)

while for the leptons we have Table III. In Table III we
have

=~ Z1/4y —9/16X —»/8omu= s

Here

(61)

—4m.2

AI ——A, exp
fo (A, )

(57)
g) (A, ) A,

X =exp ln
f3~(A ) M)

(62)

TABLE III. Solution for leptons. .

(3*,1(2) (&,2)(3)

(3,2)(1)

G —1
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g2 (A, ) A,
Y =exp lnf3~(A, ) M)

(63)
9

m~ =A~exp (gq +—„g~ )ln
16fo~ Mi

where

(79)

g3 (A, ) A,
Z =exp ln

f32 M(

Similarly for the charge ——,
' quarks we have

(64)
where a being a number which should not be much dif-
ferent from 1. We get the following values for the choice
= 1.5:

and

m, =~ I "Y"mb' s

g ~—3/80Y9/16
mb =

Y—3/16~ 3/40
S S

(65)

(66)

(67)

md ——A,X (68)

We also have the following expression for the Cabibbo an-
gle:

tan8c ——(m„/m, )
'

We also have

(69)

tan8 =mdlmb (70)

As=0. 5 GeV, X=Y=100, and Z=10
we get

m, =1580 GeV, m, =1.58 GeV,

(71)

(72)

for the mixing between d and b. b' has the zero mixing
in this approximation. If we choose

m, /m& ——,~, , m, /m& ——21.5, and m~/m, =2.15 .

We have, therefore, m~ =-4 GeV.
Let us now compare these results with experiment. The

values of m„, m~, and m, seem to suggest that we are
talking about something between current-algebra mass
and the constituent quark mass. Although the calculation
we performed above should be taken only as an order-of-
magnitude estimation, the agreement in general is excel-
lent. There are some problems, however. First is the
value of very small mb and mz. The heavy lepton of
mass =4 GeV seems to be excluded by DESY PETRA as
well as SLAC PEP experiments. ' It seems very hard in
our model to push ~' much higher without drastically
altering the value of other masses because mb and m ~ are
the least sensitive to the choice of parameters as one can
see from Eqs. (65) and (79). The experimental situation'3
for the fourth generation b' is less clear although there is
no positive evidence for its existence around 7 GeV. '

Another problem is in the Kobayashi-Maskawa (KM) ma-
trix. Our KM matrix reads

m„=0.08 GeV .

We also have

mb ——7 GeV, mb ——5 GeV, -m, =0.48 GeV

cosO sinO 0
~KM —slnO cosO 0

0 0 1

cosO' 0 sinO'

0 1 0
—sin8' 0 cosO'

and

md ——0.12 GeV .

(73) cos8 cosO' sinO cosO sinO'

—sin8 cosO' cos8 —sin8 sinO'

—sin8' 0 cos8'
From these values for the masses we get

tan8, =( „', )' ', (74) where 8 and 8' are given in Eqs. (74) and (75), respective-
ly. Gur values for V„b and V,b are

and also

tanO'=0. 06 .

Let us now turn to discussions of lepton masses:

(75)
and

V„b ——cosO sinO' =0.06,

V,b ———sinO sinO' = —3 ~ 10

(83)

(84)

m, =A~exp (4g2 +—
g~ )ln

3 2 3

4f ' M

A,
my +Iexp 8 14f, ' 10 M,9, A,
m, =A, exp (g, ——„g, )ln

16f 2 " M)

(76)

(78)

Experiment' shows that the role of c and u must be in-
terchanged in our V„b and V,b. Whether this is due to
the wrong choice of the solution or due to the inadequacy
of our model remains to be seen.

VI. GrAUGE-SGSON MASS

We can calculate the gauge-boson mass using the so-
called Schwinger mechanism. ' In our ladder approxima-
tion (Fig. 5) the gauge-boson self-energy part can be writ-
ten as
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+~ + + 0 ~ ~ ~

FIU. 5. Ladder approximation to the boson self-energy part.

mions, respectively. Higher-order effects to I "; are taken
into account by utilizing the following Ward-Takahashi
identity:

(k g"" k"—k")n (k")

JTrg;g T/'b(p)T'b, (p —k)d p .
)4

l J E J

The gauge-boson masses are calculated to be

I4,J = lim —k n,J.(k .) .
k2 —+0

Here

(85)

I "=(p'—X)E F—(p' O'—X—) .

We put

a y& bkj" +cp"
pp-

bk" +cp" a+ y"

Then Eq. (87) gives

bk +ck p F B
i ( k)2 BF

and

(87)

(89)

r~=y&
pI.

pz

F(—)

in the lowest order with pI and pz being projection
operators to the left-handed and to the right-handed fer-

bk +C k p F B
i ( k)2 BF + (90)

where F'+—' and B are defined in Sec. II. From these
equations we calculate the residue of the pole at k in
mJ(kz). After some approximation we obtain

p JJ
=

4 Jd pg;gJTr[F, " '(p~+BB) '(BBF,' ' BF,' +'B)—(p2+.BB)

+F'+'(p +BB) '(BBFJ+' BFJ 'B—)(p +BB)—'

+ E'( B—B ) '(FJ' 'BB BBF' ')( —+BB)

+ —,F;+ ( +BB) '(FJ+'BB BBFJ+')( —+BB) '] (91)

where the Wick rotation has already been performed. The
approximation adopted does not necessarily respect the
QED gauge invariance. We, therefore, can use the above
formula only for the purpose of order-of-magnitude es-
timation at best.

The main contribution to the Z and W mass comes
from the higher six generations of charge ——,

' and —,
'

quarks all of which have the mass'

A. G„)&Gg models

G„stands for the grand-unification group and Gs
stands for the generation group. We have found no
anomaly-free and asymptotically free model of this kind
which explains the hierarchial pattern of symmetry break-
ing.

B. SO(10)~SO(10)XSO(10) (Ref. 18)

m~ =A, XA=5 TeV .

Zor 8'mass is given by
29 4 2' 2m

z(2m. ) p'(p'+mJ, ')

(92)

2 2=f3 mJ, (93)

We can calculate the Weinberg angle in this approxima-
tion but the appearance of large photon mass makes it
rather unlikely to be trustworthy.

VII. OTHER MODELS

Other than the model described in previous sections we
have tried several other models all of which seem to have
certain kind of unsatisfactory nature.

We consider the following representations: (16,10,1),
(10,1,16), and (1,16,10). The first group is the unification
group, the next one corresponds to the generation group
and the last one is introduced to break the two previous
symmetries at the level of grand-unification scale. This
theory is asymptotically free and is, of course, anomaly
free. Major trouble stems from the fact that already men-
tioned in Sec. II: SO(10) as a unification group forces us
to explain the mass splitting inside a generation only in
terms of color-electroweak interaction which is not at all
an adequate thing to do.

c. sv(5) xsU(s) xsU(5)

The trouble here is that the single SU(5) interaction
should be responsible for breaking the unification and also
the generation SU(5) at the level of grand-unification
scale. We find no reasonable assignment which breaks the
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generation group completely without leaving extra sym-
metry. Thus, we are more or less forced to the model con-
sidered in previous sections.

Z(pzl

I xIO

VIII. DISCUSSIONS AND CONCLUSIONS

Recent data from UA1 (Ref. 19) provides a restriction
on the number of neutrinos. The measurement is done for

' .5x10

oz&z-. +

0 W+W~ev

r ~tot
OZ Z~e+e I W

totw ~w e I z

IO IO p2

If we use theoretical values for the quantities on the
right-hand side of Eq. (94) except for I'z', we can estimate
I z' which in turn is related to the number of neutrinos.
N„(6 at 90% confidence level is claimed. Since we have
an extra channel JY~r'v in our model, the I'w is in-
creased by approximately 10%. This has the tendency to
increase the number of neutrinos. On the other hand,
Z~b'b ' is open in our model which tends to decrease the
number of allowed neutrinos. The next effect seems to
give an even stricter restriction. If we increase the level of
confidence to 95%, however, even 20 neutrinos are ac-
ceptable. We think our ten-generation model is far from
excluded at this point. The next point I want to make is
the existence of broken global symmetries in our model.
Each representation gives rise to the chiral U(1)&(U(1)
symmetry one of which is the exact symmetry corre-
sponding to the conservation of the fermion number in a
given representation and the other U(1) is broken spon-
taneously. One gets several axionlike objects which be-
come massive only due to the instanton effect. We have
not attempted in this paper to calculate these masses. The
calculation of the composite-Higgs-boson masses is also
left for the future publication.

In conclusion, I claim that in spite of some difficulties
and ambiguities mentioned above the present model seems
to be worth studying in more detail. I also believe that
the general approach described in this paper is worth pay-
ing attention to although the validity of the concrete
model chosen here remains to be seen.

FIG. 6. Numerical solution to Eq. (A6).

APPENDIX

In this appendix we analyze numerically the equation

&(x)=f dy &(y)[y+&(y)'] 'G(y)

)&[1—[1—4xy/(x+y+A) ]'~ j, (Al)

since we have

I 1 —[1—4xy/(x+y+2) ]'~ j2x

(A3)
x+y+A +[(x+y+A) —4xy]'~~

this expression reduces to

2y

x+y+ [x —y i

in the massless limit. Using the identity

(A4)

which we obtain from Eq. (11) by performing the. angular
integration. 2 stands for the vector-boson mass properly
normalized. We assume that the coupling G(y) has the
following form:

6, y(M,
G(y)= G 1 (M/M. )n (Y/M, }, y)M (A2)
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2y
2X = —5(x —y),dx' x+y+ ix —y ~

(A5)

we can reduce (A 1) to differential equation in the massless
limit. We solve Eq. (Al) directly here and show the ex-
istence of two types of solutions with different asymptotic
behavior. For this purpose we use the subtracted form of
Eq. (Al)

X(x)=X(0)+f dy X(y)[y+&(y) ]G(y)
0 x+y+A+[(x+y+A) ]' —4xy y+~ (A6)

No difficult problems arise when we try to obtain an iterative solution to this equation since the integrand is well
behaved at both ends of the integral. For the purpose of illustration we set our parameters in the following way:

A =0.00

M =0.36,

c=0.16,

(A7)
'

(A8)

(A9)



30 DYNAMICAL CALCULATION OF QUARK, LEPTON, AND. . .

and

6 =0.52 .

The result of numerical computation is shown in Fig. 6 confirming the claim we have made in Sec. II of the text.
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