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We consider the modification of the photon propagator for a system confined between two con-
ducting plates. After a detailed discussion of the boundary conditions that apply in such a case, we
calculate the change bg in the anomalous magnetic moment g of the electron due to the plates. For
both scalar and vector photons this is of order hg =aln(2aA)/ma, where o. is the fine-structure
constant, m is the electron mass, a is the plate spacing, and A = 1 eV is the cutoff frequency above
which the plates become "transparent" to photons. This correction to g is near the threshold of
what can be detected experimentally, and may suggest some difficulties in continuing attempts to
compare higher-order predictions of QED with experiment. We also apply our results to discuss
other novel phenomena, such as the regeneration of coherent kaons in the empty space between the
plates.

I. INTRODUCTION
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where a is the plate spacing (in units of 10 m). The
dependence of P on 1/a, which can be inferred on di-
mensional grounds, is partially responsible for the small-
ness of P. Despite the evident difficulty in detecting so
weak a force, Eq. (1.1) has been verified experimentally, at
least at the qualitative level.

There can, of course, be other manifestations of the
boundary conditions that arise in the presence of conduct-
ing plates. Among these, effects which vanish more slow-
ly than 1/a in the limit a —+Oc would be particularly in-
teresting. These would evidently require the introduction
of additional dimensional factors along with a, and hence
would represent phenomena that are fundamentally dif-
ferent from the Casimir effect. The purpose of this paper
is to point out that there exists in fact just such an effect,
namely, an additional contribution to the electron
anomalous magnetic moment, or (g —2), due to the modi-

In 1948 Casimir' pointed out the existence of a new
effect which arises from a modification of the vacuum
due to the introduction of a pair of parallel conducting
plates. In the usual vacuum the zero-point energy, al-
though infinite, is usually discarded because it can be
reabsorbed by a redefinition of the zero of energy. What
Casimir noted was that the presence of the conducting
plates modifies the zero-point energy of the vacuum in
such a way that the difference of the zero-point energies
with and without the plates becomes measurable. This
comes about if some fields (such as the electromagnetic
field} satisfy boundary conditions at the plates, in which
case the spectrum of these fields will be different when
the plates are present-, and may even be discrete. Since the
vacuum energy density between the plates is different
from what it is outside, the plates are subject to a residual
pressure given by

fication of the virtual photon field in the presence of the
plates. This effect is interesting for theoretical reasons be-
cause it arises in a nonrelativistic system and because the
correction, presumably O((1/ma)" }, can be maximized
for the electron, which is the lightest charged particle. It
is also interesting experimentally because the expected size
of the effects suggests that they, although small, are at the
threshold of what can be detected by current techniques.
This in turn may have far-ranging implications for the
comparison of theory and experiment in quantum electro-
dynamics (QED): It suggests that there is an extrinsic
(i.e., apparatus-dependent) contribution to (g —2), in ad-
dition to the usual intrinsic contribution of QED. This,
and similar effects in other processes, may represent a
barrier of sorts, both in principle and in practice, to fur-
ther refinements in tests of QED.

It is evident that both the Casimir effect and the modi-
fication of (g —2) to be discussed below depend in a cru-
cial way on the boundary conditions that apply at the
plates. For example, the result quoted in Eq. (1.1) is based
on the highly idealized assumption that all Fourier corn-
ponents of the electromagnetic field vanish at the surface
of the plates. However, difficulties can arise from an un-
critical application of such boundary conditions, since
global conditions may run into conflict with the require-
ments of causality as demanded by special relativity. At
the same time the proper use of boundary conditions does
lead to experimentally reasonable predictions, as in the
Casimir effect, ' and in the description of atomic decays
in a cavity. Hence in the process of discussing the modi-
fication of (g —2) in the presence of the plates, we also
wish to clarify the circumstances under which the use of
such boundary conditions is appropriate.

As will be discussed in greater detail in Sec. II, the use
of the boundary conditions can be justified for essentially
nonrelativistic systems in the following way: A global
condition, such as a pair of boundary conditions, requires
that information about a field configuration at one point
should be transxnitted to another point instantaneously.
This requirement is never satisfied exactly, since informa-
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=u(p') Gi(k )yp —G2(k ) o~P„u(p),
2m

(1.2)

where k=—p' —p. In the absence of radiative corrections
G2(0)=0, while Gi(0) =1 is always satisfied because of
current conservation. From Eq. (1.2) the nonrelativistic
effective Hamiltonian can be obtained as

H ff ——(e/2m)(2p. A+g s .B)

g =2[Gi(0)+G2(0)]=2[1+Gg(0)],
(1.3)

where A is the vector potential, 8 is the magnetic field,
and s is the electron spin. In the absence of the plates
G2(0) is given, to the lowest order in the fine-structure
constant o;, by

G2(0) = 2' ' (1.4)

which is the contribution of the vertex correction shown
in Fig. 1. In the presence of the plates, g gets modified to
g2~, where the subscript denotes the value of g for an elec-
tron moving between two parallel plates, and we define
hg =giz —g. This bg differs from zero in the presence of
the plates (located at z=0 and z =a), due to the fact that
virtual photons "feel" the assumed boundary conditions
on the electromagnetic field at z =O,a. As a consequence
of this, the photon spectrum is modified, and it is this
difference which gives rise to Ag. It should be em-
phasized that although we will restrict our discussion to
the case of an electron moving between two plates, we ex-

tion cannot travel with infinite velocity. Although this
observation seems trivial, it suggests where boundary con-
ditions can be meaningful, at least as an approximation.
Specifically, the photon field can be viewed as transmit-
ting information on the boundary conditions "instantane-
ously" in a system where all of the other particles in-
volved are nonrelativistic, so that photons can be regarded
as traveling almost infinitely rapidly. In the Casimir ef-
fect, for example, the constituents of the metal (which are
predominantly free electrons) are in fact nonrelativistic.
To ensure the validity of our approximations, the energies
of the photons in question should also be sufficiently
small so that even the recoiling (virtual) particles remain
nonrelativistic. Again, in the Casimir effect, this second
requirement is satisfied as follows: For any real conduc-
tor there is a high-frequency cutoff, denoted by A, such
that photons for which co) A can penetrate the plates,
thus giving no contribution to the Casimir effect. This A
may be estimated from the plasma frequency to be =1
eV, which is much smaller than the electron mass m, thus
ensuring that the electrons remain nonrelativistic. For the
case of an atom in a cavity, the requirement that the sys-
tem be nonrelativistic is obviously met.

In the remainder of this section we will present a
heuristic derivation of our results, but before doing so we
define the various physical quantities of interest. The ma-
trix element of the electromagnetic current J&(x) of the
electron is given by

&p ~J„(0)~p&

( p+k/2)

( p- k/2) (k)
FIG. 1. Contribution to the electron anomalous magnetic

moment in lowest-order covariant perturbation theory. The
solid lines denote the electron, the wavy lines the photon, and
the momentum associated with each line is shown in
parentheses.

g —2 u ' A 2x —1
dx 1 —x+
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+
27T m m

(1.6)

pect the results obtained to apply to the geometry of the
Penning trap in which g is measured, up to possible nu-
merical factors of order unity.

The difference hg can be roughly estimated in the fol-
lowing way. We note to start with that the maximum
wavelength A, ,„ that can propagate in the space between
the plates is A, ,„=2a, and hence there exists a minimum
energy p=m. /a for these photons. In the space between
the plates, the photon thus has a discrete spectrum with
energies n p ( n = 1,2, . . .}for photon energies in the range

(1.5}

where A is the energy cutoff given previously. Thus bg
arises from the difference between the contributions from
the discrete and continuous photon spectra restricted in
the range (1.5). The calculation will be limited to the
one-loop correction shown in Fig. 1, since the formulation
in terms of boundary conditions ceases to be valid for
higher-order contributions for which recoil effects are im-
portant. For a=1 cm, which is the characteristic size of
the Penning trap used in Ref. 6, p =6.2&& 10 s eV.

To estimate Ag we carry out the usual calculation of
(g —2), but with a photon of "mass" A. We find
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For A&0 there is no contribution from the photons in the
range {1.5), and hence by comparing this result to the usu-
al one (1.4), we can find the contribution to g from the
soft photons in the range (1.5),

hg u 1
ln(2Aa ) = 1.63 X 10—12

2 2 ma
(1.9)

We note that an effect of this magnitude is near the
threshold of what can be detected experimentally by
current techniques. This can be seen by comparing (1.9)
to the error on {g/2):

g/2= 1.001 159652209+0.000000000031,

hg/2=0. 000000000001 6 .
(1.10)

It is interesting to observe the way in which the linear
dependence of g»t, on A/m arises, namely, through an
arctangent. That such a linear dependence should emerge
from (g —2) is not at all obvious, in view of the fact that
A and m enter quadratically at the outset in Eq. (1.6). If
g»ft were to depend on (A/m) as naively expected, the
numerical result in (1.9) would have been further reduced
by a factor of (A/m), and would be undetectable by
present means. If (g —2) had a logarithmic divergence,
then we might have expected b,g to depend on ln(m/A).
However, this is not the case since (g —2) is both infrared
and ultraviolet finite. We note in passing that the analo-
gous correction to (g —2) for the muon would be 207
times smaller, and hence correspondingly more difficult to
measure.

The outline of this paper is as follows. In Sec. II, we
discuss the boundary conditions at the plates in greater
detail, focusing our attention on the justification for their
use. In Sec. III, we present a one-loop calculation of Ag
for the case of a hypothetical scalar photon field y(x), the
soft components of which vanish at z=0 and z =a. Since
the electron is always nonrelativistic, old-fashioned per-
turbation theory and a (1/m) expansion are extensively
used. Thi.s calculation demonstrates how the characteris-
tic a dependence in (1.9) comes about. Section IV de-
scribes the analogous calculation for the usual electromag-
netic field on the assumption that the soft components of
the vector potential A, instead of the fields themselves,
vanish similarly. This somewhat unusual set of boundary
conditions is discussed and justified in Sec. II. The modi-
fication of the photon propagator due to the plates can, of

(1.7)
2 m

When the modification of g„t, due to the plates is taken
into account, the plate spacing will enter through dimen-
sionless factors such as (1/ma) and (1/Aa). Since
m )&A, the dominant contribution to hg from the energy
range (1.5) is given by

hg aA 1 a 1

2 2maA 2ma
In fact the detailed calculations presented in Secs. III and
IV below indicate that Ag is enhanced relative to the naive
estimate in (1.8) by a factor of order ln(2Aa). For A= 1

eV and a =1 cm this gives numerically

course, lead to a host of other effects, one of which is dis-
cussed in Sec. V. We note that one consequence of the
modified photon propagator, is that a transition between
the free-space eigenfunctions KL and Es of the K -IC
system can occur between the plates. This leads to the
phenomenon of the regeneration of coherent kaons in
empty space, which is, however, probably too small to
detect. Our conclusions are summarized in Sec. VI. In
the Appendix, we derive the expression for the modified
"scalar-photon" propagator for the sake of completeness,
based on the idealized assumption that the boundary con-
ditions, y(z =0)=p(z =a) =0, would be valid for the
whole spectrum of g.

II. DISCUSSION OF BOUNDARY CONDITIONS

Following the ideas. outlined in the Introduction, we
proceed to consider the electron anomalous magnetic mo-
ment, or (g —2), at the one-loop order (Fig. 1). As noted
previously, we have chosen to study g because of the great
precision to which it can be measured, and because the ex-
pected effects are larger for g than for any other system.
As can be seen from Ref. 6, such experiments are actually
performed in a Penning trap, which is a metal cavity.
Since the photon field satisfies certain boundary condi-
tions at the walls of the cavity, the eigenstates of the pho-
tons will be modified inside it. If they are modified at all,
then the resulting value of (g —2) will be somewhat dif-
ferent from the ordinary one, thus giving rise to a nonzero
value of bg =g2~ —g. We wish to present several model
calculations in the subsequent sections to estimate Ag.
Before doing so, we will analyze the physical meaning of
the boundary condition in the remainder of this section.
The purpose of this analysis is to specify the procedure we
use to obtain our results, and at the same time to discuss
several unsolved problems which arise in the course of the
derivation.

To facilitate our analysis we will consider a simplified
set-up where two plates are located, parallel to the xy-
plane, at z=0 and z =a (Fig. 2). We also introduce ini-

tially a massless scalar field y ("scalar photon") as shown

electron

= z

FIG. 2. Propagation of an electron between parallel conduct-

ing plates, located at z=0 and z =a.
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in Fig. 3. We assume that the field qr satisfies the
boundary conditions

I/m

I/m

y(z =0)=y(z =a)=0, (2.1)

and therefore that p(z) can be expanded in terms of the
eigenstates ("standing waves"),

(a) (b)

sinq, z, q, =(n/a)n, (n, =1,2, . . .).

These replace the ordinary plane-wave solutions,

(2.2a)

I/m t

——I/m

——
I /m

e ', q, =(2rr/L)n, (n, =0, +1,+2, . . .), . (2.2b) (c) (d}

where I is the length of a usual quantization volume
(L~ ac ). Naturally, in the x and y directions, the plane-
wave solutions are always used:

e, qr (2m. /L)——(n„,n~ )
(e)

——I/m

- ——I/m

' I/m

I/m g

——I/m

———
I /m

' I/m

(n„,ny ——0, +1,+2, . . . ) .

Accordingly, the usual y propagator

D(x x ) ( i) q iq(x —x)d ~ ].

(2 ) q —i0

is modified to

(2.3)

(2.4)

FIG. 3. Diagrams contributing to the electron anomalous
magnetic moment in noncovariant perturbation theory due to in-
termediate scalar photons. The dotted lines denote the virtual
scalar photon y whose wave function vanishes at the plates, lo-
cated at z=0 and z =a. Also shown are the 1/m suppression
factors which arise both from some of the vertices and from en-

ergy denominators (indicated by the horizontal dashed lines). It
should be emphasized that counting powers of 1/m merely gives
the superficial number of powers: In fact the leading contribu-
tions to b,g from diagrams (a)—(c) all vanish. Diagrams (d)—(f)
are of too high an order in 1/m to be of interest. See text for
further details.

00

D(x,x') =( i) I —— —g e'~ — "-. sin(q, z)sin(q, z')
(2m. )3 a „, ' '

q i0— (2.5)

where q=(qo, q„,q~) and q, =(nor/a) We wil. l show in
the Appendix that the sum in (2.5) can be performed ex-

plicitly to yield a closed expression for D in both the coor-
dinate and the momentum representations. In principle
the diagrams in Fig. 3 can be calculated in two ways, us-

ing D and D, respectively, to find their difference b,g. In
practice, however, this approach leads to several prob-
lems, such as unmanageable divergences, and must be
abandoned. The reason for this is that there are two prob-
lems associated with the boundary conditions in (2.1):
One is that they explicitly destroy all of the indispensable
properties of the usual field theory, such as causality and
Lorentz covariance, which are necessary for a consistent
formulation of a relativistic quantum field theory. The
second objection against (2.1) is that it does not physically
make sense for higher-frequency modes of y since y rays,
for example, can easily penetrate a real metal wall. The
first objection is particularly serious because it essentially
implies that there is no consistent formulation of
boundary conditions in the true sense (unless a —+ 0D ). We

I

should instead consider the walls to be a collection of
their constituent particles (predominantly electrons), and a
boundary condition at a wall would then arise as a mani-
festatiori of a coherent interaction of a photon field with a
large number of electrons in the wall. This procedure
would yield correct results, but would be virtually impos-
sible to carry out explicitly.

Although of limited validity, the use of boundary con-
ditions is nonetheless convenient and legitimate in certain
circumstances. It is known, for example, that there are
experimentally verified phenomena, such as the Casimir
effect, ' which can be understood as consequences of
boundary conditions. It thus appears that there may be
particular situations where invoking boundary conditions
may be as valid, at least approximately, as the correct but
tedious procedure outlined above. In the following, we
wish to show that (g —2) is actually one of these exam-
ples. Let us take seriously the second point raised in the
previous paragraph, and assume that the boundary condi-
tions (2.1) are not always valid except for lower-frequency
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modes. Accordingly, a physical cutoff A will be intro-
duced such that the standing waves (2.2a) will be used in
place of the plane waves (2.2b) only for eigenfrequencies co

in the range

co(A . (2.6)

Without a loss of generality, (aA/m) =X can be set equal
to an integer, and then n, in (2.2a) becomes limited to the
region

1&n, &X. (2.7)

Obviously, when the difference hg is considered, the inter-
rnediate photon in Figs. 1 or 3 can be restricted to such
soft photons. Numerically, A will be of order 1 eV, which
is determined by typical values of the plasma frequency
for metals. Thus, interestingly enough, we find a set of
inequalities,

(n/a) «A«m, (2.8)

where (n!a)=(m/I cm)=6)&10 eV, and m=0. 5 MeV
is the electron mass. It then follows that, in the one-loop
diagrams, the electron will always be nonrelativistic.
Since the velocity of the electron is small, the photons can
be approximately considered to travel with infinite veloci-
ty. From the preceding discussion it follows that global
boundary conditions become a meaningful approximation.
In summary, we will employ boundary conditions only on
the low-frequency modes of photon fields, (2.6) or (2.7).
We will then calculate the diagrams in Fig. 3 by old-
fashioned perturbation theory, with a high-frequency cut-
off A for intermediate photons, and with nonrelativistic
kinematics for electrons. In this way, we can avoid the
difficulties with causality and relativistic covariance, in-
sofar as we limit ourselves to the above one-loop correc-
tions.

As was explained in the Introduction, we can roughly
estimate Ag by starting with the soft-photon contribution
tog

m
(2.9)

and then multiplying by the plate contribution (1/aA),
which gives

hg o. A 1 n 1

2 2maA 2ma
(2.10)

4g u 1 ln(2Aa),
2 2 ma

(2.11)

for example, in which case the resulting value of bg
would be larger than (2.10) by a factor =10. In order to
clarify this point, it is necessary to perform more detailed
calculations. We will show, in fact, that the dependence
of Ag on m, A, and a as given in (2.11) is what emerges
from more detailed nonrelativistic calcuIations.

In subsequent sections, Ag will be calculated explicitly

However, in this heuristic method we cannot exclude the
possibility that the plate contribution may also give rise to
additional factors of ln(2Aa). Thus, we may find in place
of (2.10),

as discussed above. In Sec. III the hypothetical scalar
photon will be used, and for this field the nature of the
boundary condition has already been clarified. In Sec. IV,
on the other hand, a similar set of boundary conditions
will be applied to the true photon field, or more specifical-

ly, to the vector potential A rather than to the field-

strengths E and B. Since this is an unusual set of boun-
dary conditions, we add some further discussion. In ele-
mentary electromagnetisrn, it is well known that the
tangential components of the electric field E, and the nor-

mal component of the magnetic field B, should vanish at
the surface of a perfect conductor. In this idealized case,
boundary conditions on the vector potential A will be too
involved to be useful in the present calculation because it
is the derivatives of A (and not A itself) that satisfy sim-
ple boundary conditions. However, we argued previously
that such boundary conditions are simply a phenomeno-
logical method which we use in place of a real and corn-
plicated calculation. Therefore, a simple generalization of
(2.1) to A in the form

A(z =0)= A(z =a) =0, (2.12)

will presumably be acceptable as an approximation. We
thus replace the plane waves in (2.2b) by the standing
waves in (2.2a) in the region (2.6). We note that even in
the microscopic picture, boundary conditions for perfect
conductors are not necessarily realistic, because a real
metal is not a perfect conductor but has a finite electric
conductivity, o. As a result of o, the components of the
electromagnetic field fall off exponentially with a finite
depth from the surface, rather than vanishing exactly at
the surface. (This is known as the "skin depth effect, "
and depends on both cr and the frequency of the wave. )

Since such an exponential damping factor can be passed

on to A through derivatives, at least some components of
A will vanish smoothly. Given the complexity of the mi-
croscopic description, it is not unreasonable to suppose
that the consequences of (2.12) may somehow reflect the
gross features of the true result.

III. CONTRIBUTION TO hg
FROM AN INTERMEDIATE SCALAR PHOTON

In this section, hg wi11 be derived when the intermedi-
ate state is the hypothetical'scalar-photon field y. Fol-
lowing the discussion in the Introduction and Sec. II, the
one-loop correction will be obtained (Fig. 1), with the pho-
ton momentum cutoff A, and nonrelativistic electrons. In
order to take the noncovariance of the system into ac-
count, we use old-fashioned perturbation theory. Al-

though there are a larger number of diagrams to calculate
[Figs. 3(a)—3(f)], the actual manipulations are not as in-

volved owing to the fact that the electron is nonrelativis-

tic. The expression for each diagram can be expanded in

powers of (1/m), or eventually (A/rn), and only the first

one or two lowest-order terms are significant.
We start by studying the effective Hamiltonian density

H,rr= — %t( i)B'0 A+g% , o% B, —(3.1)—2'
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where 4 is the nonrelativistic electron field, which is the
second-quantized version of Eq. (1.3). Of the two form
factors in Eq. (1.2), G& requires a subtraction, while G2
does not. At the same time, in the nonrelativistic limit,
Gi(0) contributes to both terms in (3.1), but G2(0) contri-
butes only to g. Therefore, as a direct consequence of per-
turbative calculations (without a subtraction), Eq. (3.1)
will read

is another manifestation of the fact that boundary condi-
tions are an incomplete formulation of the problem. We
can avoid this difficulty by specifying that our results are
valid up to possible gauge-noninvariant terms. Corre-
spondingly, we will neglect other possible contributions to
AHd~ such as

g g~p%' %'i 8~A p, g /~pe~;i% Bpo PA/,
a, p a, p

e
H,«= — g% ( i—) O'Ii A.

2m

4 (BXA).o~(g —2)
2

(3.2) .

and obtain b,g only, which is defined in (3.3). Since hg in
(3.3) deviates from zero only between the plates (i.e., in the
region 0(z(a), the (integrated) effective Hamiltonian
H,g~ is given by

AH, «= f, d xb,K,«. (3.4)
where g—=Gi"'" (0). In the presence of the plates, H,«
will deviate from this by

aH, «= — ' g ag.pe'( i.)a.e~—p
2P?l p

et..„(ap~, )~,e ,
ap ap2

For the purposes of calculating ~,«and b,H,«, it is suf-
ficient to introduce a field p which effectively exists only
between the plates. Correspondingly, the interaction
Hamiltonian of y reads

V~~
———g f, dxgPy, (3.5)

compared to the true photon interaction,

(3.3)
V~& ———e f,d x PiyP A. . (3.6)

due to the intermediate field y satisfying the boundary
conditions (2.1). One unavoidable consequence of (2.1) in
(3.3) is its noninvariance under rotations, which is not a
problem by itself. A more serious problem, though, is
that (3.3) consequently becomes gauge noninvariant. This

When we view y in this way, we should always take the
difference between the plate and the vacuum results.
Specifically, the sum over the ip spectrum means that for
any function f(q)

gf (q)~g' f(q) —= f dqTf dqf(q)X X f(-.)-
nx, n&

———oo nz =

L OO

z f d qT g f(q) ——f dq, f(q)
"z —'

(3.7)

Moreover, these sums and/or integrations are limited by
the cutoff A since q (A . (See Sec. II.) Furthermore,
we will choose the following normalizations for the states:

element of b.H,&&

((p+k/2, s')
~
SH,« ~

(p —k/2, s), (k, e) &, (3.10)

1 particle/L, for e and y,

I particle/L, a, for y,
(3.8)

which has the structure

2La —e~
L9~2 2m ~ V'2ka, p

so that the corresponding matrix elements become

(0~ A(x) i(k, e)}=L e'"'"(e/V'2m),

(0~ g(x)
~
(p,s)}=L '~'e' *u(p,s),

(3.9a)

(3.9b)

(0
~
p( x )

~ q ) = (2/L a)'~ e sin(q, z)
(3.9c)

where e = e(k, A, ) is the polarization vector of a photon
with momentum k and polarization A, , and u(p, s) is a
Dirac spinor for an electron with momentum p and spin
S.

In what follows, we will consider a particular matrix

hg

.py

ikpe rioj g, (3.11)

~2jE,co-,e I
= ' P,k, qP' k' q 2m' (3.12)

as a consequence of the preceding definitions and normal-
izations. The general expression in (3.11) can then be
compared to the specific results obtained from the dia-
grams in Fig. 3. %'e will denote the energies of the elec-
tron, photon, and scalar photon with momentum p by
( m +E- ), co, and e, respectively, where
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We note that among the diagrams in Fig. 3, (a), (b), and
(c) are superficially of order (1/m), (1/m ), and (1/m ),
respectively, while (d)—(f) are at most O(1/m ), and are

therefore negligible. Consider next the diagram of Fig.
3(a) which gives the following contribution to (3.10):

p

I
~ (~ i ~) ~ i —)/TENT~, &

—g
&( d x'e ' ' e sinq, z'

L2a 2q

—ee; ) 2p; —&kje;Jkok

V2k 2m

1
X

+@7~—E ~ —Q~ E~ —+ E~, ~ E—+
g/2 k p '+ k/2 q p-~/2 p

' —~/2

&fter performing the integrations in the x and y directions, we find from (3.13) th«xp«ssion

I. a —e

(L, 'i')' 2m v'2k I.'a'

(3.13)

(3.14)

which is multiplied by

g (2pi' ikj e—(p, o'k )X,
2q

and by the same energy denominators as in (3.13). Here pT becomes (pT —qr). When comparing Eqs. (3.14) and (3.11),

we find it convenient to define two functions F and G (after setting k=0) as follows:

2

I dzdz'e' ' ' '
sinq, zsinq, z'

2
=—QF~p(p)pp ~

0
' '

2q (E E,——e )
p p p

a g 1
dz dz' . , —=G(p) .

L3g2 0 2q (E E,—e )—
p p

'
q

(3.16)

In terms of I' and 6, the contribution to hg can be ex-
pressed as

I.a 2 2 2 2

2
Il~. (p. +q. »V. +3q. )S. (3.20)

- (a)
hg =G(0)5~p F~p(0) . —
2 p

(3.17)

Since we wish to expand F and G in powers of (1/m), we
will first take the limit m ~ oo to find the leading terms,
in which case the denominators of Eqs. (3.15) and (3.16)
are simply q . When a=Ix,yI, the integrand of F con-
tains p~ =p~ —q~, in which q~ gives no contribution be-
cause of the symmetric d qT integrations. We thus find

for n =0, 1,2, 3, . . . , respectively. For the present case,
i.e., n = 1, (3.20) tells us that p,

' can be effectively replaced
in the integrand by p, . Consequently, Eq. (3.18) is valid
for all a and p, leading to the conclusion that bgI'~=0 in
the leading order of (1/m). The next-leading results can
be found from the second term of the expansion,

1 1 1 +O((1/m)') .
(q+E, E) q —m q

P P

a 2

F p(p)= g'g f dzdz' 5 pL a 2q
Pz For a = jx,y I, we find in the integrand

(3.21)

G(o)(p ) (3.18) p ~pa=(ps pz +qr 2qTpT)(p—~ —q )—
for Ia,p) = I x,yI. To find the result for a=z, we need to
calculate

I
Pz

i(p' —p) (z —z')
dz dz'e * sinq, z sinq, z'(p,' )",

0
(3.19)

where n=1 in this case. For later purposes, however, we
study (3.19) for more general n. We perform the sum
first, finding nth derivatives of 5(z —z'), and then carry
out the d z integrations. The results are

4"—p.'+2q ')p. (3.22)

where the symmetric d qT integrations are taken care of
beforehand. Combined with Eq. (3.20), this gives

—1 g ~, qz qr( '+2 ')
t 12 2 4a I q

for (a,P) =(x,y) . (3.23)

For a=z, similar operations lead to
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l2
(p —p )p (p p +qT )p* Similarly, we find

yielding

[(p.'+ 3q.') p.—'+qT']P. , (3.24)
6(1)( )

g ( 2 2)

2a 2m q4
q

(3.26)

F(1)(~)(1) 1 g, (3q.z+qT2)

q

(3.25) and hence

Ag
2

p

2

a 2m q"
q

l 2 2 2'+o
4

for (a,P)=(x,y),

1
for a=P=z,

m

(3.27)

with the other components being at most O((1/m) )
The remaining two diagrams shown in Figs. 3(b) and 3(c) give the matrix elements

2,
(b)=[the same factors as in Eq. (3.14)])& X cr ( —p' —p —k)o;X

2q
' E —E —e

p —k/2 p
' —k/2

X E —E —E, —E, —2m
p —k /2 p + k /2 —p

' —k /2 p
' —k /2

2

(c}=[the same factors as in Eq. (3.14)]X Xt(T;0"( —p
' —p+ k)X

2q E - +co-—E, —e
p —k/2 k p '+k/2

(3.28}

(3.29)X —E, —E, - —2m
k —p '+ k /2 p '+ k /2

where pT ——PT —qT. Since both (3.28) and (3.29) already contain an overall factor (1/m ), as seen from (3.14), the limit
m ~ oo can be taken in the remainder of these expressions. Apart from the kinematical structures, we find an equivalent
expression from both (b} and (c), after taking k =0. The kinematical terms sum to

—(p'+p +k)Jojo; —(p'+p k)go(—(rj. ———2(p'+p);+if(JI, (2kJ )ok .

Thus, if we define F and G by

(3.30)

p = XF ~(p)p~
P

0 i(p' —p), (i —~'), —gdz dz'e ' sinq, z sinq, z'
zI. a 4mq

q p 1=6(p),
(3.31)

- (b)+(c)
Ag
2

p
=6(0)5~p —F~p(0) . (3.32)

F p(p)=& pG(p),
which leads to

. (b)+(c)

(3.33)

Ag
2 p

=O((1/m) ) . (3.34)

Finally, we carry out the q summations and/or integra-
tions. The previous results show that the single diagram

The structures of F and 6 in Eq. (3.31) are quite similar
to those of F' ' and 6' ' in (3.18). Hence a similar
analysis applies to show

~ (a)
hg +O((1/m ) ),
2 p

where bg" is given in Eq. (3.27). The precise form of the
"sum" g' is given in Eq. (3.7), where

hg
2 p

(3.35)

2

f(q)=
mL2a q2

2

for (a,f3)=(x,y),
q

(3.36)

g 2'f(q)= ', for a=P=z .
zmr. 'a q4

We first carry out the integration over qT in (3.7) which
gives

I

in Fig. 3(a) gives the dominant contribution of order
(1/m),



2364 EPHRAIM FISCHBACH AND NORIO NAKAGAWA

1- & 2 1

2+P2 ( 2}tl ~ 2 (q2}ll
d(q )

The integrals in (3.38) are elementary, and the sums can
be carried out using the following relations:

2& ln
A

qz

1 1

q, A

for n =1,
(3.37)

for n =2.

Using (3.7) we can now write g'f ( q ) in the form

N q
2

N

g ln
n =1 qzz

n =1z

2n,

pf 2

=gin
n =1

(N + 1)(2N + 1)
6X

(3.39)

g'f(q}=
2mL a =N lnN —1nN! =N —

2 ln(2mN), (3.40)

a
X $ (. ) —— dq(. . )

n =1
where in the last step use has been made of Stirling's for-
mula,

(3.38a) in%!=X in% —X+—, 1n2mX . (3.41)
where

2

m, 21n —1+, for (a,p) = (x,y),A qz

qz

We can eliminate N in terms of A by using (2.7} in the
ofm

(3.42)
~ ~ ~

2
q,

2m 1—,for a=P=z .
A

(3.38b)
Collecting the previous results together we can write the
final result in the form

hg
2 p

2

6 p
—g 1

4m 2ma
—g 12

4m. 2m a

ln2aA ——,', for (a,P) =(x,y),

for a=P=z .
(3.43)

The result (3.43) shows two important features: One is
the overall factor (1/ma), which is expected on the basis
of the heuristic arguments given in the Introduction. The
second is that the xx and yy components have an addi-
tional factor of 1n(2aA) which can enhance the effect by
approximately one order of magnitude. It should be noted
that this logarithmic factor is revealed to exist for the
first time by the present explicit calculations.

IV. CONTRIBUTION TO hg FROM
AN INTERMEDIATE VECTOR PHOTON

I /m

I/m

I/m i

I/m

——I/m

I/m

(b)

—I/m

——I/m

I/m

——
I /m

In this section we generalize the previous formalism for
scalar photons to true photons. As discussed in Sec. II,
we assume that the boundary conditions (2.12) hold for
the low-frequency components of A, noting that, in any
case, this formulation and its consequences make sense

only as an approximation. In certain situations, such as
when a superconducting cavity is used, the boundary con-
ditions (2.12) may be even more plausible.

Once we assume Eq. (2.12), their application becomes
relatively straightforward, except that in this case the
photon field itself induces hg. For convenience, we will

separate the photon field explicitly into two parts: One is
the normal part which is not new, and the other is a com-
ponent which exists only between the plates, and which
thus represents the difference between the plate and the

(c) (cI)

I/m &

——I/m ———I/m

- ——
I /m — ——I/m

)

(e) (f)
FIG. 4. Diagrams contributing to the electron anomalous

magnetic moment due to intermediate vector photons. These
are the noncovariant versions of the diagram in Fig. I, but with
an assumption that the wave function of the intermediate pho-
ton vanishes at the plates. See text and caption to Fig. 3 for fur-
ther details.
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usual vacua. With this convention, we obviously attach
the normal part to the external photon vertices of Figs. 1

or 4. Naturally, this component has the ordinary normal-
ization and gives momentum conservation at the respec-
tive vertices. On the other hand, since we are interested
only in the difference hg, the internal photon lines in
those diagrams should evidently correspond to the other
part of the photon field. Note that we omit the instan-
taneous Coulomb interaction, since it gives the same con-
tribution with or without the plates, and hence makes no

I

contribution to hg. It can be seen that in this way all that
is required is to repeat the previous calculations in a
manner similar to Sec. III, except for the appropriate
changes in the vertices in going from scalar to vector pho-
tons.

Among the graphs in Fig. 4, (a), (d), (e), and (fl are all
negligible, since they are at most O(1/m ), and only (b)
and (c) can yield O(1/m ) results. In fact, the last two
diagrams give explicitly

(b) = [the same factors as in Eq. (3.14)]

e CJCk
X & k

— X a cr;[(p'+p —k)k i (p' —p)&ekipg—&q]XJ 2 J

1

E —E —E, —E, —2m E —E, —co
p —k/2 p+k/2 —p

' —k/2 p
' —k/2 p —k/2 p

' —k/2 q

(4.1)

(c)= [the same factors as in Eq. (3.14)]

e CJMk
~jk 2 ~ [(p +p +k)j i (p p )lejlniTtl]aiiTk~

2g' q

X E +co —E, —co co —E, - —E, —2m
p —k/2 k p '+ k/2 q k —p '+k/2 p '+k/2-

(4.2)

where pT ——pT —qT. As in Sec. III, we take the limit m ~ oo [except for the overall factor (1/m )], as well as taking
k=0 (except in the kinematical structures). We then find an equivalent expression from both (b) and (c), with the excep-
tion of the kinematical terms which can be summed to yield

[(&i; qie, /tl')p—»+(p' p) ]+2 e—jl(~jk Qj9'k/9 )kkai (4.3)

Repeating the previous discussion, we can similarly show that (p —p); gives no contribution. Namely, for i =(x,y I,
(p' —p); is equal to ( —q;), which vanishes after the symmetric d qT integrations. In ad'dition (p,

' —p, ) gives no contri-
bution because of (3.20). We thus find that the sum of Eqs. (4.1) and (4.2) is given by

La —e &a 7 I~p2pp+ QIprle~p;kro'; 7 ) (4.4)

where

2 i (p' —p) (z —z'), 8I p(p) = g' g dz dz'e ' sinq, z sinq, z'
2

5 p—
L a 2m/

pz

The difference b,g is related to I p by

hg = —2I~p(0) .
.aP

After calculations similar to the previous ones, we finally find

9'a9'P
(4.5)

(4.6)

bg
2 p

e 1
5~p (ln2aA+ —, ), for (a,P) =(x,y),4m. 2ma

e 1
(ln2aA ——,

'
), for a=g=z .

4m. ma

(4.7)



2366 EPHRAIM FISCHBACH AND NORIO NAKAGAWA 30

Again, the result in (4.7) exhibits the characteristic form
discussed in the Introduction.

Before drawing any conclusions from the results in
(4.7), we should remind ourselves of one of the difficulties
mentioned previously, namely, that the result in (4.7) is
clearly not gauge invariant. (See also the discussion in
Sec. VI below. ) One might suspect that this arises because
we impose boundary conditions on the gauge-noninvariant

vector potential A as in (2.12). This suspicion, however,
leaves unanswered the question of why the scalar-photon
result in (3.43) shows a similar behavior. This problem is,
therefore, most likely a direct consequence of the rotation-
al noncovariance of the boundary conditions (2.1) and
(2.12), and hence unavoidable in the present formulation.
In the detailed microscopic formulation which we
described in Sec. II, every interaction would be gauge in-
variant, and thus the final result would also have to be
gauge invariant. Given these uncertainties in the calcula-
tion, we can summarize this discussion by observing that
in the presence of the plates we expect an additional con-
tribution to g which is proportional to 1/ma, where a is
the typical dimension of the apparatus and m is the elec-
tron mass. The proportionality constant cannot be ob-
tained in a theoretically unambiguous way at the present
time, due to the- lack of more detailed and reliable calcula-
tions, and thus requires experimental determination.
Nonetheless, the model calculations given here suggest
that bg may likely contain logarithmic enhancement fac-
tors, as shown in (3.43) and (4.7), and hence may be as
large as 10 ', which should be a detectable effect in the
near future.

V. REGENERATION OF COHERENT KAONS
IN EMPTY SPACE

We discuss in this section another consequence of the
modified electromagnetic spectrum in the region between
two parallel plates. Consider the eigenfunctions of the
K Ksystem in the r-egion 0&z (a. In the absence of
the plates the free-space eigenfunctions are

I
KL) and

I
Ks ), which are the linear combinations'

IKL&=( Ip I'+ q I') '"(p IK'&+q IK'&),

IKs&=( Ip I'+ Iq I') '"(p IK'& —q IK'&)
(5.1)

The CP-violating parameter e is given in terms of p and q

by

@=1—q/p,
I

e
I
=(4.548+0.044)X10

and the complex EL -K~ mass difference is

i (mL ms)+ 2~ (I L I s)=. hm (t —1)=2pq

(5.2)

(5.3)

where mL s and I L s are the masses and widths of KL s.
The mixing of

I

K ) and
I

K ), which leads to the eigen-
functions

I
KL) and

I
Ks), arises from the existence of

I
~

I
=2 transitions, such as the one-photon and two-

pion contributions shown in Fig. 5.
Consider now what happens in the presence of the

plates, located at z=0 and z =a. From the preceding dis-
cussion of (g —2) we note that the photon spectrum, and

K

K

hence the photon propagator, is modified in the region
0(z&a, which leads in turn to a change in the one-
photon contribution in Fig. 5(a). At the same time, how-
ever, other contributions to the E -K transition ampli-
tude, such as the 2m contribution shown in Fig. 5(b), are
not modified since the pion field is presumably not con-
strained by any boundary conditions at the plates. It fol-
lows that, in the presence of the plates, the relative contri-
butions of the various diagrams which determine p and q
are different from what they would be in the usual vacu-
um. Although the additional contribution from the plates
is CP-conserving, its effect in the presence of an intrinsic
CP violation is to change the relative strengths of the
CP-violating and CP-conserving amplitudes. This in turn
implies that in general p and q will be modified to some
new values p' and q', respectively, and hence that

I
KL &~

I
KL & and

I Ks & ~ I
Ks ) Thus the physical

consequence of the presence of the plates is that the E-
E eigenfunctions in the region 0 (z (a are different
from what they would be in the usual vacuum. In a sense,
the empty space between the plates acts as if it were a ma-
terial medium.

Suppose now that a KL beam is incident from the left
on the plate arrangement shown in Fig. 2. Upon leaving
the first plate at z=0, the kaon wave function

I
%(0))

can be written in the form' '"
Ie(0))= IK, )+p IK, ), (5 4)

where p is the usual regeneration parameter, which
characterizes the regeneration of

I Ks) from
I
KL ) in the

left plate via the strong interactions. For a (thin) plate of
thickness L, p ~L, and

I p I
&& 1. Let us then assume for

simplicity that L, has been chosen sufficiently small that
p=p(L) is negligible in (5.4). Then

I
%(0)) =

I
KL ) =

I KL ) +r'
I
Ks ), (5.5)

where r is the plate contribution arising from the modifi-

{b)
FIG. 5. Contributions to the EC -E transition matrix ele-

ment. (a) The one-photon contribution which is modified by the
presence of the plates. (b) The two-pion intermediate state,
which is left unchanged by the plates. Because the plates affect
some, but not all of the intermediate states, the eigenstates of
the X -E system in the vacuum between the plates can be in
principle different from those in the plate-free vacuum.
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cation of the photon propagator. The
I

EL, ) and
I
&s )

components now propagate from z=0 to z =a with their
characteristic time dependences, with the result that the
wave function of the system at z =a is given by

A
I rsofi I

=~
mg

(5.7)

where mx is the kaon mass. When the modification of
r,',f, due to the plates is taken into account, the plate spac-
ing a can in principle enter through dirnensionless factors
such as I/mx. a, 1/Aa, and 1/b, m a, where
Am =(3.521+0.014)X 10 eV. However, even the larg-
est of these factors, which is 1/b, m a, leads to a value of
r' which is too small to be detectable by present experi-
ments. To amplify on this we note that

I/hm =5.60 cm, (5.8)

so that I/hma=5. 60 for a= 1 cm. This leads to an esti-
mate of r' which is of order

Ama mg Ama
=8X10 " (5.9)

for A=1 eV. The situation is somewhat improved by not-
ing' that the IC Esystem rem-ains coherent for dis-
tances of order y/bm, where y =Ex/mz is the usual rel-
ativistic factor. If this coherence could be utilized the
plate contribution might be of order y/hm a, and the es-
timate of

I

r'
I

in (5.9) might be correspondingly
enhanced. Under these circumstances we might expect

I

r'
I
=2X 10 for 100-GeV kaons in Ref. 10, and

I

r'
I

=2X10 for 10-TeV kaons at the planned Super-
conducting Super Collider. It should be emphasized,
however, that the use of 1/b m a for the plate factor leads
to the most optimistic estimate for

I

r'
I
. In the more

likely case that the plate factor is 1/Aa,
I

r'
I

would be
correspondingly reduced.

These estimates of
I

r' I, and hence of the magnitude of
the empty-space regeneration effect, have an important
bearing on the results of Refs. 10 and 11. Since the plates
in this analysis (which represent in a simplified way the
experimental apparatus) are fixed in the laboratory, their
spacing and their coupling to the virtual photons in the
kaons, would lead to energy-dependent effects as seen in
the kaon proper frame. If the energy-dependence of 4m,
~q, and g+ suggested by data of Refs. 10 and 11 is con-

/=L/As

where A~ ——yv~& is the kaon mean decay length, and

vs ——I/I" s is the lifetime of Ks. We see from (5.6) that
'the effect of the modified photon propagator is to regen-
erate a coherent

I
Ks) component from

I
KL ) in the

empty space between the plates, much as a material medi-
um would in the same region.

We can estimate the magnitude of r' in (5.5), and hence
p', by arguing in analogy to Eq. (1.7) that a typical soft-
photon diagram in Fig. 5(a) will give rise to a contribution
to r' of order

firmed by other experiments, the empty-space regenera-
tion effect could in principle have been a candidate for the
source of these effects. However, what the preceding
analysis demonstrates is that the empty-space regeneration
is in all likelihood far too small to have shown up in the
existing data. It follows that if the energy-dependent ef-
fects suggested by the data in Refs. 10 and 11 are real,
then their origin lies somewhere else, perhaps in a new
long-range force or medium.

,'(bg) pe;J—krak;4 oj+, (6.1)

which vanishes if (hg)~pcc5~~, but not generally other-
wise. As noted in Sec. III, this difficulty is not a conse-
quence of imposing boundary conditions on the gauge-
noninvariant vector potential A, because the same prob-
lem arises for the contribution from the scalar photon, for
which these boundary conditions would be justified.
Presumably the origin of this problem is the fact that the
boundary conditions are not rotationally covariant, which
leads to the consequence that (b,g) ~ is not isotropic. It is
reasonable to suppose that a more detailed microscopic
treatment of the boundary conditions, along the lines pro-
posed in Sec. II, would lead to a fully gauge-invariant re-
sult. This remains to be demonstrated explicitly, but is a
separate problem which is beyond the scope of the present
paper.

We have calculated hg for the simplified case of an
electron propagating between two parallel plates, and have
argued that this should qualitatively simulate the behavior
of the electron in the Penning-trap geometry. It remains,
of course, to actually calculate hg for the experimental

geometry to confirm this suggestion, and to obtain at the
same time the correct numerical coefficients in the ana-
logs of (3.43) and (4.7). Although the quantitative results
for the two-plate geometry suggest that hg may be too

VI. CONCLUSIONS

We summarize in this section the main conclusions of
our analysis, as well as the open questions which remain
to be explored. We have seen that for an electron propa-
gating between two parallel plates, there is an additional
contribution bg to the anomalous magnetic moment g of
the electron, whose general magnitude is given by Eq.
(1.9). The detailed expression for b,g where the virtual
photon is treated as a massless scalar, subject to the boun-
dary conditions (2.1), is given in Eq. (3.43), and the analo-
gous result for vector photons is given by Eq. (4.7). In the
latter case we assume the boundary conditions (2,.12) for
the vector potential, for the reasons discussed in Sec. II.
As noted in Eq. (1.10), the magnitude of bg suggests that
such an effect may be at the threshold of being observed.

There remain, however, a number of unanswered ques-
tions which relate in one way or another to t'he assumed
boundary conditions. Foremost among these is the fact
that the results for hg in (3.43) and (4.7) are not gauge in-
variant, at least not in the usual sense. To be more specif-
ic, gauge invariance of bHcff in (3.3) requires that if we
replace the external photon field A; by the corresponding
photon momentum k;, then EH,ff should vanish. For the
term proportional to (bg)~~ the substitution A; —+k; gives
in momentum space
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small to bear on the comparison of theory and experiment
at the current level of precision, one cannot exclude the
possibility that additional numerical factors may arise in

the calculation of Ag for the Penning-trap geometry
which would change the picture. This is an interesting
possibility to consider in light of the fact that both the
world-average value of g/2, and the most recent deter-
mination by Dehmelt and co-workers,

g /2 = 1.001 159 652 200+0.000 000 000 040, (6.2)

+0.000 000 000 075, (6.3)

by approximately 2 standard deviations. In (6.3) the first
error is due to the experimental uncertainty in the fine-

structure constant a, and the second is due to various

theoretical uncertainties. It is interesting to compare
hg/2 in (1.9) to the various small contributions which are
relevant at the current level of precision in the comparison
of theory and experiment. In terms of a, =(g —2)/2, KL
quote the following results

a, (muon) =2.8 X 10 (6.4a)

a, (r) =0.1X10

a, (hadronic) = 1.6(2) X 10

a, (weak) =0.05 X 10

a, (a )= —23(73)X10
which compare to

(6.4b)

(6.4c)

(6.4d)

(6.4e)

as given in (1.9). In Eqs. (6.4a) and (6.4b) the indicated
contributions are from the muon and ~ loops. We thus
see that the apparatus-dependent contribution to Ag/2 is
in fact comparable to the intrinsic contributions in (6.4).
It is important to emphasize that the heuristic arguments
leading to (1.9) do not fix the sign of bg/2. In fact the
scalar-photon contributions in (3.43) and the vector-
photon contributions in (4.7) have opposite signs. Thus,
there is a possibility that a complete calculation of b,g/2
for the Penning geometry could yield a result whose sign
and magnitude would help improve the agreement be-
tween theory and experiment.

Thus far we have focused our attention exclusively on
the anomalous moment g of the electron, except for not-
ing that the corresponding correction bg (p) for the muon
moment g(p, ) would be 207 times smaller. In addition
the high-precision determinations of g (p) come from ac-
celerator experiments where the characteristic scale a of
the experiments is much larger than 1 cm. These observa-
tions, coupled with the fact that g(p) itself is not as pre-
cisely determined as g (Ref. 13) would seem to rule out
any direct observation of an apparatus-dependent contri-
bution to g(p). On the other hand, b,g is necessarily
energy-dependent, since the geometry of the apparatus
(e.g. , the plate spacing a) which is fixed in the laboratory,
will appear energy- (or velocity-) dependent in the proper

differ from the latest theoretical result of Kinoshita and
Lindquist' (KL),

g/2= 1.001 159 652 460+0.000000 000 127

a, = 1 159 652 193(4)X 10 (6.5)

Comparison of (6.5) and (1.9) indicates that the plate-
dependent contribution bg/2 in (1.9) is now essentially
the same as the nominal precision of the latest experi-
ments, which is 4&10 ' . Furthermore Van Dyck also
announced the existence of a new Penning trap approxi-
mately three times smaller than the present one. For such
a trap, the nominal estimate of Ag /2 would be
-5~ 10 ', and hence the plate-dependent contribution
4g may be accessible experimentally in the very near fu-
ture.
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frame of the muon where g(p) is defined. The calcula-
tion of hg(p) for a relativistic particle is beyond our
present capabilities for the reasons discussed, having to do
mainly with the consistency of the boundary conditions in
such a circumstance, as discussed in Sec. II. However, if
it were to develop that bg(p) was proportional to the rel-
ativistic factor y ( =E&lm& ), or perhaps y, then it could
perhaps become large enough to be detected in a future
high-precision experiment. For this and other reasons it
will be important in the future to formulate a consistent
relativistic treatment of hg.¹teadded. After completing this work we learned of
an earlier paper by Barton and Grotch' ' (BG) which
calculates the change in the magnetic interaction of an
electron in the vicinity of a perfectly conducting surface.
BG do not present a result involving a logarithmic depen-
dence on a cutoff parameter A since they integrate the
photon frequency to infinity, and, moreover, in their
analysis the contribution from any presumed upper limit
(proportional to lnA) multiplies a surface contact term
5'(2z). It is therefore discarded since BG only retain mag-
netic corrections for z&0. In our calculation there are
two plates present, separated by a distance a, and thus the
geometry is different from that of BG. For A= 1 eV and
a=1 cm we find an enhancement factor in the magnetic-
moment-correction calculation of ln(2Aa) = 12, and hence
the contribution from the logarithmic factor is important
both experimentally and theoretically. Since our geometry
and our goal in computing Ag is different from that em-

ployed in Refs. 14 and 15, it is not surprising that our re-
sults differ. We are currently comparing our work, in
which A has the physical value of =1 eV, with Refs. 14
and 15 which take A~ao. We note in passing that for
A »m our results in (3.43) and (4.7) are no longer valid,
since they were derived under the assumption that
A &~m. Likewise for A —+0 the use of Stirling's formula
in (3.41) would also not be valid: In that case the sums in
(3.39) and (3.40) can be done directly and lead to b,g=0 as

expected. These and other more recent results will be
presented elsewhere.¹te added in proof. At the Ninth International
Conference on Atomic Physics (ICAP-IX, Seattle, 1984) a
new result for a, was announced by R. Van Dyck:



30 APPARATUS-DEPENDENT CONTRIBUTIONS TO g —2 AND. . . 2369

for many stimulating discussions. This work was sup-
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APPENDIX

In this appendix we derive the closed expression for the
modified scalar-photon propagator in (2.5). First, the lo-
cation of the plates is shifted from (O, a) to ( —a/2, a/2)
for convenience. Taking the Fourier transformation of
(2.5) in the x and y directions, we find

1 " . no. a . nm. , aD =— g sin z +—sin z'+ —,

a „„a 2 a 2

(Al)
q2 (—n~/a) A—+i 0

where a mass A is introduced for convenience. We then
perform a Wick rotation, and choose (n/a) as a unit of
energy. Equation (Al) thus becomes

g t 7TD= +sin n z+ — sin n z'+—
2 2

[n +q +A]

OO

[ein(z —z')
( 1)n in(z+z')] dye

—4(n +q +& )

2~ 0
n = —oo

(A2)

where the denominator has been exponentiated. The summations in (A2} can be carried out by utilizing the well-known
elliptic 5 functions of the zeroth and the third kinds

1)neiznvn+inrn y (V r) -g ei2nvn +i zion (A3)

Other than their obvious periodicity in v, 80, and 53 have several important properties, one of which is that their Laplace
transforms with respect to t—: iv /—m are elementary functions:

80(v, imt)~ . . for ——, &v& —,, 53(v,imt) + — for 0&v&1 .cosh2vv p ) ( . cosh(2v —.1)v p (A4)
p sinh p p sinh p

Consequently, the first term in the square bracket of (A2) becomes

pn2+z&) " ~ gz&~ z —z' ig 2 cosh[( iz —z
i

—m)&]e'"' '
mA sinhmA

(A5)

where A =q +A . The second term similarly yields

z+z' if 2 cosh[(z+z')2]
d e 5o p 7T

2m vr mA sinhmA
(A6)

Combining these results, and reinserting the correct dimensional factors, we find

cosh[(
i
z —z'

i

—a)(q2+A )'i ]—cosh[(z+z')(q2+A )'i ]
D =( i)—

2(q 2+ A }'i sinh[a (q 2+ A )
'i ]

in the mixed representation. To return to the Minkowski metric, we simply make the replacement,

' —0)'"
When a ~ oo, (A7) reduces to

(AS)

D=( i) —exp[ —iz —z'/(q +A )' ]
2( 2+ A2)1/2 (A9)

(Al 1)

as expected, which is the ordinary propagator in the mixed representation.
Next, we will transform (A7) to the momentum representation by carrying out the following operation on (A7):

I dzdz'e ' * X(A7) . (Alo)

The first term in the numerator of (A7} is a function of g=—z —z only and hence, after an appropriate change of vari-
ables, we find an expression such as

Thus, we will define for convenience

5, (q) =— dz e'~'—: ~ 5(q) .
1 'i;, sin(qa /2)

—an mq a~~ (A12)
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Here, 5, (q) is approximately a 5 function and yet is slightly different from 5(q), due to its dependence on a. Equation
(Al 1) can then be written explicitly as

D=2ir5, (q, —q,
'

)2 J dgcos[(q, +q,' )g/2)cosh(g —a)(A2 —q~ —i0)'r2

—L

X
2(A —q2 —i()) ~ sinh[a (A2 q i()) ~2]

The dg integration is elementary using

2 cosP coshQ =cosh(Q +iP)+ cosh(Q —iP) .

We find for the first term in (A7)

(A13)

(A14)

2ir5, (q, —q,
'

)
A —q2+(q, +q,' ) /4 —i0

Similarly, the second term in (A7) leads to

q, +q,' sin[(q, +q,' )a/2]
1+

2(A q2 i—0)'~—sinh[a (A q2 —i 0)'—~ ]
(A15)

—2rr5, (q, +q,' )
A —qi+(q, —q,') /4 i0—

I I I

X cos a +, coth[a (A —q i 0) —]sin aq, —q,
2(A —q2 —i 0)'~

(A16)

2'(q, —q,
'

)
A —q —&0

(A17)

and the sum of (A15) and (A16) is the final expression for
the modified propagator D in the momentum representa-
tion. When a~oo, (A15) reduces to

as it should, and (A16) vanishes in the following sense:
(A16) depends on a through factors such as sin(aX) or
cos(aX), and when they are included in the Feynman in-

tegrand, their contributions vanish in the limit a —+ oo by
virtue of the Riemann-Lebesgue theorem.
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