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Boost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark p]asma

A. BiaIas
Max Planck Inst-itut fiir Physlk und Astrophysik, sterner Heisenberg Insti-tut fur Physik,

D-8000 Munich 40, Federal Republic of Germany
and Institute of Physics, Jagellonian Uniuersity, PL 30 05-9 Krakow 16, Poland

W. Czyz
Institute ofNuclear Physics, Department of Theoretical Physics, PL 31 34-2 Krakow, Poland

(Received 7 May 1984)

Boost-invariant solutions of Boltzmann-Vlasov equations for quark-antiquark plasma are studied.
A simple example is presented showing an apparently general feature of the plasma: oscillations of
quarks and antiquarks in the mean chromoelectric field. The energy loss of the plasma by elec-
tromagnetic radiation is estimated.

I. INTRODUCTION

When two large nuclei collide at ultrahigh energies
there might appear many exotic phenomena, ' including
formation of a transient quark-gluon plasma in space-time
volumes considerably exceeding in scale the volumes ac-
tive in nucleon-nucleon collisions. Such phenomena in-
volve a multitude of degrees of freedom; thus, it is natural
to attempt their description in terms of some theories or
models of multicomponent systems.

One of the attractive possibilities is to employ relativis-
tic hydrodynamics and, indeed, many attempts in this
direction have been made, starting with the Landau clas-
sic papers from the 1950's. However, it is not at all
clear whether the conditions to justify its application are
satisfied, for instance, whether the local thermal and
chemical equilibriums are established fast enough and last
long enough to leave any room for the relativistic hydro-
dynamics to work. In fact, one may suspect that the sys-
tem of quarks and gluons which is formed in a central
nucleus-nucleus collision in which local energy densities
exceed 2—3 GeV/fm spends all its lifetime approaching
an equilibrium

In this situation it is important to analyze the evolution
in time of a bubble of a newly born quark-gluon plasma as
a dynamical nonequilibrium process employing an ap-
proach which is based on the Boltzmann kinetic theory.
The fundamentals of the relativistic transport equations
for low-density weakly interacting systems are thoroughly
discussed in Ref. S. However, it is still not clear whether
one can adapt and modify the results of Ref. 5 to the
specific situations occurring in ultrarelativistic heavy-ion
collisions. Also, the transport equations for a quark-
gluon plasma should be derived from the non-Abelian
QCD and, so far, only the first steps in this direction have
been taken.

Altogether, the task of constructing a viable relativistic
transport theory for quarks and gluons still looks formi-
dable. Thus, since a frontal attack seems to be so difficult
one may, in order to get some feeling for the physics of
quark-gluon plasma, analyze some less forbidding yet in-

teresting problems directly related to the main theme.
The present paper presents such an attempt. It addresses
itself to the problem of the Boltzmann-Vlasov equations
in which the gauge field is treated classically and the dis-
tribution functions of quarks and antiquarks are the en-
semble expectation values of the Wigner operators. In
fact, such Boltzmann-Vlasov equations were explicitly
written by Heinz and here we discuss some of their solu-
tions of interest (we hope) for understanding the behavior
of the quark-gluon plasma. In this first step (and in line
with the spirit of the Boltzmann-Vlasov approach) we
neglect all collision terms.

The Boltzrnann-Vlasov equations as they appear in Ref.
7 are still quite complicated and we impose on them the
restrictions of invariance against boosts in one direction
which we identify with the collision axis of the incident
nuclei. This is the same boost invariance which was intro-
duced and discussed by Bjorken: Its physical significance
is contained in the statement that the boost-invariant
space-time evolution characterizes this part of the particle
production process which populates the central region of
rapidities and produces plateaus. In this sense our discus-
sion of the solutions of the Boltzmann-Vlasov equations is
limited to plasma created in the central region in between
two nuclei just after their collision. Even in such a sim-
plified situation, the solution we obtained reveals an in-
teresting and apparently general phenomenon: oscillations
of the quark-antiquark plasma in the self-consistently
generated chromoelectric field. The frequency of the os-
cillations increases with increasing density of the plasma.
Observation of such oscillations (e.g., by electromagnetic
radiation which must accompany them) would be certain-
ly of great interest. However, more work is needed to
determine if this possibility has any chance to be realized
in nature.

In Sec. II we write the Boltzmann-Vlasov equations for
the SU(3) color group (spin of the quarks is neglected).
Section III casts these equations into a boost-invariant
form. Section IV deals with the general boost-invariant
solutions and Sec. V with some very specific simple solu-
tions resulting from static initial conditions which lead to
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oscillations of the plasma. The physical significance of
these results is discussed in this section and Sec. VI,
which also contains conclusions.

II. BOLTZMANN-VLASOV EQUATIONS
FOR RELATIVISTIC QUARK-GLUON PLASMA

The equations for quark (antiquark) distribution func-
tions were given by Heinz. They read '

p"B~+Ap "F„'„kg,=0,

pi'B~, Af,—b,pi'A~, + p "F—„,B~Tr(I Q', QbI6) =0,
(2.1)

(2.2)

where

(2.3)

and G is the distribution function whose explicit form in-
the color space is

G = , g+2g—.Q. , (2.4)

and Q'=A, '/2 are the generators of the SU(3) group. I, is
the color coupling constant. The trace in Eq. (2.2) can be
evaluated using Eq. (2.4) and the identity

Finally, we note that the energy-momentum tensor of the
plasma is

T"".i= f p"p"(g+g)dP .

It satisfies the conservation law

BpTmg)+ BpTYM =0

(2.12)

where T~YM is the energy-momentum tensor of the color
field, provided the functions g and g vanish sufficiently
rapidly for p"~ ao.

III. IMPLEMENTAT/ON OF BOOST INVARIANCE

As explained in the Introduction, our aim is to discuss
the boost-invariant solutions of the Boltzmann-Vlasov
equations (2.6) to (2.8) which may, perhaps, be applicable
to plasma created in very-high-energy nuclear collisions.
Boost invariance implies quite severe restrictions on the
gauge fields Az and on the quark (antiquark) distribution
functions. In this section we shall explore these condi-
tions in order to simplify the general system of Eqs. (2.6)
to (2.8).

Let us first consider the gauge fields For transverse
components we have

1

I Qa Qbj= 3 &ah+dab. Qc (2.5) A„'y A'( r, t ) =——A '( s, u ), (3.1)

and we obtain finally

p BQ+Ap Fp~dpgg =0,
p~a~ 7f.b,—p~A„' g,

2
+ p "F„'„a,"( ,

' —go.b+d.„g—')=0 .

(2.6)

(2.7)

u=t —z

For longitudinal and time components we have'

A,'(r, t)=A&(r, t)=g'( s, u)/(t z) . —

(3.2)

(3.3)

where s = (x,y ) is the transverse position vector and u is
the boost-invariant variable

The system of Eqs. (2.6) and (2.7) represents nine equa-
tions for nine unknowns g, g, (a = 1, . . . , 8). They
describe the behavior of quarks (antiquarks) in the exter-
nal color field A„'.

In the Boltzmann-Vlasov formulation the gauge field is
itself generated by quark and antiquark currents. One can
thus write equations for F&,. They read

For quark (antiquark) distributions one has

f(r, t;p, E)=f( s, up mi, i)u, (3.4)

where f stands for any of the g, g, g„and g, functions,
m is the quark mass, and w is another boost-invariant
variable.

(D„F""4=Ja (2.8) m=p, t —Ez . (3.5)

where the current j, is given by

J."=7 f dPp"(g. —g. ) (2.9)

with g, being the distribution function of antiquarks.
To explain the physical meaning of the quark (anti-

quark) distribution function g we observe that the integral
of g over an arbitrary volume of phase space gives the
number of quarks (antiquarks) in this volume:

f do„dPp"g(x, p) =ENq, (2.10)

where do.
& is the volume element in x space, do.o——dV in

the rest frame of the volume. Similarly, such an integral
of G&z is proportional to the density matrix of quarks
(antiquarks) in the color space:

f der„dPp"G~ii(x, p)=bNqpgii . (2.11)

+Fi2n (piXVtf), (3.6)

u=Et p,z=[iu +(m +pi —)u]'~2, (3.7)

and n is the unit vector in z direction. The dot denotes
the partial derivative with respect to u and thegrime
denotes that with respect to m. Operators V' and Vz are
defined as

We shall now express the operators entering Eqs. (2.6)
and (2.7), using formulas (3.1) to (3.5). Using the defini-
tion (2.3) and Eqs. (3.1) to (3.5) we obtain

p'F„'.d,"f= 2ul'f' (pi V 4'—~f.b, W'—A'pi)f'

—2uA Vpf (VQ +7 f~b, A —Q') Vpf
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B B
Vp=Bx' By

B

~Px BPy

It is also not difficult to see that

pi'B+=2vf+ pz V'f,

(3.8)

(3.9)

Since there is no transverse motion the dependence off on

p~ must be -5(p~) and thus the expression V~f is singu-
lar at pz ——0. To remove such singular terms from Eqs.
(3.11) and (3.12) the transverse components of the gauge
fields must vanish:

pp"A' = g' —p A' .
t —Z

(3.10)

Using Eq. (3.6), and Eqs. (3.9) and (3.10), one can im-
plement boost invariance in the basic equations (2.6) and
(2.7) for g and g, (a =1, . . . , 8). We shall, however, not
write explicitly the resulting equations here since they are
rather lengthy. In the present exploratory paper we shall
discuss in more detail only a much simpler problem corre-
sponding to pure longitudinal motion of the plasma, with
both color field and quark-antiquark distribution func-
tions independent of x and y. In this case the equations
for g and g, simplify considerably. One has

A =A =0, (3.14)

and thus finally the equations for quark and antiquark
distribution functions with no transverse motion read

g+A, g'g,' =0, (3.15)

E-
2g~+ 3 ~0 g +~dabcW gc ~fabc 'Age&v=0

(3.16)

Let us now turn to Eq. (2.8}for the gluon field A„'. Us-
ing the boost-invariance restrictions, we obtain for the
transverse components

2Ug +2k.W, g~ =0,
E—p

2vg~+ 3 A, Wgg+kd~bq Wbgq —I, fgbqfbgq 0 ~
'

t —Z

where 8' is the operator defined as

(3.11)

(3.12)

e

4( u A ')'+ 2 V Q' 2Af,b, f A—' 4Af,b,f—A'

+( n X V')P'f2+&f, b, ( n X A )P)2 = j ',
where j, is the transverse component of the current

(3.17)

(3.18)

+ vA'+ — f.b. A O' 'V~
BN 2 t —z

Adding and subtracting longitudinal and time com-
ponents, one obtains two additional equations

4ug' —2V' g' —2u V'A' 4',b, g g' —2Af, b, V'(A —Q') —2if,b, (A "V'Q')

and

2Auf, b, A A—' 2l, f,b,f,d,—A A p'=A, f dP(w+u)(g, —g, ) (3.19)

4uf+2u V A +2ui f~b, A A'=A, f dP(w —v)(g~ —g~ ) . (3.20)

These equations determine the behavior of the self-
consistent gauge fields A and g'. For purely longitudi-
nal motion with vanishing transverse components of the
fields they simplify greatly. Equation (3.17) for transverse
components vanishes identically, and Eqs. (3.19) and
(3.20) turn into

4ug' 4kf,b, pbg'=A. f—dP(w+u)(g, —g, ), (3.21)

4ug'=A, f dP(w —u)(g, —g, ) .

In the next section we shall discuss some simple solutions
of Eqs. (3.15) and (3.16), and (3.21) and (3.22).

IV. A SIMPLE SOLUTION
OF BOLTZMANN-VLASOV EQUATIONS

FOR BOOST-INVARIANT PLASMA

Equations (3.15) and (3.16), and (3.21) and (3.22),
describe the behavior of boost-invariant plasma having no
transverse velocity and extending infinitely in the x-y

plane. To have some idea of this behavior, we shall now
present a class of solutions of these equations and discuss
its physical significance. To keep the discussion as ele-
mentary as possible, we shall restrict ourselves to distribu-
tion functions G [as defined by Eq. (2.4}j in the simplest
possible form

000
6= 000

OO6
(4.1)

This assumption implies that there are only quarks (anti-
quarks) of one color. It is certainly a simplification which
misses some potentially interesting physics related to the
non-Abelian character of our problem. However, it allows
for an explicit (and nontrivial) solution of Boltzmann-
Vlasov equations which, as shown below, reveals some in-
teresting phenomena. Discussion of more complicated sit-
uations including quarks of different colors and transi-
tions between them would, of course, also be very interest-



2374 A. BIAf.AS AND W. CZYZ 30

ing. We hope to pursue this problem in further publica-
tions.

The form (4.1) and Eq. (24) imply that only the func-
tions g and g8 are nonvanishing. It is then natural to as-
sume [as seen from Eqs. (3.21) and (3.22)] that only P8 is
nonvanishing. Using these conditions, Eqs. (3.15) and
(3.16) simplify to

In such a way the gauge field 4 is determined by the
quark distribution function at u =up and the values of
%(up) and %(up).

To continue our discussion, it is necessary to assume
some initial conditions for quark distribution functions.
In the present paper we restricted ourselves to the discus-
sion of the simplest case of the static initial conditions.
This will be described in the next section.

26+A, % 6'=0,
where

(4.2)

V. STATIC INITIAL CONDITIONS

4= —21(s/W3 . (4.3)

Furthermore, it is readily seen from Eqs. (3.21), (3.22),
and (2.4) that the field 4 satisfies the equation

4u+= —', k f dP(G —G)(w+U)

= —,'}I,f dP(G —G)(w —U) . (4 4)

To solve Eq. (4.2) we observe that the characteristic
lines w =w(u) obey the equation

We shall assume that at a certain initial time to the
quark and antiquark distributions are static at z =0, i.e.,

G(up, w)=d5(w) . (5.1)

It seems to us a natural starting point and in the present
preliminary analysis we restrict ourselves to this case. We
would like to stress, however, that other initial conditions
can also be treated using the general method outlined in
Sec. IV.

Equations (5.1) and (4.12) imply

dw A,

du 2

and thus

(4.5)
G(u, w) =d5(w —m~uII),

where

(5.2)

(5.3)

w —wp
——+—[0'(u) —%(up)]—:+AH(u, up),

2
(4.6)

G(u, w)=G(up, w+AH(u, up)) . (4.7)

We see that the solution of Eq. (4.2) is easily obtained
from initial conditions at u =uo, provided that the gauge
field 4'(u) is known. This gauge field must, in turn, be
determined from Eq. (4.4). We shall now turn to this
problem.

We observe that the second equality in Eq. (4.4) implies

f dP(G —G)U =0 . (4.8)

where wp ——w(up).
On the other hand, it is seen from Eq. (4.2) that

G(u, w ) is constant along the characteristic lines given by
Eq. (4.6). Thus we obtain the solution in the form

From Eqs. (4.12) and (5.2) we obtain the following equa-
tion for H

(5.4)

H ~ r sin(Qr' +const),

with Q = —, A, d/m.
The field strength F -H behaves as

F ~ r cos(Q&'~ +const),

(5.5)

(5.6)

To obtain an insight into the character of the solutions
of Eq. (5.4) it is instructive to consider the asymptotic
solution at u =r ~Op. As is shown in Appendix A the
solution is oscillating

Taking into account that

dP=dp, dE5(E —p, —m )

=dudw5(v —w —m u)=
2v

(4.9)
mII ~ r '~ sin(Q~'~ +const) . (5.7)

and thus is also oscillating and eventually tends to 0. Fi-
nally, the behavior of mII which, as seen from Eqs. (3.5)
and (5.2), determines longitudinal momentum of the
quarks at z=0 is

G(u, w)=G(u, —w) . (4.10)

This condition is consistent with the solution (4.7).
Indeed, if Eq. (4.10) is satisfied at u =up, Eq. (4.7)
guarantees that it is satisfied at all u.

Using Eqs. (4.6), (4.9), and (4.10), Eq. (4.4) can be writ-
ten as

we see that the natural way to satisfy the condition (4.8) is
to require that the difference 6 —G be an odd function of
w. Since both G and G are positive, we conclude that

dE/d V=n,g
dE 1

27o
(5.8)

We have again oscillations with very slowly decreasing
amplitude.

It is interesting to speculate what is a realistic range of
parameters, i.e., what values of d, m, and 70 are relevant
for high-energy collisions of heavy ions. Following Bjork-
en we take 7o——1 fm and we find for energy density at
T—7iQ

4uH= —,A, f G(up, w+AH(u, up)} . (4.11) where n, rr is the effective number of "wounded" nucleons
per unit of the transverse surface and dE/dy is the energy
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density (per unit of rapidity) in nucleon-nucleon collisions.
This quantity should be equal to the sum of the energy

, densities of quarks and antiquarks. We thus obtain

[Gev]

md =neff
~0 dp 2'To

This gives

(5.9)

5
I+ li [~m"]

(5.10)
dE

Old ( 2 jeff

Using dE/dy =2 GeV, and" n, rr =2 fm we obtain

md (2 GeV fm (5.11)

On the other hand, a similar argument applied to particle
multiplicities yields

dn
n eff

dp
(5.12)

where dn/dy is the density of produced particles (per unit
rapidity) in nucleon-nucleon collisions. Taking dn/dy-4
we have

d=8 fm

and then from Eq. (5.11) we obtain'

m=250 MeV

(5.13)

(5.14)

(pt +m )=A,Fo3/4~, (5.15)

It should be emphasized here that the values (5.13) and
(5.14) refer to the average situation. Fluctuations with
much larger densities are possible. ' '

One remaining quantity, which we found difficult to es-
timate, is the intensity of the chromoelectric field F03 at
the initial time t =to. Unfortunately, the results are quite
sensitive to this parameter. To fix it, we used its relation
to the average transverse momentum of the quarks pro-
duced by tunneling in the uniform chromoelectric field
(see Ref. 14 and references quoted there). We have

FIG. 1. Momentum of quarks at z =0 plotted versus V t.

At small densities the self qq field is weak and the process
takes much longer time. In fact, as is easily seen from Eq.
(5.4), in the limit d ~0 there are no oscillations.

In Fig. 2 the field strength FQ3 is plotted versus v t
The observed pattern is similar to that seen in Fig. 1.

The acceleration of quarks and antiquarks by a chro-
moelectric field, as exhibited in Figs. 1 and 2, implies that
they should emit electromagnetic radiation. The emission
rate can be estimated using the well-known formula' for
energy loss of an accelerated charged particle. As shown
in Appendix 8, the resulting energy loss per unit time and
unit rapidity is

de ~ q dH
dy dt 4m dt

(5.18)

Here q is the electric charge of the quark and S is the
transverse size of the volume occupied by plasma.

In Fig. 3 de/dydt is plotted versus t for S=100 fm
(which seems a realistic value for central collisions of two
heavy nuclei" ) and for

1.e.,

Fo3 ——4m(p~ +m )/A, . (5.16)

2
4

4 2 9=-, (-, +-, ) „, . (5.19)

Assuming (pz +m )=(200 MeV) [in line with our
value of the effective transverse mass given by Eq. (5.14)]
and A, =1, we thus obtain

F03 ——F03—10 fm (5.17)

In further calculations this value of Fo3 ——2V 3H was
used. One should keep in mind, however, that it may well
be different in real plasma.

In Fig. 1 the quantity mII, i.e., the value of the quark
momentum at z=0, is plotted versus Wt for m=200
MeV = 1 fm, A, = 1, F03 ——10 fm, and three values of d.
One sees a rather different behavior for the' different d
values. For large d oscillations set in already at t-2 fm
whereas for small d the magnitude of the quark momen-
tum increases up to r-25 fm (which, most likely, is al-
ready a completely unphysical region). This behavior is
easy to understand: at large densities the field generated
by qq forces is strong and can quickly stop quarks and an-
tiquarks moving under the influence of the initial field.

F.3 1&m') m = 200 MeV
A=i

t fm
2

FIG. 2. Chromoelectric field intensity plotted versus ~t

Other parameters are the same as in Figs. 1 and 2.
One sees from Fig. 3 that the loss of energy by elec-

tromagnetic radiation is rather substantial and thus may
even be perhaps another observable feature of the plas-
ma. ' The estimate of the frequency spectrum would also
be very interesting. It is much more sensitive, however, to
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ji
de(dydee

FIG. 3. Electromagnetic energy loss per unit rapidity and

unit of time.

thc dctalls of tllc assllIIlcd lllltlal coIldltlolls. Wc tlllls fccl
tllRt tllls ploblclll sllollld wal't 'till Illolc lcallstlc lllltlal
conditions Rfc analyzed.

Nevertheless, one sees from Fig. 3 that quarks and anti-
quarks may be a rather efficient source of electromagnetic
radiation. We feel it might be worthwhile to look for this
effect experimentally. '

In an attempt to generalize Bjorken's boost-invariant
description of quark-antiquark plasma possibly created in
heavy-ion collisions, we have applied to this problem the
Boltzmann-Vlasov equations formulated recently for color
interactions by Heinz. Following the Bjorken treatment,
wc have restricted oursclvcs to thc purely longltUdlnRl

otion of the plasma, extending infinitdy and uniformly
in the direction transverse to the direction of motion. The
8oltzmann-Vlasov equations for this one-dimensional
problem were written down. Even in this simple case„
however, . they are coupled differential equations for 18
components of q and q color densities and 8 components
of the gauge fields. They seem to be rather difficult (but
probably llot 111lposslblc) to solve. To Obtalll soIIlc lnslght
into the physics of the problem, we thus considered an
even more restricted case, namely, when only quarks (anti-

quarks) of one color are present in the plasma. In this
case all non-Abelian features of the equations disappear
and they simplify considerably.

We have found an explicit solution for such a one-color
system in terms of initial conditions at a given initial

proper time to. A particular solution for static initial
conditions (i.e., all quarks and antiquarks at rest at t =to
and z=0) was discussed in some detail. This solution de
scribes a damped oscillatory motion: quarks and anti-
quarks vibrate in the self-consistently created mean chro-
moelectric field. The effect is simple to understand: the
movement of quarks and antiquarks in opposite directions
implies an attractive force between them and thus we ob-
tain oscillations. The damping of oscillations is an effect
of the longitudinal expansion (implied by the condition of
boost 111v811RIlcc ).

Onc important conscqucncc of thcsc osclllatlons is that

Rt a glvcn point, for example, z =0, t4c longitudinal
momentum of quarks and antiquarks fluctuates. These
fluctuations can be translated into fluctuations in rapidity
and thus perhaps be an observable feature of the plasma.
Another potentially observable effect is the electromagnet-
ic radiation. We estimated it and found that it may
perhaps be important in the total-energy balance.

The frequency of the momentum oscillations depends
prlmarlly oil tlM I'Rtlo dim, w11cl'c d ls tllc lllltlal density
of the plasma at t =to and m is the, effective (transverse)
mass of the quarks (antiquarks). For large d/tn the fre-
quency is large. The magnitude of oscillations and the ef-
fective time after which they dominate the behavior of
plasma depend on ratio 8'/d where 8' is the intensity of
the chromoelectric field at t= to. For large 8'/d the am-
phtude of oscillations is large but they show up only at
unrealistically large times.

We thus conclude that taking into account the self-
interaction of the plasma leads to a rather dramatic quali-
tative change in its behavior, ' which may perhaps be ob-
servable. "

Unfortunately, this conclusion refers, strictly speaking,
only to thc lather ldcallzcd case which wc lnvcstlgatcd,
and it shall require further work to estimate to what ex-
tent the effects indicated in our analysis have a chance to
survive i.n a more realistic situation. In particular, it
would be interesting to know the consequences of (a) finite
transverse size of the system, (b) the transverse motion of
the plasma, (c) more realistic initial conditions (C.g.,
Maxwell distribution of q and q velocities), and (perhaps
most important) (d) the possibility of creation and annihi-
lation of qq pairs. All these effects will tend to smear the
clcal-CUt plctUrc dcscrlbcd Rbovc.

Finally, let us remark that, from the theoretical point of
view, it is of obvious interest to investigate the non-
Abelian terms of the equations, i.e., to allow for transition
of color between quarks (this amounts to considering a
nondiagonal color density matrix). We are presently
studying this qucstlon.
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APPENDIX A: ASYMPTOTIC SOLUTIGN
OF EQ. (5.4)

We seek a solution in the form

H( u) =u ~sin(Qu ~),

with y~ —, so that H —+0 at u —+~. VA'th these condi-
tions wc have

11/(I+II')'"-ll at u-
and thus Eq. (5.4) can be written as
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(A3)
12m

Substituting Eq. (Al) into Eq. (A3), we obtain

y(y —I)ur zsin(Qu~)+(2y+p —1)pQur+~ cos(Qu~)

—(PQ)zur+'t' csin(Qut')= — ur sin(Qup) .
l2'

(A4)

dII
Ho ———

dt

(83)

(A5)

ConscqUcntly, the clcctromRgnctic cncI'gy emitted by
qURrks RQd RntlqURrks PcI' Unit time RIld PcI' UQlt volUIDc
of the plasma is

Furthermore, it follows from Eq. (A4) that (pQ)
=lL. d/12m, i.e.,

Q2 (A6)
3 m

The energy loss per unit of time of an accelerated parti-
cle with electric charge q is given by

RQd thc emission pcI' Unit time RQd pcI' Unit rRpidity lntcr-
VR1 1S

d e d+e1ec

where S is the transverse cross section of the plasma and
where. we have used the relation3 M =t &y. In h~a~y nu-
clei" S may be of the order of 100 fm .

d II/dt can be calculated if the solution of the Eq. (5A)
18 known. Indeed, siQcc

where a is the four-acceleration; Observing that the
four-vector

is just the four-velocity of quarks, we have
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