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We explore the properties of quark matter in equilibrium with the weak interactions, containing
comparable numbers of up, down, and strange quarks. Witten has recently conjectured that this
"strange matter" may be absolutely stable. Using a Fermi-gas model including O(n, ) corrections
we establish the conditions under which strange matter in bulk is stable and describe its characteris-
tics. Augmenting our model with surface-tension and Coulomb effects we study strange matter with
intermediate baryon number, 10 & A & 10 . For low baryon numbers A & 10, we replace the Fermi
gas by the bag model and study shell effects and the approach to the bulk limit. Finally, we discuss
the phenomenology of strange matter in all its forms.

I. INTRODUCTION

Witten has recently pointed out that quark matter with
strangeness per baryon of order unity, "strange matter, "
may be stable and, if so, might have important cosmolog-
ical consequences. The proposal that quark matter rather
than nuclear matter might be the ground state of QCD at
finite baryon number is sufficiently radical to merit study
in its own right, independent of any cosmological or as-
trophysical implications. In this paper we investigate
three-flavor (u, d, s) quark matter in equilibrium with
respect to the weak interactions at zero temperature and
external pressure. Making reasonable assumptions we
find that for reasonable values of certain QCD-related pa-
rameters (B, the energy difference between the "perturba-
tive vacuum" and the true vacuum, essentially the "bag
constant;" a„the QCD coupling; and m, the strange-
quark mass), strange matter is absolutely stable. For pa-
rameter values where strange matter is stable we investi-
gate its properties in bulk, for large baryon number
(10 (A (10 ) and for low baryon number (2 (10 ).
Some of the properties we look at are its binding energy,
electric charge, strangeness, stability against fission, and
interactions with electrons. Finally, we briefly consider
how strange matter in various forms would interact with
ordinary matter.

By "quark matter" we mean a Fermi gas of 3A quarks
which together constitute a single color-singlet baryon
with baryon number A. We assume that the dynamics of
confinement are well approximated by separating the
quarks from the vacuum by a phase boundary and endow-
ing the region in which the quarks live with a constant
universal energy density 8. 8 behaves dynamically like a
pressure and maintains the quark gas at finite density and
chemical potential. It has been shown that a chemical
potential p provides a cutoff on the infrared divergences
of QCD. Perturbative calculations of the properties of
quark matter at large p are therefore reliable in precisely
the same sense that QCD calculations of deep-inelastic
phenomena are reliable at large Q . We will distinguish
between two forms of quark matter: "strange matter" in

which flavor equilibrium has been established by the weak
interactions; and "nonstrange quark matter" consisting
only of u and d quarks.

Witten's conjecture that strange matter may be stable is
based on elementary symmetry considerations. The suc-
cess of the nuclear shell model provides ample evidence
that quarks do not roam freely inside of nuclei but are in-
stead primarily confined to protons and neutrons. Thus,
we know that the energy per baryon of nonstrange quark
matter is higher than the energy per baryon of nuclei.
(We ignore the possibility that nonstrange matter might
be stable but not observed because the transition from nu-
clei to this state is highly suppressed due to grossly dis-
similar wave functions. ) Suppose we now introduce the
strange quark which, for the moment, we take to be mass-
less. Because of the exclusion principle it is energetically
favorable to convert u and d quarks into s quarks via the
weak interactions. This will continue until the Fermi en-
ergies of all flavors are the same and the energy per
baryon has dropped by a factor of ( —,

' )'r =0.904. For
massive strange quarks this factor is closer to one, and it
reaches one when the strange-quark mass is as large as the
Fermi energy of the original nonstrange Fermi gas. At
nuclear-rnatter densities this is about 300 MeV. Note that
other quark flavors (c,b, t, etc.) do not appear because
their masses are large compared to 300 MeV. Now sup-
pose that the energy per baryon of nonstrange quark
matter is just a few tens of MeV above the mass of the nu-
cleon, 939 MeV. Then it is possible that strange matter,
even with a nonzero strange-quark mass, has an energy
per nucleon less than 939 MeV. The fact that symmetry-
energy considerations favor the appearance of s quarks in
quark matter at and above nuclear-matter densities was
certainly well known (cf. Ref. 3). However, Witten ap-
pears to have been the first to entertain the possibility that
strange matter is in fact bound.

In Sec. II, we investigate the properties of stable strange
matter in bulk. Our study rests on several plausible as-
sumptions. The first, as we have already mentioned, is
that the system is well approximated by a Fermi gas
separated from the vacuum by a phase boundary. We fur-
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ther assume that the effects of dynamical chiral-symmetry
breakdown (e.g. , dynamical quark masses, Goldstone

pions) can be ignored in the quark gas so quarks are
characterized by their current-algebra masses. Finally, we
assume that the properties of the quark Fermi gas can be
computed using renormalization-group-improved QCD
perturbation theory. Unfortunately, at the momentum
scale typical of the problem at hand (roughly M~/3) a, is
not small. Other methods (e.g., lattice Monte Carlo simu-
lations of QCD) may eventually yield information about
quark matter; at present, perturbative QCD is the only
tool available. Our study of strange matter in bulk is
parametrized by 8, and the strange-quark mass m (p) and
the QCD coupling a, (p) renormalized at a mass scale p.
Although we cannot resolve the question of stability de-
cisively, we find that there are substantial "windows" in

8, m, and n, in which strange matter is stable and non-
strange quark matter is not. Within these windows we ex-
plore the characteristic binding energy, charge, strange-
ness, and density of strange matter. We also discuss the
relation between the parameter values required for bulk
strange-, matter stability and the values inferred from ordi-
nary hadronic physics.

Strange matter, stable in bulk, may also come in small
chunks for which surface effects are important and which
are too small to support an electron gas within. We call
these chunks of strange matter "strangelets. " These sys-
tems with baryon numbers lower than (very roughly) 10
are studied in Sec. III. However, we leave 3 & 10 to Sec.
IV. We discuss the origin and effect of a surface tension
and find that strange matter stable in bulk may be un-

bound for small enough baryon number. We also discuss
the charge that develops on strangelets and finally how
these charged systems neutralize themselves, like ordinary
nuclei, by accumulating electron (or perhaps positron)
clouds.

One of the striking features of strange matter is that for
generic values of the parameters we have considered, it
does not develop an instability toward fission as A in-

creases. The physical reason for this is simple: Coulomb
energy drives fission, but strange matter in the m =0 lim-
it has equal numbers of u, d, and s quarks and is electri-
cally neutral. Even when the strange-quark mass is not
zero, the Coulomb energy is not sufficient to overcome
the stabilizing effects of a small surface tension. This has
important consequences for the phenomenology of strange
matter which are discussed in Sec. V.

In Sec. IV we look in detail at low A, less than roughly
300. For small A the Fermi gas approximation breaks
down and we calculate by explicitly filling orbitals in a
hadronic bag model. For A &6 order-u, corrections are
included but for A & 6 they are not. For A & 6 we study
the approach to the bulk-matter limit and discover that
finite-size effects in the bag model do, on the average, in-
crease the energy per baryon with decreasing A. So
strange matter may be unbound for small A even when
parameters are chosen so that it is bound in bulk by many
tens of MeV. We also use these calculations to estimate
surface effects used in the previous discussions. Including
order cx, corrections for A & 6, we conclude that it is un-

likely that any strange hadrons with A &6 are stable. A

possible exception is the "dihyperon, " which has been
found to be nearly stable in quark models and more re-
cently in a Skyrme model. In Sec. V we begin a discus-
sion of the phenomenology of strange matter. We argue
that because of its stability against fission strange matter
could be found in lumps of any size. We discuss how
these lumps would interact with nucleons and atoms em-
phasizing the dramatic differences between strange matter
with positive and negative hadronic electric charge. Fi-
nally, we investigate strangelets with very low baryon
number and discuss how these unstable systems would de-
cay by alpha particle and nucleon emission.

If strange matter is stable, we can look forward to a
wealth of new phenomena comparable to the richness of
nuclear physics. The most pressing questions regarding
stable strange matter are undoubtedly: Can it be found?
and Can it be made? In this paper we attempt to provide
enough information about the properties of strange matter
to make it possible to address these questions. We have
only begun a systematic study of the properties of strange
matter. Our results are based on physically simple models
which are fairly insensitive to detailed dynamical assump-
tions. We are aware, however, that at almost every turn,
our calculations could be refined and improved upon. Ul-
timately, we must admit that the only definitive dernon-
stration of the existence and properties of strange matter
will come from experiment.

II. BULK PROPERTIES

By "bulk" quark matter we mean quark rnatter in ag-
gregates large enough that surface effects can be ignored
and that electrons (or positrons) bound to it by Coulomb
forces are, in fact, inside the chunk and numerous enough
to be treated as a degenerate Fermi gas. Our first object is
to determine the conditions under which strange matter in
bulk, at zero temperature and pressure, is the true ground
state of the strong interactions. This requires the energy

per baryon E/A of strange matter to be less than that of
the nucleon, M& ——939 MeV. Actually for E/A between
930 and 939 MeV strange matter could decay by emission
of nuclei accompanied by weak interactions to maintain
flavor equilibrium. If E/A is less than 930 MeV an ordi-
nary nucleus could, in principle, lower its energy by con-
verting roughly one third of its quarks into strange
quarks. However, this would require a very high-order
weak interaction, while the rate for just fourth order is,
for all practical purposes, zero. It is for this reason that
nuclei may have been mistakenly taken to be the ground
state of hadronic matter.

We also know that ordinary nuclei are made of nu-

cleons and not of a two-flavor (up and down) quark phase.
Therefore, the energy per baryon of nonstrange quark
rnatter must exceed the lowest energy per baryon found in
nuclei, which is about 930 MeV for iron. However, apply-
ing this requirement to nonstrange quark rnatter in bulk is
not restrictive enough. At large but finite baryon number

A, we believe the energy per baryon of nonstrange quark
matter to be lower than it is when A goes to infinity (the
bulk case). Strange matter does the opposite: its energy

per baryon decreases with A. The origin of this behavior
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Pa=Ps=—P ~

Pu+Pe:P ~

(2.1)

so only two are independent. The neutrinos play no role
and are ignored. Massive neutrinos could be bound to
strange matter since it has a net weak charge of order, its
strangeness. This provides a source for the neutral weak
boson Z which, in turn, 'generates a potential with a
depth of approximately Gzns/2V2 to which massive
neutrinos bind. Typically this is 5 eV, so neutrinos with
masses which are not negligible compared to 5 eV will be
found within bulk strange matter. The neutrino gas is so
dilute that it has no effect on the dynamics.

For pedagogical purposes we first ignore one gluon ex-
change inside the Fermi gas and set n, =0. In this case
the thermodynamic potential is a sum of contributions
from each species:

Qu=- Pu
4m.

pg
4

Qg ———
4m.

Pe
12~2

'

(p 2 m 2)1/2( 2 5 m2)

(2.2)

+ (
2 2)1/2

+ —', m4ln
Pl

We assume that only the strange quark has a mass m.
Corrections for small u- and d-quark masses are small.
The number density of each species n„is given by
n, = —BQ, /Bp, with a =u, d, s, e. Any bulk system must
have a zero electric charge so we require

2 1 1
—,n„——,n~ ——,n, —n, =0 . (2.3)

Together, Eqs. (2.1) and (2.3) leave only one independent
chemical potential, say P.

The energy density carried by the fermions is

g, (Q, +n, p, ). In addition, the vacuum associated with
this phase is assumed to carry a positive energy per unit
volume B, so the total energy density is

e=g (Q, +p, n, )+8 . (2.4)

The baryon-number density is

is explained in Sec. IV. We define b, to be the difference
between the energy per baryon of nonstrange quark matter
in bulk and for A =250. Therefore, we require the energy
per baryon of nonstrange quark matter in bulk to exceed
930+5 MeV. In Sec. IV we estimate 6 to be 4 MeV.

Our model of strange matter is a degenerate Fermi gas
of u, d, and s quarks and electrons (or positrons) with
"chemical" equilibrium maintained by the weak-
interaction processes d+-+u+e+v„s~u+e+v„and
s +u ~u +d. At equilibrium the chemical potentials
obey

n„=,
' (—n„+n, +n, ) . (2.5)

The equilibrium configuration of the system which bal-
ances Fermi pressure against vacuum pressure is deter-
mined by

(e/nz )=0,
P

or equivalently, f

(2.6)

QQ, = B.— (2.7)

Given values of 8 and m we can determine the IM that
satisfies Eq. (2.6). This in turn gives us the equilibrium
number densities and energy density, or equivalently, the
energy per baryon. Our results are given in Fig. 1(a) for
a, =0. The contours give m versus 8'/ for fixed values
of E/A. To the right of the contour with E//I =939
MeV strange matter is unstable against emission of nu-
cleons. The vertical line gives the value of 8'/ for which
nonstrange quark matter has an energy per baryon of
930+6 MeV. The value of 6 in this case is determined
in Sec. IV. To the left of this line, nuclei with high atom-
ic numbers would be unstable against decay into non-
strange quark matter. The allowed range of values of
B' narrows as m grows.

Note in Fig. l that our "allowed" values of m and 8'/
include regions where m is arbitrarily large. For very
large values of m strange matter has no strange quarks so
there is, in fact, no distinction between strange and non-
strange quark matter. However, for these values of m
(and 8'/ ), E//I is larger than 930 MeV so this quark
matter is, in fact, unstable against a-particle emission, al-
though it will not emit nucleons.

In Fig. 2(a) we have given examples of how the strange-
ness per baryon varies with the strange-quark mass. (We
define S to be the number of strange quarks, not its nega-
tive as is conventional. ) The line marked 0 corresponds to
a, =0, at a fixed E//I of 899 MeV. The strangeness per
baryon decreases with m and goes to zero when the
strange-quark mass is roughly one third of 899 MeV.
Figure 2(b) displays the density of the same system as a
function of the strange-quark mass.

We have also calculated the hadronic electric charge per
baryon which equals the number of electrons per baryon.
For m =0, the equilibrium configuration has equal num-
bers of u, d, and s quarks and is electrically neutral. As
m grows, strange quarks are depleted and the system
develops a positive charge. When m is so large that there
are no strange quarks in the system the hadronic electric
charge per baryon is 0.0056. In Fig. 1(a) the nearly hor-
izontal lines are lines of constant hadronic electric charge
per baryon with the indicated values. Apparently the
number of electrons is always very small and therefore
their contribution to the energy is also small.

The vacuum pressure B which we have assumed holds
quark matter together is, in reality, a simple model for the
long-range, confining interactions in QCD. In addition,
we must include QCD modifications of the quark Fermi
gas at shorter distance scales. We avoid double counting,
at least in principle, because the pressure B maintains the
system at finite values of the chemical potentials p, .
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FIG. 1. Contours of fixed E/A in the B' -m plane for a, =0, 0.3, 0.6, and 0.9. The vertical line at the left of each figure is the

minimum B' for which nonstrange quark matter is unbound (see text). In (a) and (b) the nearly horizontal lines are contours of
fixed hadronic electric charge per baryon as marked. In (c) and (d) the dotted regions are regions of negative hadronic electric charge.
The grey shading around the 939 contour represents the same contour calculated using different renormalization schemes (see text).

These in turn provide an infrared cutoff for the QCD per-
turbation expansion inside quark matter, allowing one to
develop a renormalization-group-improved perturbation
eXpansion for quark matter. We use these methods to cal-
culate the 0(a, ) corrections to the properties of bulk
strange matter.

In all such schemes it is necessary to choose a renor-
malization point p, at which I=m(p) and o.,=a, (p) are
defined. In principle, observables are independent of p.
In practice, when o;, is not small and only first-order
corrections are included, the choice of p matters. %'e be-
lieve p should be identified with a mass scale typical of
the problem at hand (p) in order to eliminate large loga-
rithms (inplp) in higher orders. The same arguments are
used to motivate renormalizing at Q in deep-inelastic
processes. Earlier workers have chosen to renormalize the
quark mass "on shell, " i.e., p=m. Since the quark mass
enters into Q at zeroth order in a„achange in its renor-
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FIG. 2. (a) The bulk strangeness per baryon as a function of
the strange-quark mass for a, =O, 0.3, 0.6, and 0.9, all at
E/A =899 MeV. (b) The bulk baryon-number density as a
function of the strange-quark mass for o,,=0, 0.3, 0.6, and 0.9,
all at E/A =899 MeV.
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malization enters at O(a, ). [Changes in the definition of
a, enter only at O(a, ) and can be ignored here. ] To or-
der a„renormalizing on shell does not produce singulari-
ties as m goes to zero. However, in the calculation of cer-
tain physical observables like the sign of the electric
charge density, a, lnm lp terms can compete with order-
one terms when m is small and the calculation becomes
unreliable because in higher orders one expects higher

powers of the logarithm. (All of these terms are multi-
plied by m so there is no singularity in the m ~0 limit. )

We avoid this difficulty by renormalizing at a scale typi-
cal of the chemical potentials in the problem at hand:
Specifically, we choose p=M~/3= 313 MeV.

The thermodynamic potentials to O(a, ) renormalized
at p can be obtained from the results of Ref. 2:

4

4m

Pd
Qd ——— 1—

4m

2ac

r

m

2 2 1/2 2

2 1/2 2 Ps+(Ps ™
3 1M, (p, —m ) —m ln

Ps
—2(p, —m ) +3m ln

(2.8)

+ (
2 2)1/2

+6ln pm (p —m )' —m ln
Ps m

where a, =a, (p) and m =m(p). 0, can be verified to be
independent of p to order a„

dn an am an ~~, an+ + =0
dp Bp Bp Bm Bp Ba,

(2.9)

provided a, (p) and m (p) obey the usual renormalization-
group equations

2O'c m

7T p

Bm

Bp

a
=O(a, ) .

Bp

(2.10)

(2.11)

To obtain the previous prescription set p =m.
In Figs. 1(b)—1(d) we show the results of our calcula-

tions for n, =0.3, 0.6, and 0.9 all with p=313 MeV. The
significance of the contours is the same as for Fig. 1(a).
Note that the allowed values of 8' decrease as nc in-
creases. This is because one-gluon-exchange effects inside
of a hadron are repulsive. The left-most vertical line in
each case corresponds to nonstrange matter having an en-

ergy of 930+5 where we use the same b, for a, not zero
as we did for a, equal to zero.

We have also displayed a measure of the uncertainty
which comes from changing the renormalization point
and working only to order a, . In principle, a change in
renormalization point p can be compensated by an ap-
propriate change in m and o.c as indicated by Eqs.
(2.9)—(2.11). Changes in a, are O(a, ), so at O(a, ) a
change in p should be compensated by a rescaling of m
according to Eq. (2.10). However, order-a, corrections
make this compensation less &han perfect. We have recal-
culated the energy contours at 939 MeV with p changed
by +25%%uo and then rescaled m according to Eq. (2.10).
The grey shaded regions around the 939 MeV contours
shown in Figs. 1(b)—1(d) are bordered by the rescaled
curves renormalized at p=313 MeV +25%. This gives a
rough guide to the uncertainties inherent in our calcula-

I

tions. Clearly, they grow with n, .
In quark matter one-gluon exchange is repulsive if the

quarks are massless and relativistic and attractive 1f the
quarks are massive and nonrelativistic. One-gluon ex-
change therefore shifts the chemical equilibrium in the
direction of more strange quarks. Of course, in the ab-
sence of interactions strange quarks are depleted simply
because they have mass. For a small value of the
strange-quark mass and a large value of o, it can happen
that strange quarks are more abundant in quark matter
than the massless up or down quarks. When this occurs
strange matter has a negative hadronic electric charge and
carri|'.s a sea of positrons to guarantee its neutrality.

This effect occurs when first order in a, contributions
to Q, dominate over the zeroth order, making us suspi-
cious that it may. not be stable with respect to including
higher orders in a, . Indeed, we find that the regions of
parameter space in which the hadronic electric charge is
negative are regions in which our calculations are rather
sensitive to the choice of renormalization point. We
should note, however, that had we renormalized on shell
the hadronic electric charge of bulk strange matter would
have been negative throughout most of the region of its
stability for a, )0.3. This reflects large logarithms for
small m and signals the breakdown of perturbation theory
at rather small ac in that renormalization scheme.

The strangeness excess can be seen in Fig. 2(a), where
the strangeness per baryon is larger than one for small m
at a, =0.9. In Figs. 1(c) and 1(d) the dotted regions give
the values of the parameters for which the baryon charge
could be negative. The region is bounded by the charge-
zero contour renormalized at p=313+25 jo and then re-
scaled back in m by Eq. (2.10). Thus, the dotted region
has our renormalization uncertainties already expressed.
We conclude that negative hadronic electric charge on
strange matter appears to be allowed by the parameters of
our theory but only for small values of m, and large a, .
The (rather catastrophic) phenomenological consequences
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TABLE I. Parameters obtained from bag-model fits to light-
hadron spectra.

Reference

7
8
9

10

B '/ (MeV)

145
149
120

-200—220

m (MeV)

280
283
340
288

2.2
2.0
2.8
&1

of this possibility are discussed in Sec. V.
Looking at Fig. 1, it is natural to ask whether or not

previous determinations of the parameters 8'~, m, and

a, lie within one of the windows of stability. Some exam-

ples, obtained from. fits of light-hadron spectra in the ha-
dronic bag model, are given in Table I. The values of a,
are very large; too large, in fact, for first-order perturba-
tion theory to be reliable in the calculation of Q. Note 0
in Eq. (2.8) changes sign when a, exceeds ~/2.

Even if it were possible to perform reliable calculations
with such large values of a„there are several reasons why

the bulk parameters should not be compared directly to
the parameters determined in bag-model fits to light-
hadron spectra. First, no complete calculation of 0 (a, )

radiative corrections have been made in the context of the
bag model. Therefore, we cannot assign a renormalization
point pb, g to the parameters m and o., listed in Table I
and cannot compare them with our parameters renormal-
ized at p=Mpf/3 Both a, and m decrease with increasing

p, so the smaller value of m required for stability of
strange matter could merely reflect the fact that pb, s (p.
Second, bag fits to light-hadron spectra invariably intro-
duce other, less fundamental parameters. For example, all

fits in Table I include a "zero-point" energy Zo/R; in ad-

dition, Refs. 9 and 10 include parameters associated with
gluon and/or quark self-energies. Fitting to hadron spec-
tra invariably couples the output values of m, a„and
B' to those of the more phenomenological additional
parameters. Finally, the parameters extracted from bag-
model fits depend sensitively on details of the lowest-bag-
quark wave function, the 1s~/2 orbital. The values of m

in the table are larger than estimates in other models.
This can be attributed entirely to the small matrix element
of the operator 1(g(= —, ) in the lowest bag orbital. The
value of a, in bag fits is determined largely by baryon hy-

perfine splittings which are (roughly speaking) propor-
tional to a, times a product of quark (color) magnetic
moments. The same model predicts baryon (electro) mag-
netic moments which are too small by a factor of = —, . A
change in the quark wave function which brings baryon
magnetic moments into agreement with experiment would
yield a value of a, smaller by a factor of =—', . In light of
these difficulties we cannot hope to decide conclusively on
the basis of bag-model fits whether or not strange matter
is stable. We can say, however, that the windows or sta-
bility are large, the values of B' and m which lead to
stability are not unusual, and the windows do not dirnin-

ish with increasing a, .

III. LARGE BARYON NUMBER

5/3
16m a 3V+

15 4
(3.1)

with respect to p and p„,at fixed baryon number,
A =

3 g, n, V. Here nz ——, n„—, nd ——, n, —and we —have

assumed the charge is uniformly distributed throughout a
spherical chunk.

To isolate the Coulomb effects we first ignore surface
effects and set o.=0. In Fig. 3 the charge on a strangelet
with large A is displayed as a function of A for various
choices of parameters for which bulk strange rnatter is
bound. The charge Z grows as A'~ for A large with the
constant of proportionality depending on the bulk proper-
ties of strange matter:

In this section we analyze chunks of strange matter
containing enough quarks so the Fermi gas approximation
is valid, but small enough that the effects of surface ten-
sion cannot be neglected —strangelets. For the largest sur-
face tensions we consider, the energy per baryon due to
surface effects will be negligible (less than 1 MeV) for
baryon numbers larger than roughly 10 or 10 . In Sec.
IV we estimate that the Fermi gas approximation includ-.

ing surface tension is reasonably accurate for systems of
baryon numbers larger than about 50. So in this section
we limit our attention to 10 & A & 10 . Spherical strange-
lets with baryon numbers between 10 and 10 will typi-
cally have radii of between 5 and 200 fm, which is less
than the electron's Compton wavelength. Thus, we begin

by assuming that there are no electrons (or positrons) in-

side strangelets, so they are charged and Coulomb effects
must be considered. The consistency of this assumption is
explored at the end of this section.

We treat a finite chunk of strange matter as a bit of
bulk strange matter to which we add Coulomb and sur-

face energies. The quark Fermi gas is characterized by
the chemical potentials p„,pd, and p, . %'eak interactions
still maintain the relation pd

——p, ( =p ), but the abun-
dance of up quarks relative to down and strange quarks is

affected by the Coulomb energy, so Eq. (2.3) is no longer
valid, and there are two independent chemical potentials,

p and p„.(Here we ignore possible flavor dependence in
the surface energy which would spoil the relation pd =p, .
Later we will find that the surface energy is likely to be
flavor dependent, but the effects on this calculation are
small. ) We assume 0, and n, = —BQ, /Bp, are still

given by Eq. (2.8). In this section we take the renormali-
zation point to be fixed at p =313 MeV and do not con-
sider the effects of changing it. In reality both 0, and n,
are certainly modified by surface effects which are both
quark-mass and a, dependent. It is always possible to
lump all those modifications into a "surface tension" cr,

which we 'treat as a parameter in this section. Later we

explore the range of values of cr and its dependence on m

and a, .
We find the flavor composition and size of a strangelet

by minimizing the energy,
' 2/3

E=g(p, +nQ, )V+4~o. 3V
4m



30 STRANGE MATTER 2385

15 P P—u A, +O(A )1/3
b ]k

(32)

The charge-to-baryon-number ratio for chunks of
strange matter is much lower than for nuclei. In nuclei
the symmetry-energy minimum occurs when Z=A/2,
whereas the Coulomb energy vanishes when Z =0. Since
the Coulomb energy grows like Z /A '~ (at constant den-

sity), nuclei are eventually destabilized by Coulomb ef-
fects. They fission and the periodic table ends roughly at
A =250. Strange matter owes its low charge to the happy
coincidence that the Coulomb energy vanishes at the
symmetry-energy minimum for massless quarks, n„=nd
=n, . Only the strange-quark mass upsets this equilibri-
um. We see in Fig. 3 that the charge increases as m in-

creases, but for each m it decreases with increasing a, .
This effect has the same explanation as in the bulk case.
For a, =0.9, m =150 MeV we have an example where
the charge is negative. We cannot overemphasize the im-

portance of the low charge-to-baryon-number ratio of
strange matter. Because of it the physics of strange
matter differs radically from nuclear physics.

According to Eq. (3.2), for large A the Coulomb energy
drives Z/A to zero. This is not the preferred charge-to-
baryon ratio for strange matter in bulk (unless m =0), so
the A~oo limit of our finite A calculations does not
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FIG. 3. (a) Z/A ' versus A for parameters such that
E/A =899, 919, and 929 MeV in bulk. For each E/A, curves
are shown at n, =0, 0.3, 0.6, and 0.9. The curve Z=A/2
represents the approximate nuclear charge versus baryon num-
ber. (b) E/A versus A for parameters such that E/A=899,
919, and 929 MeV in bulk. The small letters refer to the surface
tension o' and o., as follows:

o'/ (MeV)

coincide with the bulk limit. It would if electrons had
been included. The Coulomb energy per baryon is posi-
tive and, using Eq. (3.2), is proportional to A
Nevertheless, a glance at Fig. 3 indicates that as A~ oo,
E/A approaches its limit from below T.he reason is the
increase with A of the symmetry energy driven by the
constraint Z/A —+0. In the absence of surface effects,
therefore, the energy per baryon grows with A, so chunks
with large A should fission into smaller pieces. However,
the preferred charge-to-baryon ratio in bulk is rather
small, so the destabilizing effects of the Coulomb interac-
tion are weak and can easily be swamped by surface ef-
fects.

Surface effects may be either "intrinsic" or "dynami-
cal." An intrinsic surface tension crI would be a charac-
teristic of the phase boundary separating the true vacuum
of QCD from the perturbative vacuum inside hadrons.
(~e assume oI is positive. If it were not, the vacuum
would be unstable toward filling up with a foam of phase
boundaries. ) This type of surface tension would contri-
bute to the masses of ordinary mesons and baryons. An
intrinsic surface tension elevates the coordinates describ-
ing the phase boundary to be independent dynamical vari-
ables and would give rise to true surface excitations some-
where in the baryon and meson spectrum. The spacing of
surface excitations would be proportional to 1/oI. The
absence of any candidates for surface states in the baryon
spectrum suggests that o.r is very small. Since the spacing
of quark excitations is proportional to B'~ we expect
o.i «B'~". (Here we identify B with the bag constant
of the bag model. )

A dynamical surface tension oD arises from calculable
corrections to the Fermi gas approximation. In general,
0.~ depends on n„quark masses, and whatever parame-
ters characterize the boundary. The dynamical surface
tension expected in the bag model is discussed further in
Sec. IV. Generally, a strange-quark mass, a scale-
dependent renormalization scheme, or a phase boundary
which is not perfectly sharp will all give rise to a nonvan-
ishing dynamical surface tension oD. In Sec. IV, we esti-
mate o D in the bag model for n, =0 and find
oD &(70 MeV) .

In Fig. 3 we also display the energy per baryon as a
function of A for o=0, (40 MeV) and (80 MeV) . It
should be noted that the charge-to-baryon-number ratio is
almost totally insensitive to o.. The cr=0 curves increase
with A due to Coulomb effects. For o =(40 MeV)3, E/A
falls with A for most values of parameters and for cr = (80
MeV) the curves fall sharply as A increases. The value
of cr'~ is to be compared to B '~, so we see that a reason-
able value of cr' completely overwhelms the Coulomb ef-
fects in the energy. Thus, it seems quite unlikely that
strangelets would fission.

Surface effects can increase the energy per baryon sub-
stantially for small A leading to instability and a lower
bound on the baryon number for which strange matter is
bound. For small values of o and e (the energy per
baryon of bulk matter) the minimum A is too small to
analyze with the methods of this section so we postpone
the discussion until Sec. IV. For large values of o and/or
weakly bound bulk strange matter, the minimum A is
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large enough so only surface and Coulomb corrections
need be included.

A strangelet is unstable, in principle, if E/A exceeds
the mass of a nuclear system of the same baryon number.
However, even if E/A exceeds M~ a strangelet would not
convert (in any finite time) en masse into nucleons because
the process would require a very-high-order weak interac-
tion. The practical measure of stability is the "separation
energy" dE/dA required to remove a baryon from a
strangelet. If dE/dA exceeds M&, neutrons evaporate
from the surface. If dE/dA is less than M& but greater
than M~/4 (M is the mass of the a particle), then a par-
ticles are emitted, though this process is inhibited by a
Coulomb barrier.

%ith these considerations in mind, let us study finite A

effects for a "typical" choice of parameters. Since
Coulomb effects are small we ignore them leaving

E=EA+(36m)'/ A / „+O(A' ) (3.3)

where e and nz are the bulk energy and baryon densities.
Suppose, as an example, e =919 MeV, n, = ( 110 MeV),
and o.=(80 MeV) . Then dE/dA exceeds M~/4 for
A & 1900. Below this limit strange matter would decay by
a-particle emission (the rate depends on Z/A), occasion-
ally punctuated by a weak interaction necessary to main-
tain a favorable flavor composition. For A (1100, E/A
exceeds M~, but the strangelet does not emit nucleons un-
til A &320, at which point dE/dA exceeds M~. Below
this limit it decays more rapidly by evaporating neutrons
(again accompanied occasionally by a weak interaction).
Thus, strangelets with low A might be quasistable, and.
decay radioactively by chains of a, /3 (and y) emission.

The charge-to-baryon ratio in strangelets is small. In
Fig.3 we have drawn the Z =137 contour to show how
large the baryon number must be to attain this charge for
various choices of typical parameters. Strangelets with
positive charges of less than 100 will look like ordinary,
but unusually heavy, atoms. Electrons will surround the
core in atomic orbitals and the Bohr radius of the inner-
most shell, 1/mZa, will be much larger than the size of
the strangelet.

It is known from quantum electrodynamics that point
charges of arbitrarily large charge cannot exist. For Z
greater than 137 it is energetically favorable to produce
electron-positron pairs; the positrons escape to infinity
leaving the electrons, tightly bound, to screen the charge.
However, if the charge is distributed over a small volume,
larger values of Z can be tolerated. It has been shown"
that a Z of 169 can exist for a sphere whose charge densi-

ty is equal to the observed nuclear charge density. For Z
greater than 169 two positrons ean be emitted making two
units of charge available for screening. At Z = 182 anoth-
er two units are available. It is only for Z's greater than
around 300 that substantial screening occurs. '

Strangelets have a much lower charge density than or-
dinary nuclei. Thus, it seems likely that strangelets could
support much larger charges than matter with the charge
density of ordinary nuclei. A charge as large as 1000
seems reasonable. A strangelet of charge 1000 would typ-
ically have a baryon number of roughly 10 . For a density
of (110 MeV), a system with A =10 has a radius of 112

fm. A core of charge 1000 is surrounded by an atomic
cloud of (very close to) 1000 electrons. It would be useful
to know the percentage of these electrons that are actually
spending most of their time inside the core. One ap-
proach is to solve the Dirac equation directly for the sys-
tem at hand. The potential is nZ/r outside the core, but
is quadratic in r inside. Finding all the energy levels re-
quired for 1000 electrons is clearly a very involved task.
Another approach is to use a relativistic Thomas-Fermi
model for the electron cloud and solve for the self-
consistent potential. This is more promising but beyond
the scope of this paper. The most we can say is that the
naive "Bohr radius" of the innermost electron I/mZa is
53 fm, which is close to the size of the core, so at
Z=1000 we are near the transition to bulk matter. The
transition from large A with electrons outside of the
strangelet to bulk with electrons within should be totally
smooth although somewhat difficult to calculate.

IV. STRANGELETS WITH SMALL BARYON NUMBER

Strange matter with low A, less than several hundred, is
not adequately described by a simple Fermi-gas model.
This is especially true for very low A. In this section we
replace the Fermi gas by the hadronic bag model and esti-
mate the properties of strangelets with low A by explicitly
populating the quark orbitals in a spherical bag. %e treat
the bag model with caution and explore the sensitivity of
our results to the most model-dependent ingredients. The
bag description goes over to the Fermi gas for large A so
we can use these explicit calculations to estimate the sur-
face corrections to the Fermi gas. We do this for non-
strange quark matter as well as for strange matter and we
find the power-law correction in A in agreement with
what we expect from general considerations of surface
corrections to the Fermi gas. For very low A, & 6, we in-
clude order-n, corrections, neglected for A ~ 6, and we
find that this model, fortunately, does not predict the ex-
istence of stable strange hadrons with A &6. A possible
exception occurs at A =S=2, the previously predicted
dihyperon. This state, while not exactly strange rnatter, is
interesting in its own right and should be further sought
experimentally. '

We begin for A &6 by considering the bag model for
three flavors of quarks, giving only the strange quark a
mass m. The bag model is well described elsewhere so
we will be brief. The Hamiltonian includes quark kinetic
energies, bag energy (BV), and a phenomenological zero-
point energy ( —Zo/R). Beyond the first shell it is prohi-
bitively difficult to include gluon-exchange effects so we
take a, =0. For each flavor each energy eigenmode can
hold 3(2j + 1) quarks. (j is the angular momentum of the
mode. ) At a fixed A we determine N„,Nd, N, to mini-

mize the total energy subject to the constraint
3A =X„+Ad+%,. Of course, at each stage the radius of
the system is also varied to minimize the energy.

In Fig. 4(a) we show E/A versus A for the choice
m =150 MeV, B' =150 MeV, and Zo ——2.0. The quark
orbitals included in this calculation are 1s&&2, 1p3/2,
lp»2, ld&/2, id&/2, 2sl/2, 1f7/z, 1f5/z, Ig9/py 2pl/2t and

2p~~2. For this choice of parameters E/A in bulk is 903
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MeV. (These calculations ignore Coulomb effects which
are small in strangelets. ) For this choice of parameters
strange matter is unbound for A less than -70. This
demonstrates a crucial characteristic of strange matter: it
is stable in bulk but unbound for sufficiently low A.

In Fig. 4(a), the deviations from a smooth approach to
the bulk limit as A~ ~ are due to shell effects and are
most pronounced at low A. In Fig. 4(b) the strangeness is
displayed as a function of A and the bulk value of S/A,
0.81, is shown as the dashed line. Again shell effects are
obvious. Fitting E/A to a constant plus A ' correc-
tions we obtain an estimate for o.D' of approximately 70
MeV. Similar estimates of o.z' for m =100 and 200
MeV in both cases give approximately 60 MeV. This is
the basis of our choice of a range of oz used in Sec. III.

We study nonstrange quark matter at low A because we
wish to establish the minimum value of 8' for which
nuclei are effectively stable. Coulomb effects are included
because nonstrange matter with low A, like nuclei, is not
charge neutral. Figure 5 displays the results of filling en-
ergy levels up to A =250. In addition to the orbitals list-
ed in the strangelet case, we include here the lg7/2,
1h))/2, 2d5/q, 2d3/2p 3s~/2, it~3 /py lh9/p) 2f7/2y lg&z/z,
2f5/z, and 1 i»/z levels. 8' has been chosen to be 145.0
MeV, so the minimum of E/A, which occurs at A =250,
is 930 MeV. With this value of B'/" bulk nonstrange
quark matter has an energy per baryon of 934 MeV. This
fixes the parameter 5, required in Sec. II, to be
934—930=4 MeV.

Comparing Fig. 5 with Fig. 4, it appears that strange
and nonstrange quark matter approach their bulk limits
quite differently. For strange-quark matter, Coulomb ef-
fects are negligible and the approach to bulk is dominated
by surface tension (o.A '/ ). For nonstrange quark
matter the dynamical surface tension vanishes (see below).
Because a is small, Coulomb effects are not important for
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FIG. 5. E/A versus A in the hadronic bag model for u and
d quarks, including Coulomb energy. Parameters are such that
E/A in bulk is 934 MeV.

A & 150, so E/A falls toward its bulk value (with
N„=Nd) like A . For large values of A, Coulomb ef-
fects increase and force nonstrange matter toward charge
neutrality, Nd 2N„,an——d toward a higher bulk value of
E/A. Thus, for values of A beyond those shown in Fig.
5, E/A will rise to 934 MeV.

These calculations have been done with n, =0 because
of the prohibitive difficulties encountered in including
perturbative corrections beyond the 1s&&2 level. There is
another method for studying the approach to the Fermi-
gas limit which is more amenable to QCD corrections, but
does not allow us to follow the detailed fluctuations due
to shell closures, namely, the multiple-reflection-
expansiort method pioneered by Balian and Bloch. ' To
our knowledge their treatment of finite-size corrections
has only been worked out completely for a, =0 and for
massless or nonrelativistic particles. Their analysis can be
extended to a, &0 and perhaps to m -p. Even with the
present limitations we shall be able to draw some insights
into the low-A behavior of strange matter. For illustra-
tive purposes we consider the massless case. The (suitably
smoothed) density of states [dN/dk=p(k)] in a cavity
may be expanded asymptotically in powers of k (k=E
for m =0) (R.ef 16):

)000—

—(vev)E
A

p(k)=g .-+C kS+ f d s +C~

8~ ' R) Rg
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FIG. 4. (a) E/A versus A in, the hadrpnic bag model for u,
d, and s quarks. Parameters are such that E/A in bulk is 903
MeV. (b) S versus A in the hadronic bag model for u, d, and s
quarks. Parameters are such that E/A in bulk is 903 MeV.

where V, S, A~, and R2 are the volume, surface area, and
local radii of curvature. g is the degeneracy factor. The
first term is universal, the others depend on the spin of
the confined particles and the form of the confining boun-
dary condition. A similar expansion holds in the nonrela-
tivistic limit when k &(m and k =2mE. Successive
terms in Eq. (4.1) can be calculated from terms in a reflec-
tion expansion for the confined propagator as described in
Ref. 16. For'a confined gas of massless, noninteracting
quarks, C, =0 (Ref. 17) and C~ ————,m (Ref. 18). It can
be shown that the absence of a surface area correction to
p(k) implies that the energy per baryon E/A approaches
its bulk limit like A rather than A ' as might be
naively expected. Order-a, effects do not change this
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conclusion. We have verified this behavior explicitly for
nonstrange quark matter without a Coulomb interaction
and have obtained a good fit to the 2 coefficient of
E/A using the values of Cs and Cz just quoted. The
somewhat more complicated case of nonstrange quark
matter with a Coulomb interaction has already been dis-
cussed in conjunction with Fig. 5.

In the nonrelativistic limit the bag-boundary condition
goes over to the Dirichlet case studied by Balian and
Bloch. ' This leads to a positive 3 ' correction to the
energy per baryon corresponding to a positive dynamical
surface tension, oz. ' This limit is not of direct physical
interest since strange quarks are relativistic in the systems
we consider. Nevertheless, to the extent strange quarks
are present we are led to expect positive A ' corrections
and, effectively, a positive dynamical surface tension.

To summarize first, nonstrange quark matter ap-
proaches its bulk limit, like A, even including O(a, )

corrections; second, strange matter should exhibit A
corrections which vanish either when I~0 (all quark
species massless) or when m »p (only massless u and d
quarks present). This behavior has been observed in our
hadronic bag-model calculations, although we worked
only at a, =0. For strange matter we found that the

coefficient peaked at m near 150 MeV.
If strange matter with small enough A were stable,

light nuclei would decay into it and heavier nuclei might
emit it in processes analogous to a decay. Since S-A for
strange matter and each unit of strangeness costs a factor
of G~ in the decay rate, such instability would only be of
practical importance if it occurs for very small A, say,
A &10. It has long been known that QCD spin- and
color-dependent forces favor the appearance of strange
quarks in multiquark systems. For A &6 we can in-
clude order-a, effects in the bag model so it is both im-

portant to ask and possible to study in the context of these
models, whether light, strange multiquark hadrons might
be absolutely stable. The calculations are done in the
same way as for A & 6 except that order-a, effects are in-

cluded. We choose to work with bag parameters fit to the
baryon spectrum (Bb,s' ——145 MeV, mb, s

——280 MeV,
ab, s ——2.2, Zo ———1.84). As was explained in Sec. II, the
relationship between the parameters used in our bulk cal-
culations and those fit to the hadron spectrum is rather
uncertain. For very low A we are investigating the possi-
ble existence of a stable (E/A & 939 MeV) strange baryon
so it makes most sense to use parameter values which
correctly fit the known baryon masses.

Figure 6 shows the results of this calculation. For each
3 &4 we plot the mass per baryon of the lightest Oon-

strange multiquark hadron and for each A & 6 the lightest
strange multiquark hadron. No multiquark system is
stable. The nearest approach for S&0 is at A =2, S =2.
This doubly strange dihyperon has been studied extensive-
ly. ' ' ' More careful theoretical estimates of its mass
range from 2000 MeV (Ref. 21) to 2240 MeV {Ref.22). It
is not inconceivable that it is stable. Remarkably, the pos-
sibility of an absolutely stable H (as it is known) is not
ruled out by experiment. As long as M~ were not too
much less than 2M~ nuclear decays like zA~z(A —2)
+H, which are second-order weak, would be very rare.
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FIG. 6. E/A for A &6. Solid dots are lightest nonstrange
system. Open dots are lightest system with strange quarks.
Figure in parenthesis is the number of s quarks in the lightest
strange system.

V. PHENOMENOLOGY OF STRANGE MATTER

If strange matter is stable in bulk, it is quite likely to be
stable over a wide range of baryon numbers down to some
minimum, A~;„, which depending on parameters lies
roughly between 10 and 1000. Here we sketch some of
the characteristics of strange matter, in its variety of
forms, which will influence attempts to search for it in
various settings. In his paper, Witten has already dis-
cussed some properties of bulk quark matter, notably in

Though not exactly strange matter as originally conceived
of (stabilized by symmetry energy), nevertheless, the
discovery of a stable or nearly stable dihyperon would be
of great interest.

Of course, the energies shown in Fig. 6 change if the
model parameters are changed. One might worry that a
different choice of parameters, less desirable for A =1,
would make some multiquark bag with 3 &6 stable. We
have looked at a wide range of parameters and believe this
does not happen (except perhaps for A =S=2 as already
noted). The quark kinetic energies and the one-gluon-
exchange energy dominate the S and A dependence of
bag-model masses. For fixed A the kinetic energy rises
roughly linearly with the number of strange quarks. On
the other hand, as A increases so does R, the bag radius,
consequently, quark kinetic energies decrease. For a wide
range of parameters multiquark bags with A & 6 would be
stable were it not for the effects of one-gluon exchange,
but the most stable state would have S =0, then S= 1,
etc. A stable multiquark bag with S =0 or 1 could not
have been missed experimentally, so one-gluon exchange
would have to reverse the order of states, destabilizing
states with S=O and 1, but leaving a state with S)2
stable. Color magnetic interactions do, in fact, favor the
inclusion of strange quarks (as evidenced in Fig. 6), but
they are not sufficient to reverse the ordering of states ex-

cept, perhaps, when A =2. We conclude that it is unlike-

ly that strange matter with A & 6 is stable, with the possi-
ble exception of the dihyperon.
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the neutron-rich environment within a neutron star. We
refrain from a discussion of that subject and refer the in-
terested reader to his paper. It is convenient to divide our
considerations into two classes: those applicable to bulk
matter, and those dealing with strangelets with A (10 .

A. Bulk matter

If strange matter is stable in bulk it can absorb ordinary
nucleons in exothermic reactions accompanied by oc-
casional weak interactions necessary to maintain flavor
equilibrium. In addition to the usual semileptonic pro-
cesses, e.g., u ~s +e +v, the nonleptonic process
u+d~s+u is likely to be important. Except when m is
small and n, is large, strange matter has positive hadronic
electric charge. As Witten has noted, a Coulomb barrier
prevents this system from absorbing the nuclei of ordinary
atoms and renders it inert in contact with ordinary
matter. The height of the barrier is just the electron
chemical potential. For "generic" parameter choices we
find a fairly equal distribution of flavors, for example,
B' =133.49 MeV, n, =0.6, and m=150 MeV corre-
sponding to E/A of 899 MeV, we find n„:nd.n,
=1:1.09:0.906. The hadronic electric charge per baryon
is small so there are relatively few electrons and p, =9
MeV. This electrostatic potential at the surface of bulk
matter is sufficient to prevent it from absorbing ordinary
matter at low energy. There is no barrier to absorbing
neutrons, so strange matter would grow without limit in a
neutron-rich environment such as the interior of a neutron
star' or a conventional nuclear reactor here on earth.

If bulk strange matter has negative hadron electric
charge the situation is radically different. This alternative
occurs for large a, and small m where QCD effects over-
come the suppression of strange quarks. It is sensitive to
higher-order effects in a„but it is not clear whether
higher-order effects will make it more or less likely.
Strange matter with negative hadron electric charge
would be neutralized by positrons. Ordinary atoms would
be attracted to it and absorbed. In contact with a supply
of ordinary matter it would grow without limit, renewing
its appetite by weak interactions and its positron cloud by
weak interactions as well as e+e pair creation at its sur-
face. Clearly, negatively charged strange matter would
have disastrous consequences for any ordinary matter it
touches. It probably could not be tolerated at any level on
earth or in ordinary stellar environments.

Two features of the gravitational interactions of bulk
strange matter deserve mention. First, since it is very
dense even small chunks cannot be supported by material
forces at the earth's surface. For typical values of the en-

ergy per baryon and the density we find that the gravi-
tational force at the earth's surface exceeds 1 eV /A when
the radius of the chunk of strange matter exceeds 5 A.
This places an approximate upper limit of about 10' on
the baryon number and 1.6)& 10 gm on the mass of any
lump of quark matter which one might hope to find at the
surface of the earth. Second, in large enough amounts
quark matter would be unstable against gravitational col-
lapse. Fechner and Joss have studied the dynamics of
quark stars and conclude that the upper limit on their

mass coming from gravitational instability is 2 solar
masses.

B. A (10'

Strangelets with low baryon number display a wide
variety of behavior depending on their stability and
charge-to-mass ratio. Strangelets are unstable at low
values of A. In principle, they are unstable if E/A
exceeds M~. This is irrelevant for practical purposes for
the same reason the analogous instability is irrelevant for
nuclei when their energy per baryon exceeds that of quark
matter: the decay en masse is inhibited by a factor of 6~
to a high power. A more serious instability occurs if it is
energetically favorable to emit ordinary nuclei with low
baryon number from the surface. The flavor composition
of light nuclei, N„:Nd.N, =1:1:0,differs drastically from
strange matter. This inhibits the emission of all but the
lightest nuclei for two reasons: first, the likelihood. of
finding a correlated collection of N nonstrange quarks
within a strangelet falls quickly with N; and second, the
Q value for the decay falls with N (and eventually goes
negative) because the residual strangelet is far from flavor
equilibrium. Therefore, the first instability of importance
is a-particle emission. We define the practical lower limit
of stability A;„by the condition dE/dA &M /4 for
~ & ~min

For baryon numbers below 2;„strangelets decay by a
complicated chain of radioactive decays. a-particle emis-
sion eventually drives the strange matter out of flavor
equilibrium. dE/dA decreases below M~/4 and a emis-
sion ceases until (primarily strangeness-changing) weak
decays reestablish flavor equilibrium and allow renewed a
emission. The process resembles the radioactive decay of
a heavy nucleus like uranium. There are several impor-
tant differences, however. First, the a process is much
faster in strange matter because the Coulomb barrier is
lower. For example, the electrostatic potential energy of
an a particle at the surface of a strangelet with A =-250,
and Z=13 (typical of a, =0.6, E/A =899 MeV, and
M = 150 MeV) is 6 MeV as compared to 36 MeV in urani-
um. Since the o. decay rate varies exponentially with the
barrier height we expect the process to be much faster in
strange matter than in heavy nuclei. On the other hand,
the P process is, if anything, slower because the b,S= 1

weak interactions are inhibited by a factor of
sin 8, =—0.04. Eventually, as a strangelet decays, dE/dA
exceeds Mz and direct emission of protons and, in partic-
ular, neutrons becomes possible. As before, however,
weak interactions, necessary to equilibrate flavors, slow
the decay process down. Finally, for the lowest values of
A, dE/dA may exceed M~ and hyperons may be emitted.
Interestingly, the decay process could be initiated for an
otherwise stable chunk of strange matter by a collision
which strips off enough baryons to reduce A below A
We are not at present able to estimate the lifetime of ra-
dioactive strange matter, however, it seems quite possible
that the duration of some radioactive decay chain is corn-
parable to the age of the Universe. So anomalous patterns
of radioactive decay might be a signature for strange
matter in terrestrial searches.
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TABLE II. Some sample strangelets.

A
B
C
D

m (MeV)

150
200
150
225

cr' (MeV)

80
40
80
80

/

316
1000
10

3.2X10'

z
12
54

535
868

283
794

9.1X10'
2.4X 10'

Z/'W (MeV)

925
921
901
932

The most striking signature of strange matter is its very
low charge-to-baryon-number (or mass) ratio. This is a
generic characteristic, true for all of our parameter values,
even when the strange-quark mass is large. To get some
feel for the magnitude of the numbers we consider it use-
ful to list in Table II a few "typical" examples (all with
a=0.6, 8'~ =133.5 MeV). Examples A and B could
manifest themselves as anomalously superheavy isotopes
of magnesium and xenon, respectively. C and D, on the
other hand, would appear as new superheavy elements
with Z/A unlike ordinary nuclei. D is radioactive. Even
if the parameters entering our calculations were known
precisely and the calculations themselves were highly reli-
able, it would be difficult to be specific about the predic-
tion of novel, "strange isotopes" and "elements. " The
reason lies in the very large range of baryon numbers for
which strange matter is stable. We expect new species for
all 2 greater than A;„and for all Z greater than the as-
sociated Z;„.

Since Z grows only slowly with 3 one would expect
many stable strange isotopes for each value of Z. This
can be illustrated for large A with the aid of Eq. (3.2). A
change in Z of one unit requires a change in
b,A =32/Z which can be very large. Clearly, looking for
strange matter, or even using existing searches to place a

meaningful limit on its abundance will be a subtle and dif-
ficult undertaking.

Finally, it is of practical importance to know if stable
strange matter exists or can be made in quantity. Nega-
tively charged strange matter, either as strangelets or in
bulk, does not exist on earth. If it is stable and could be
created it would react exothermically with ordinary
matter, converting everything it touched into more of it-
self. Positively charged strange matter would have no
such immediate apocalyptic consequences. Nevertheless,
its propensity to absorb neutrons exothermically without
limit has implications for energy production which could
have great importance.
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