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We apply a recently proposed chiral-Lagrangian model to discuss the anomalous (unnatural-

parity) decays of the low-lying vector and axial-vector mesons. First, about twenty "SU(3) relatives"
of the co~3m and co~a y processes previously treated are investigated. The results confirm our
confidence in the reliability of the method employed. We then claim that the obscure reaction
D(1285)~pew is an important prototype for studying anomalous processes which do not go through
a vector-vector-pseudoscalar vertex. The present model based on a gauging (with phenomenological
fields) of the Wess-Zumino term gives a reasonable description of this decay. It also suggests the
suppression of processes like axial-vector meson~vector meson plus photon. In the course of this
work we take a fresh look at the 3&-p-m system in the chiral-Lagrangian framework. We note that
it is possible to explain together the 3

&
mass apd the widths for 3

&
~pm. , p~2m. , and A ~

—+my.

I. INTRODUCTION

It seems generally accepted that regardless of what ap-
proach turns out to be best suited for describing QCD at
low energies, the results should be describable by a chiral
effective Lagrangian. In the limit of vanishing energy the
relevant fields are members of the pseudoscalar' nonet.
The resulting o.-type models have been widely discussed in
the literature. Recently Witten' has revived interest in the
Wess-Zumino term of this Lagrangian which is related to
the non-Abelian flavor anomaly and which gives pseudo-
scalar vertices proportional to the Levi-Civita symbol

e»~p. The simplest purely hadronic reaction mediated by
this term is of the rather complicated type EX~3m.
Thus, it is very interesting to extend the chiral Lagrangian
by introducing additional fields and to study vertices pro-
portional to e»~p. This extension should also increase the
range of validity of the chiral Lagrangian away from zero
energy up to 1 GeV or so.

The "classical" approach to this problem involves
maintaining the chiral symmetry in a straightforward way
by introducing vector and axial-vector mesons. This type
of model was of great theoretical interest about fifteen
years ago. Very recently, it was applied to the case where
the Wess-Zumino term was present. The resulting
description of the decays of the vector meson co is quite
promising. In the present paper we would like to further
investigate that model. Before starting, it may be helpful
to make some brief remarks to avoid confusion relating to
the history of this subject.

In the effective-Lagrangian approach a truncation of
the spectrum is of course necessary. For simplicity the
scalar mesons will be neglected. (They could easily be in-
cluded by using the linear rather than the nonlinear spin-
zero-meson realization. ) The vector mesons could also be
chosen to transform nonlinearly under chiral transforma-
tions (this approach will in fact be given elsewhere ), but
in the present context the presence of axial-vector fields
seems very natural. Assuming that one has agreed to con-
struct a chiral Lagrangian out of the 0, 1, and 1+ no-

nets, how should the interactions of the spin-1 fields be
introduced? It seems almost inescapable to introduce
them in the most symmetrical way possible and then to
add additional terms to reduce this symmetry, if required
by phenomenology. The most symmetrical way possible
to introduce spin-1 nonets seems to be as gauge particles
of chiral U(3) XU(3). The minimal additional terms
which break the gauge symmetry but preserve U(3) )&U(3)
are degenerate mass terms. There is a priori no need for
the model to be renormalizable. It is certainly not a fun-
damental gauging, but, on the other hand, it does not
seem to be in conflict with the underlying fundamental
color gauge theory. It is natural to ask why, if there is
nothing basically wrong with it, this approach to extend-
ing the chiral Lagrangian has fallen out of favor. There
seem to be two reasons: (i) The most general gauge La-
grangian contains, especially if SU(3)-symmetry breaking
is taken into account, a fairly large number of terms. The
fitting of the arbitrary parameters to experiment is thus
rather difficult. [On the experimental side, the parame-
ters of the 3

&
meson have been steadily changing over the

last fifteen years. (In the Particle Data Group table its
mass is now given as 1275 MeV rather than 1090 MeV. )]
(ii) A belief somehow developed that an approximate
gauge symmetry at the effective-Lagrangian level was in
conflict with the fundamental color gauging.

The point of view we shall take is that the approximate-
ly gauged chiral model is a useful way station on the road
to finding the complete low-energy 2',rf. The terms pro-
portional to e& ~p seem to have a more unique structure in
this approach than the others and deserve special study.
Two aspects of this program will be studied here: In Ref.
4 it was argued that the terms in W,ff responsible for the
decay co~a.+m m are the two anomalous ones

gvv~e„„pTr(d—"V"d V~/),

ih e„„pTr(VI'r)"QB ——Qd~Q) (1.1)

(~0123 + 1 )

as well as the ordinary one,
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W~N ———Tr(V„p "p) .
2

(1.2)

Here V& is the vector-meson-nonet matrix and P the
pseudoscalar-meson matrix (a tilde is being dropped for
simplicity). g is the gauge coupling constant determined
from the p-meson width. The gauging of the Wess-
Zumino term gave the interesting prediction for the VVP
coupling constant,

gvs
3g (1.3)

16m F

~EM
vie 2 0 1 2

Ap mp pp+ 3 m~ cop—
/

vz
mp Pp

(1.4)

As has been extensively discussed in the literature, this,
simple model can explain a large amount of experimental
data. From our point of view it tends to support the va-

lidity of the present approach. The new features include
the use of (1.3), the computation of E*~Knm, and the
use of a current-algebra-type symmetry-breaking ansatz
which might help to explain E*—+Ey. In Sec. II, we also
compute g and g'~mwy both by standard current algebra
(no spin-1 particles) and with the inclusion of poles. The
results for q'~~m. y provide a dramatic demonstration of
the need to take vector-meson poles into account when
working at energies close to 1 GeV.

One might argue that the. work above mostly tests the
nonet model in conjunction with the VVP vertex. It is
clearly desirable to study anomalous processes mediated
by different pieces of the gauged Wess-Zumino term. It
seems that the most accessible reaction is the decay of the
D(1285) (the axial-vector co) into a p meson and two
pioris. This decay is the proper axial-vector analog of
co~3m. From Eqs. (6.5) and (4.18) of Ref. 4 we extract
the axial-vector analog of the VVP term,

(1.5)

Here A is the physical axial-vector-meson matrix. y is

where F =135 MeV is the pion decay constant. The
coefficient h of the VPPP term was also predicted to be

2 2 2Fg F gh=
3

1 —
4

2m F mp mp

and turned out to give only a small contact contribution
to co~3m. Notice that the VPP interaction in (1.2) is tak-
en to be of minimal type. In the present framework this
corresponds to a particular choice of parameters as we
will discuss in Sec. III. We adopt this choice because it is
the simplest possibility. (It is also the one which emerges
when the vector mesons are taken to transform nonlinear-
ly, axial-vector mesons not being present. This case will
be treated elsewhere. ) In Sec. II, we will study the nonet
partners of the prototype processes m ~2y, co~a. y, and
co~3m. treated in Ref. 4. This will be done using (1.1),
(1.2) and (1.3), as well as the usual vector-meson —photon
coupling prescription

an additional small correction to be discussed in Sec. III.
It is amusing that the coefficient in (1.5) is one third of
(1.3), reflecting the chiral U(3)XU(3) breaking in the
gauged Wess-Zumino term which satisfies the Bardeen
form of the anomaly. There is also an anomalous contact
term. To do the calculation one finally needs the
nonanomalous A VP vertex. This requires a detailed
analysis which is carried out in Sec. III. There we show
that the general gauge invariant (up to mass terms) chiral
Lagrangian contains a sufficient number of free parame-
ters to fit both the p and 3 q widths. Neither the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation, ' the Weinberg relation, " nor any relation be-
tween the two follows from chiral symmetry alone. As a
general check on vector dominance in the axial-vector-
meson region we note that it gives a value for
(A &+ ~m. +y) in agreement with the recent measurement. '

The calculation of D~pm~ is carried out and discussed
in Sec. IV. The agreement with experiment seems reason-
able, considering the experimental uncertainties and
theoretical simplifications. It is also pointed out that the
model predicts a number of unnatural-parity radiative de-
cays of the axial-vector mesons to be suppressed.

Finally, in Sec. V, we briefly discuss a speculative ex-
tension of the gauged Wess-Zumino term and also two re-
cent related papers. ' '

Some aspects of the present model would seem to war-
rant additional discussion. The first is that we are treat-
ing all particle families to be nonets rather than octets.
One might wonder whether the U(1) problem is being tak-
en into account since the q' meson is being treated in a
similar way to the pseudoscalar Goldstone octet. Howev-
er, for the nonanomalous part of W,rr it can be shown (see
the second footnote of Ref. 4, for example) that the
present treatment respects the anomalous U(1) Ward iden-
tity and becomes exact in the large-N, limit. We would
like to stress that this situation is unchanged in the pres-
ence of the gauged Wess-Zumino term (satisfying either
the left-right-symmetric or the Bardeen form of the
anomaly). This is because, as briefly remarked in Ref. 4,
the gauged Wess-Zumino term constructed with nonet
pseudoscalar, vector, and axial-vector fields is invariant
under global U(1)z transformations. A second question
concerns the relation of our results to the current-algebra
theorems [i.e., the formula (4.15) with r =0 of Ref. 4].
These theorems should be exact in a world of zero quark
masses (which is expected to imply zero pseudoscalar-
octet masses). To what extent the zero-quark-mass world
approximates the real world can be roughly determined by
comparing the predictions of (4.15) with experiment. At
characteristic energies around 100 MeV (~ ~yy) the
agreement is good. At characteristic energies around 1

GeV the agreement is reasonable for g'~2y but terrible
for q'~a+sr y (In Sec. II th. e current-algebra rate is
shown to be about 3o the experimental rate for this pro-
cess. ) The moral seems to be that to describe processes
with characteristic energies around 1 GeV it is necessary
to go considerably beyond the "soft-pion" theorems. Our
point of view is that a systematic way to accomplish this
goal is to develop an effective Lagrangian for the particles
involved which displays the underlying symmetry struc-
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II. OTHER ANOMALOUS PROCESSES
WITH VECTOR MESONS

It is interesting to explore the "SU(3) partners" of the
reactions co~3~, co~m y, and m ~yy treated in Ref. 4.
This actually is more of a test of the details of the way

SU(3)-symmetry breaking is introduced into the effective
Lagrangian than of the anomalous vertices predicted by
the present model.

First consider the anomalous vector-meson decays of
the type K' —+K~m. . The computation is essentially iden-

tical to that of co~3m in Ref. 4, but there are a number of
different modes. Isospin invariance predicts

r(K" K+~'~ )=r(K-*+-K'~+~'),
r(K"' K'~'~') = r(K'+ K+~'~'),

r(K" K'~+~ )=r(K'-+ K+~+~ ), -
(2.1)

so we can confine our attention to the K'+ decays. The
amplitude for

ture of QCD. Incidentally our formulas for processes in-

volving pseudoscalars and photons reduce to the soft-pion
theorems when the vector masses go to infinity. For pro-
cesses involving spin-1 mesons there are not any rigorous
theorerns which are the analogs of the spin-0 ones. I (K+'~K+n. m )=0.05 (0.03}keV,

I (K+'~K ri+m)=. 20 3(.12.3) keV .

(2.5)

The values in parentheses are obtained by dividing by
(Fz/F ) =1.64 and are probably more realistic. This
correction is to be expected because in the simple version
of the nonlinear 0. model being employed we are assuming

F~=Fg ——F~ ——F~ (2.6)

which, at least for the F~, does not quite agree with ex-

periment. In a general current-algebra treatment (which

can be accommodated in the effective-Lagrangian frame-
work by adding derivative-type symmetry-breaking terms
which would renormalize the pseudoscalar fields), the
emission of a K meson is always accompanied in the am-

plitude by a factor of Fx '. In (2.2) this corresponds to
changing F ' to Fz ' in the coefficient of the pole term
which very much dominates the contact term h. The
1984 Particle Data Group table gives the bound on the
sum of the three modes in (2.5),

r(K'~Kern) (26 keV, (2.7)

out the numerical integrations with the same values of the
parameters as in Ref. 4 gives the predictions

I (K+*~K+~ m+). =10.2 (6.2) keV,

K'„+(p)~K'(K) ~n. (q) ~n'(q')

is denoted M&"' and we find'

Mabc & ~v a i PFabc

F+—+ g+ 3 3

16m F~ (p K) ~mp—

F~00 3g

32m F~ (p —q) +mx,

1

(p —q') +mx„

(2.2a)

(2.2b)

(2.2c)

'4=~~in+~i I .
(2.8)

The subscript p denotes the physical field. In our model

the intermediate p in the dominant pole terms can be on
mass shell so it is a good approximation to simply calcu-
late /~pm. . (We have verified this explicitly by comput-

ing /~3m. using a p propagator in which m& is replaced'

by mal+i I zl2 )From the . anomalous VVP interaction
term we find the simple formula

so our results are consistent. It is interesting that the rate
is predicted to be around the present bound.

The other anomalous decay of the type (low-mass} vec-

tor meson —+ three pseudoscalar mesons is the Okubo-
Zweig-Iizuka-rule-violating process P(1020)~3m.. We re-

gard this decay as being due to a small coP mixing:

The third amplitude is related to the other two by isospin
invariance: (2.9)

FOLDO ~P(F+ —y F+00) (2.3)

For K*+~E+m ~+, the predicted rate is given by the
integral

r(K"+ K+~ ~+)-
f f«+« [(- )'(--+')-

—(q q+)'](F+ +)'

(2.4)

where E+ and E are the m. + and ~ energies. Carrying

where q is the pion momentum in the P rest frame. Us-

ing g=8.66 as in Ref. 4 and the experimental value

r,„~,(/~pe)=0. 62 MeV yields ~e~ =0.076. This is in

fairly reasonable agreement with the value obtained from
the canonical-mass-mixing model, e= —0.058. The dom-

ination of /~3m by /~pm. also seems to be in accord
with experiment.

Next let us turn to the radiative decays involving vector
mesons as either external or internal lines. We have found
that the effective action (6.5) of Ref. 4 gives the standard
current-algebra formulas for m. ~2y, q~2y, and q' —+2y
when treated with the vector-meson-dominance prescrip-
tion (1 4). To compare with experiment requires a model
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for mixing in the complicated system ri, ri', t(1440), . . . .
For simplicity we shall here just consider g and g' to mix:

g =gpcosO+ gI sinO,

g'= —gI sinO+gI cosO
(2.10)

I (g'~2y) sin8 2 cos8
r(~o 2y) v 6

+
'2 '2F m&

F~ m

(2.11)

Comparison with the 1984 Particle Data Group tables
then implies Fv/F~= 1.28+0. 10 and F„/F = 1.

There are a dozen low-lying processes of the type
V~(()y or Q~Vy. Their widths 'are all related in the
present model by phase space and Clebsch-Gordan factors
to that for ro~m y found in Ref. 4:

with an angle 8=—18'. To take some account of SU(3)-
symmetry breaking we shall introduce F„and Fz as dis-
cussed above. Then one has

t' 2 2' 3
I (rl —+2y) cos8 2 sin8=2
I (mo~2y) v6 v3 Fq m

is taken. It is seen that the overall pattern of agreement
between experiment' and theory is quite satisfying. Note
that the correction factor ( F /F~ ) reduces the
K* ~E y rate to a more acceptable value.

Finally consider the decays g, g'~m. +~ y.
g'~~+a y is observed only as g' —+p y which is well ac-
counted for above. As in the case of m ~2y we can com-
pute these processes either directly from the current-
algebra formula [Eq. (4.15) of Ref. 4 with r =0 and
A~eA] or by using vector-meson dominance together
with the anomalous VVP and V(() vertices. We find for
the widths

7lI, ~~+~ y

2
cosO sinO

v6 v3
'2

sinO cosO

v6 v3
J

X f f«+«-[(q )'(q+)' —( +) ]~
I (r0 —+m. y)=, a= », .

64m F (2.12) (2.14)

Equation (2.12) is derived from the anomalous term (1.1}
and (1.3) together with the assumption of vector-meson
dominance of the electromagnetic interaction (1.4}. The
result of this calculation for all possible decays of this
type may be conveniently summarized by the following
effective term (A„ is the photon field):

I /Fq

4~4F 4 (2.15)

Calculating by the current-algebra (CA) formula and in-
cluding the factor (F~/Fz) needed to get agreement for
g~2y yields

e„„~A„Tr[Q(r)„VBP+BQB V )], I

(2.13) while using vector-meson dominance (VMD) yields

Q=diag( —', , ——,, ——, ) .

[The overall normalization is given in (2.12).] The relative
squared matrix elements, numerical predictions, and ex-
perimental values are given in Table I. Symmetry-
breaking corrections F~/F =Fv/F =1.28 are incor-
porated and the value

i
e

~

=0.076 obtained from /~pm.

(F /Fq)'

(F /F„)'
2g vs

(q++q ) +mp

2

(2.16)

i

Numerical integration over the appropriate phase-space
volumes gives the predictions

TABLE I. Radiative vector-meson decays. Here C =cosO and S =sinO are defined in Eq. (2.10).
The experimental data are taken from Ref. 6. Each mode has an additional phase-space factor

~ q i

The overall normalizations follow from Eq. (2.12).

Process
Relative squared
matrix element

Width (keV)
Prediction Experiment

p
p ~vT' f
X*+ X+q
x*'
CO —+& g
p ~'9'v
I ~p 3'

CO —+'gg
'g —+CO/

t)'y

1

1

(F/F )

4(F yF )'
9
(F /F„) (v'3C —V6S )

3(Fx/F„)'(V 3S +i/6C )~

(F /F„) (C/V3 —SV2/3)2
3(F /F„)'(SIV 3+Cv 2/3)'
(F /F„) (4C/W6+2S/V 3)2

(F /F„) (4$/V 6 2C/V 3)—
962

80
80
29
117
800
38
77

7
68
1

5

63+4
63+4
51+5
75+35
789+92
72.5+ 14
93.1+25
3.2+2.6
8.4+2.7
67.7+9

6.5+1.9
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+—I CA g ~7T 7T

. .'9 .

21.8 eV

3.0 keV, '

(2.17)

Following the notation of Ref. 4, the chiral
U(3)XU(3)-invariant part of our gauged chiral Lagrang-
ian 1S

P

105 eV

80.4 keV
+ F 2

Tr(D& U D„U ) ,' T—r—(F&+&,+Fzg & )
8

which should be compared to —mo'Tr(Ar, „AL,„+AR„Az„)+~g+ ~r+

40.8+6.9 .eV
~m+mI,„p, , ~m m y (2.18)

It is clear that the current-algebra approach, which
neglects the p pole, is very badly wrong for the ri' mode
while perhaps slightly better for the q mode. Note that
the vector-meson calculation for ri' gives an essentially
identical result to the previous q ~p y calculation, indi-
cating that the contact term is not numerically important.
It is interesting to remark that the current-algebra thresh-
old theorems in (2.15) can be recovered from (2.16) by tak-
ing the p mass to infinity. In this limit we see that
h = g/2m F„—3.

IIIs NONANOMALOUS PART OF jeff
In this section we will discuss the A ~-p-m system in the

chiral Lagrangian of 0, 1, and 1+ nonet particles
without the Wess-Zumino-type terms. A knowledge of
this aspect of the problem is required to discuss the
anomalous decay modes. We should remind the reader
that above 1 GeV the experimental resonance spectrum is
very complicated and for practical reasons has to be trun-
cated. Since chiral Lagrangians are extrapolations from
zero momentum transfer, which, however, work well
below 1 GeV, we are, of course, pushing the present model
to the limit of its applicability. Considering the great in-
terest in this region, which appears to contain glueballs,
etc., it seems very important to do so.

The experimental situation concerning the axial-vector
mesons —most notably the A

&
—has an interesting history.

Nowadays it seems that the existence of the A ~ is well es-
tablished, but its exact mass and width are still uncertain.
Back in the heyday of chiral Lagrangians it was generally
considered that the mass of the A& was given by the
Weinberg relation" mq ——v 2m& ——1090 MeV. However,

it was recognized that this relation involved an additional
assumption. The general chiral-invariant Lagrangian, as
we shall see, contains the A

&
mass as an arbitrary parame-

ter. Now the Particle Data Group table lists the A
&

mass
as 1275 MeV and its width as 315+45 MeV. The new
higher A& is almost degenerate with the D(1285) (the
axial-vector co) which is more easily understandable on the
basis of "ideal mixing" in the quark model. Nevertheless,
some experiments (r decay and K p production) deter-
mine a lower mass A~ of different width while others
which have better statistics but involve more analysis
(m. p production) favor the higher mass. '

(3.1)

The first three terms are conventional; note that D& is the
chiral covariant derivative and that mp, the degenerate
spin-1 mass, breaks gauge invariance but not chiral invari-
ance. Two more gauge-invariant terms are needed to pro-
vide an adequate description of the p-A ~ system:

i g Tr—(D& U D U F&„+Dz UtD„U F&„),

Wr ——y Tr(Fq„UFp„U ) .

The quadratic part of (3.1) works out to be

——„' (1—y)Tr[(B„V„—B„V„)]

(3.2a)

(3.2b)

——,
' (1+y)Tr[(B„A„—BQ„) ],

(3.3)

,' Tr[dpgdqg—gFBpPA~—+(mo +g F /4)AqA~],

where Vz ——AL,„+A~„and A& ——AJ „—Azz. This is
brought to standard diagonal form with the redefinitions:

V~ ——(1—y) '~ Vp,

A„=(1+y)- /A„+ g;a„
2mp

2F 2

4mp

(3.4)

F =Z F

where the tilde quantities are the "physical" ones. ' The
vector and axial-vector masses are identified as

my ——(1—y) 'mo

2 2

m„=(1+y)- mo +z —i z

4

(3.5)

(3.6)

so that gV& ——gV&. Notice that we may rewrite Z in
terms of physical quantities as

It proves convenient to introduce a renormalized-coupling
constant g:
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+ 'g Tr( V„0as~~v~~=+ 2

p350

2

a ]
ig& Tr[(a„V„—a~VI

2m'

(3.7)
my(~ )2

Z2=1
24m@

1 —y
1+'Y

(3.8)

KSRF rela-onds « t euality 1n . 2 —,w 1 e
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2F 1 —p

n '
(1—5)

1+yTr(V&[~p'0
4Mv Z

(3.9)

tg'F~
4Z2 1+X

r

)g2F 1+'V+ 2 1 —P4m@

e„dence) by s1 momentum epe (mlnlm

(3.11)

y Tr[(a„A —a ~~a g„)[v„,aA' F v1 —y
TrI (ap~ ~

5=0.
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FIG. 2. The ratio of D-wave to S-wave contribution (D/S)
to the A~~pn. width, plotted against g. Here m(A~)=1275
MeV, but the curve is almost the same for m (A & )= 1200 MeV.
Note that g/S becomes negligible for g (8.

I (A ) ~m+y)=

=730 keV (3.12)

for I (A &) =300 MeV and g =7.6. This is consistent with
the recent measurement' I,„~,(A ~+ ~m+y) =640+246
keV.

IV. ANOMALOUS DECAYS
OF AXIAL-VECTOR MESONS

An interesting feature of the present model is that it en-
ables one to calculate unnatural-parity processes involving
axial-vector mesons. To our knowledge pure hadronic
processes of this type have not been previously discussed
in the literature. These involve anomalous interactions
different from the VVP vertex of (1.3) which has, in one
form or another, been widely treated. Since our gauging
of the Wess-Zumino term involves both vector and axial-
vector mesons, the same effective action which predicts
the strength of the VVjk vertex also gives the anomalous
axial vertices. The prototype anomalous interaction in-
volving axials is the AA P vertex in (1.5).

To begin we would like to remark that the structure of
the effective anomalous interaction [I"wz——I wz(U, AI,

displayed the ratio of the D-wave to S-wave contributions
to the A~ —+pm. width. Since the ~ decay data' indicate
that the S wave is strongly dominant, the lower value of g
is favored. A simultaneous fit of I (A

&
~p~) and

I (p~2n ) is seen to suggest the more recent higher values
of m (A ~ ) when we take 5=0.

As a check on the assumptions of vector-meson domi-
nance and our choice of parameters we can estimate the
width for A &+ —+w+y, which is a natural-parity process.
Thus, we multiply the A &+ ~m+p rate by (v 2e/g) [see
Eq. (1.4)] and take the different S-wave phase-space fac-
tors into account. This yields

2
v2e I (A )+~m+p )

~
q(A~~up).

~

Ag) —I wz(I, AL, ,Ag); see (4.18) of Ref. 4] when com-
bined with the idea of vector-meson dominance immedi-
ately gives a number of interesting predictions. These fol-
low from the observation that I"wz vanishes when U is set
equal to one. Expanding U= 1+2ig/F + . . shows
that every term must contain at least one pseudoscalar
field. Terms involving just spin-1 mesons will vanish.
The simplest example is the anomalous A VV vertex, for
which we thus expect the following virtual processes to
vanish:

D ~pp, D —+coco, A ~ ~pQ),

Q ~K~p, Q ~K*co, Q ~K*/ .

[Here D is the D(1285) and Q is the appropriate strange
axial-vector meson. ] Complete vector-meson dominance
of the electromagnetic interaction then implies

(4.1)

I (D p y)=I (D coy)=I (A, p y)=I (A, coy)

=F(Q—&K"y) =0,
as well as the vanishing of

D~y+(virtual y),
x+v+v

A) ~y+(virtual y),

(4.2)

(4.3)

I (D~prrm) & I (D~4m. )=10.4+3.9 MeV . (4.4)

(The experimental analysis is based on the assumption
that the 4m state appears as p~m. ) The branching ratio

etc. Equation (4.3) shows that "Primakoff effect" pro-
duction of D and 3

& by an incoming photon is complete-
ly suppressed in the present approximation. The vanish-
ing of a process like D —+ two real photons is, of course,
guaranteed by Yang's theorem (which holds for either
axial or vector-meson decays). Equations (4.2) and (4.3)
amount to a kind of off-shell Yang's theorem. Notice
that the vertices in (4.1) would be allowed if we had used
I wz( U AL, , A~ ) rather than I wz ( U, AI. ,A~ ) as our basic
anomalous term. The use of I ~z reproduces the ~ —+2y
theorem with vector-meson dominance and correctly nor-
malizes the rates for anomalous vector meson decays (s-ee

Ref. 4 and Sec. II of this paper).
Now let us consider the pure hadronic unnatural-parity

(anomalous) decays of the axial-vector mesons; these are
the analogs of co, /~3m. , and K* +Ken. . One's first—
thought is to look for a reaction like axial-vector
meson~two pseudoscalar mesons. However, a parity-
conserving vertex of this type is seen to'vanish by partial
integration. The possibilities with three-body final states
are

D (1285)—+p~m,

E ( 1420) +pmvr, —

3 ) ~F77%,

Q~K*mm .

At present only the first of these has been measured with
a width
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into this mode accounts for 40% of the total width. We
shall study this particular reaction here. Note that isospin
invariance implies equal rates for the three final states

p m+m, p+m m, and p m ~+. For simplicity we take
D (1285) to be the ideally mixed combination, correspond-
ing to its status as an axial co.

With momenta and polarizations labeled from

D (p)~pp (k)+rr (q )+~'(q'),
the general amplitude e~(D)e~(p)A ~ may be parame-
trized as

5.0

4.0—

~4
3.0-

2.0—

1.0-

(ppqv fi+ppqd z+qp qv f3)
+~~""'p.q, q'[(q )~f (q')~f—1

+~~'""p.q, q.[(q ) f +(q ) f fj (4.6)

AI A)
P

FIG. 3. Feynman diagrams for D~p+m. ~ .

Because D —+pm. m involves two spin-1 particles the general
amplitude is seen to contain seven different terms, in con-
trast to co~3m which has a unique kinematical structure.
Actually f6 and f7 turn out to vanish in the present
model. The formula for the width expressed in terms of
f&~f5 is given in the Appendix. As in the case of
m —+3m there are both pole and contact contributions to
the amplitude (see Fig. 3). The pole pieces require the
anomalous DA &m. vertex from (1.5) as well as the ordinary
A,pm vertex of (3.10) and (A2). The contact term is ob-
tained by collecting the Dp~m pieces in I wz using the
formula (4.18) of Ref. 4 as well as (3.4) of the present pa-
per. The resulting expression is given in the Appendix.
In Fig. 4 we plot [for m (A & ) = 1275 MeV and
m (A ~ ) = 1200 MeV] the numerical evaluation of
I'(D~pmm) as a function of g. The previous discussion
of the A&pm. vertex showed that there were two possible
regions of g (around 7.6 and 9.6) which gave acceptable
A~ widths. The lower values predicted a negligible D/S
ratio while the higher values gave a somewhat higher
D/S ratio. We see that the D~prrvr calculation favors
the lower values of g. For g around 7.6 we obtain
I (D~p~vr)=3 to 3.5. This is a little low compared to
the experimental value in (4.4) but is definitely of the
right approximate size. We remark that the contributions
from the two pole diagrams in Fig. 3 tend to interfere
with each other. Furthermore, the contact term, though
not the major piece, interferes with the sum of the two
pole diagrams. To test the stability of this calculation we
have computed with Tz set to zero and Tq taken to be
constant determined to fit I (A~~p~). This yielded re-
sults similar to those of Fig. 4. Notice that the predicted
value of I (D +pmm ) tends to in—crease (in the low-g range)

I

IO

FIG. 4. I (D~pmw) plotted against g for two values of
m(A)).

(4.7)

This yields a width of about 6 MeV for m(A&)=1050
MeV.

Finally we note that the value of g which seems ap-
propriate for axial-vector-meson decays seems to be
roughly 10% lower than the best value for the vector-
meson decays. If we use the lower value, decay ampli-
tudes like vector ~ pseudoscalar + photon will be de-
creased by about 10% and the a&~3~ amplitude by about
20%.

V. FURTHER DISCUSSION

We have seen in Sec. II and in Ref. 4 that the present
model gives quite a nice overall account of the unnatural-
parity decays of the low-lying vector and pseudoscalar
mesons. In order to discuss the unnatural-parity decays
of the axial-vector mesons we first demonstrated (Sec. III)
that the nonanomalous ~pA &

interaction could be satisfac-
torily treated in the chiral-Lagrangian framework. Then
the anomalous process D (1285 )~pm. n. , which is ap-
parently the only one already measured for axial-vector
mesons, was found also (Sec. IV) to be reasonably well
described. Experimental information on other decays of

with decreasing A& mass. This is due to the fact that the
A~ pole then gets closer to the physical region. One can
imagine two ways to improve this calculation. First, one
might compute in the present framework D~4mrather.
that D +pm. m. T—his seems too complicated for an initial
study of this process. Second, one might seek a systemat-
ic improvement of the present framework by including all
sources of SU(3)-symmetry breaking as well as taking into
account scalar mesons and excited pseudoscalars which
exist in the same energy range as the axials. This is also
extremely complicated to carry out reliably.

For completeness in case the mass of the A
&

turns out
after all to be below 1145 MeV (the current evidence'
favors 1275 MeV with the 1200—1275 range perhaps ac-
ceptable) we give the formula:

2

1(D
&+@ S12~'r.'
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I wz( U Ar Ai ) —I'wz( U' Ar, Ag ) . (5.2)

Equation (5.2) is, by construction, fully U(3)r., )&U(3)z in-
variant and has no anomaly, so there are no constraints on
the equations of motion. At low energies the predictions
of the present model would be unaltered.

Finally, we remark on two related reports which ap-
peared after Ref. 4 was written. Kramer, Palmer, and
Pinsky' proposed to calculate anomalous vector-meson
decays like co~3m. without developing an effective La-
grangian which includes spin-1 particles. Their method is
based on an extrapolation of I wz(U) using a form of
vector-meson dominance. Their prediction for I"(co~3m )

is about one third of the experimental value. However,
their main goal seems to be the evaluation to the low-
energy theorem for the anomalous part of the weak
current. Somewhat related approaches ' were proposed by
Freund and Zee and by Rudaz. Adkins and Nappi' pro-

the type A —+Vga and of the predicted suppression for
electromagnetic transitions like A~Vy would be very
helpful for further testing of this model.

An obvious theoretical improvement would be to add
new physical particles as well as SU(3)-symmetry-
breaking terms with definite chiral transformation proper-
ties. A possibly more subtle question involves the exten-
sion of the gauged Wess-Zumino term. In order to repro-
duce the m ~2y theorem in the present framework it was
found necessary to use the Bardeen rather then the left-
right-symmetric form of the anomaly,

I wz(U, Ar, Arr ) =I"wz(U AL, A~ ) —I wz(1, Ar, A~ ) (5.1)

with U=exp(2ig/F ) and I wz given in (4.18) of Ref. 4.
It was noted in Ref. 4 that there are two theoretical prob-
lems associated with the use of (5.1) which, it was hoped,
could be solved by introducing additional fields. The first
(and this is also a problem for the left-right-symmetric
form) is that the equations of motion imply extra con-
straints owing to the anomalies. The second is that (5.1)
is not invariant under axial transformations, although it is
invariant for vector U(3))&U(1)~. Now the structure of
(5.1) strongly tempts us to make a speculative suggestion
as to how both problems may be solved at once. If the
theory contains another matrix U'=exp(2ig'/F' ) which
transforms like U and which corresponds to fields P'
which are not excited at low energies we may simply re-
place (5.1) by

pose a simple Lagrangian which consists of the usual
chiral SU(2) nonlinear o model to which the ro particle
[treated as a chiral SU(2) singlet] is added. An anomalous
emvm contact-interaction term with an arbitrary numeri-
cal coefficient [to be fit from I (r0~3n. ) is postulated.
While such a Lagrangian seems reasonable for their
purpose —setting a scale to stabilize the soliton without
using a "Skyrme term" —it gives a very unrealistic
description of low-energy meson dynamics. In the first
place it does not include the p mesons. Second, it is very
unlikely that the co—+3m. decay and the associated radia-
tive processes discussed in Sec. II go mainly through a
contact term rather than a VVP vertex (the original Gell-
Mann —Sharp —Wagner model ). For example, one sees
experimentally that rt' decays to p y rather than (non-
resonant m. +rr —y and that P~3n. is dominated by
P~mp. Also, it was noted in Ref. 4 that in a theoretical
framework which gives both the VVP vertex and the con-
tact VPPP term [and also correctly predicts (co—+3m)] the
contact contribution is fairly negligible. Finally, the VVP
term is enhanced over the VPPP term in the large-Xc
limit of QCD.
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APPENDIX

Here we give formulas relating to the calculation of the
nonanomalous p and 3 ~ decays as well as the anomalous
D~pmm decay mode.

The p width into 2m. derived from (3.8) is

3 2
'2

I (p mm. ) = 1 ——, (Al)
12m ~ 2 2

where q is the momentum of one pion in the p rest frame.
Note that g in (Al) is actually the renormalized quantity
g. All of the following equations are written in terms of
renormalized quantities.

Including off-shell pieces the A i+„(p)~p„+(k)+m' (q)
amplitude in (3.10) is

T„„(p,q)=@2[5„Ts(pq)+q~q~TD(p q)+p~k Ri+p q R2+q k R3]

Ts(p q) =—
1/2

[mv +(1—5)k q]—
Z I'

1 /2
1 —Z 2y
F pq .k,

' 1/2
1 —Z

1/2
1 Z

( 1 g) 21
Z'F F V'I

(A2)
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y
F )/1 —y

1/2
1 y
1+y

1 Z
( 1 5) 2y

Z'f. F.&1 y'—

R3 —— 1+y
1 —y

1/2
1 —Z2 2y

F t/1 —y

Only Ts and T~ on mass shell contribute to the following formula for the width:

I (A O'Ir) = , T +—Ts+lql » ~ c

2~m (A() mp

The nonzero amplitudes f&. . .fs for D ~pan. defined in (4.6) are predicted to be
' 1/2

(A3)

lg 1 —y
1+y

' 1/2

2 g Ig 1 —y 1 0

F 2m 8m F 1+y (p —q ) +(m„+iI „/2)
+ 2 , Ts(p —q

1+y
1/2

Ig 1 —yfs= 4~' 1+y

2

F 2
2mp

g2

F 2mp

lg 0

8m F (p —q ) +(m„+il'„/2)oz . z s(p —q ~q

(A4)

lg 1— 1 04— , TD(p —q q»
8m F 1+y (p —q ) +( gm+il g/2)

fs= ig2 1 —y 1
TD (p —q

0

8~'F 1+y (p —q )'+ (m„+ i I'„/2)'

Finally, the formula for the Dip+sr ~ width expressed in terms off~ to fs is (in the D rest frame):

I (D(p)~p+(q+)+~ (q )+m (q ))

, I (D p~m)—
r

1 f JdE dE f~ 2(p q ) —2mD m +fz 2(p q ) —2mD m
192m. m (D) mp

2
mp

+f& 2(q q ) —2m 2+ 2
mD mp

+f& b, [m —(q q+) /m& ]

+f b, [m —(q q+) /m ]+f,f [4m q q +4(p.q )(p q )+2k/m ]

+f,fs[4m p q +4(p q )(q q )—24/mz ]

+fQs[ —4m p q —4(p.q )(q q )+26/mp ]

+,q q'f if~+f ifs[2~(q'q+/m, ' 1)]—26

P

+fzf~[2~(1 qq+lm, ')] —,q'q+fZs+—, q
.q+fsf4

+,q'q+fsfs+f~fs[ 2~q'q 2~(q 'q+—)(q' q+)lm—']25 0

P

where b, = mD (q Xq+)—and f;f~ is an abbreviation for Re(f;fj').
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