
PHYSICAL REVIEW D VOLUME 30, NUMBER 11

Analysis of g/J =ppn, .ppq, and ppq' decays
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We analyze available experimental data on three-body decays of g/J~vr pp, happ, and 7)'pp, as
well as copp. The ratio 1 (g~g'pp )/I (P~gpp ) can be understood model-independently and is con-
sistent with the validity of the quark-line rule. With respect to li/J —+m pp decay, the soft-pion
theorem suggests the dominance of the proton-pole diagram near the low-pion energy region. The
present experimental data are consistent with the soft-pion theorem. The same method may be ap-
plicable for g/J~vrXX and tr" = decays to extract direct informations on coupling parameters g xx
and g =. Although we can qualitatively explain the energy spectrum of li /J~m pp decay, we have

some difficulty in explaining the observed energy spectrum of P/J —+qpp decay.

I. INTRODUCTION AND SUMMARY
OF MAIN RESULTS

Since its discovery in 1974, the charmonium g/J(3100
MeV) (hereafter referred to as P for simplicity) is now
known' to decay into more than 50 different channels. Its
narrow width of 63 keV together with leptonic decays of
fusee and pP can be well understood ' in terms of quan-
tum chromodynamics (QCD). However, the individual
exclusive decay rates are more difficult, in general, to
analyze quantitatively by QCD, although radiative decay
P~YX, has been successfully explained by a potential
model inspired by QCD. Also, the radiative decays

7'g, and Yvj have been studied by many au-
thors, with some reasonable agreements with experi-
ments. With respect to purely hadronic decays, the situa-
tion becomes more difficult. So far, the only reasonable
way to deal with the problem appears to be limited to uses
of purely phenomenological methods. Even so, only two-
body decay modes such as $~888s or P9 V9 have been
studied with some success on the basis of effective two-
point quark currents or by the vector-dominance model,
or by some other method. ' Here, 8s, P9, and V9 refer
to the baryon octet, the pseudoscalar nonet, and the vector
nonet, respectively, in terms of the conventional (flavor)
SU(3) classification.

The purpose of this note is to analyze the three-body
decay mode Q~P98s Bs. Apart from the obvious desira-
bility of explaining available experimental data, this pro-
cess turns out to be of some intrinsic theoretical interest,
which will be shortly explained. First, let us briefly
sketch the following experimental facts"' for the three
body decays: (i) The energy spectrum of the pion in

lt ~sr pp is now known.

apt)
=1.32+0.56, (1.5)

=4.02+1.27 .
M„(g~m. pp)

(1.6)

We first study the theoretical implication of Eq. (1.5). To
this end, we consider a general g-g' mixing theory where
physical q and q' may be expressed as'

ri=S& (cos8~'gs —sln8t'gp) +S& g,

tl'=S2(sin82t)8+cos82t)p)+S2$' .
(1.7)

Here, t)s and gp are octet and singlet components of 0
nonet P9, respectively, while g and g' stand for any other
field which could mix with gs and gp. For example, g
may be gluonium, or cc pair, or radially excited states of
q and g', or their linear combinations. All other symbols
Sl, S), S2, S2, 0&, and 6I2 are some constants. The sim-
plest standard mass-mixing theory predicts

We note that the ratios of relativistic phase volume 0 for
the decays are calculated to be

«0 sr'PP ):«0 t)PP ):&(4 'O'PP )

= 1.050:0.252:0.039 . (1.4)

From Eqs. (1.1) and (1.4), we can estimate the correspond-
ing ratio of averaged matrix element M„„ to be

S) ——S2 ——1, S ) ——S2 ——0, Ol ——02
—=8 (1.8)

=1.05+0.14:2.32+0.38:0.63+0.39, (1.1)

(1.2)

(1.3)

(iii) I (P—»n pp )/I (P~pp ) =0.50+0.06,

(iv) I (g~tr pp)/I (p n+np) =0.52+0.07 .

with 8=—11' for quadratic mixing and —24 for linear
mixing. Some more complicated choices for these con-
stants can be found in Refs. 13—15. It may be instructive
to rewrite Eq. (1.7) in terms of quark components for gs
and go as
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g=S, sin(HQ —8))
~

uu+dd )
1

2

—cos(HQ —8i) i
ss ) +S i g,

1g'=Sz cos(HQ —82)
~
uu +dd )

2

+sin(Ho —Hz) I
ss & +Sag',

where Op is the canonical mixing angle;

1
Ho= arctan =35' .

2

(1.9)

(1.10)

for some constants S~, S2, 0~ and 02, where terms omitted
in right sides refer to all other possible excited states as
well as gluonium and so on. Since both g8 and gp contain
uu+dd components, these can contribute to the ratio Rp
defined by Eq. (1.12). However, contributions from g8
and rip for the matrix element of the reaction
A+B~C&+ . +C„+ri (or g') will give, in general,
different forms of dependence upon both energy and
channels in comparison to those from gs and gp. There-
fore, the universal relation Eq. (1.13) will not be in general
valid, once we take into account contributions from radi-
ally excited states. Since we expect to have ~S&

~

&&
~
S~

~

and ~S2
~

&& ~S2
~

as in the calculation by Frank and
O'Donnell, ' this may account for the experimentally ob-
served small fluctuation of

~
Ro

~

from a constant, depen-
dent upon different energy and channel. However, when
we have a universal mixing relation

Now, let us consider a reaction

A+B +C)+—Cz+ +C„+21 (or 2)')

and define the ratio of their matrix elements by

M(A+B ~C) +Cz+ +C„+g')
M(A+B~C, +C, + +C„+g)

(1.12)

Now, suppose that the quark-line rule' (or Okubo-
Zweig-Iizuka rule) is exact, and that effects of the un-
known field g as well as mass-difference between rl and 2)'

are negligible for matrix elements concerned. If all quark
constituents of A,B,C&, C2, . . .,C„ in the reaction Eq.
(1.11) do not contain any strange quark s and s, then only
uu+dd quark content in the right side of Eq. (1.9) can
contribute to the reaction. Therefore, we must have'

Szcos(HQ —Hz)
Rp ——

S) sin(HQ —8 ) )
(1.13)

which is independent of any reaction mode as well as of
energy. Similarly, we find

M(A+B~C, +C, + +C„+q+7)')
M(A+B~C, +C, + . . +C„+21+q)

(1.14a)

M(A+B~C, +Cz+ . +C„+21'+g')
(RQ) =

M(A+B~C)+Cz+ ' ' ' +C, +g+'g)
(1.14b)

S ~ g =S
&
(cos8 ~218—sinH&go) +

Sz g'=Sz(sln8298+cos829Q)+ ' ' '

under the same conditions with the same universal con-
stant Rp given by Eq. (1.13).

In deriving these formulas, we have neglected possible
contributions from uu+dd components contained in radi-
ally excited states. Here, we consider the effect of only
the first radially excited state g8 and gp, although our
analysis can be easily generalized for inclusion of higher
radially excited states. We rewrite Sqg and Szg' in Eq.
(1.7) now as

Szcos(Hp —Hz) Szcos(Hp —82)

S
&
sin(HQ —8& ) S&»n(HQ —

Hi )
(1.15)

then Eq. (1.13) still remains valid. It is interesting to note
that such a relation is approximately valid up to the
second radially excited states in a model investigated by
Frank and O'Donnell. '" If coefficients involving the
gluonium component contained in g and g' satisfied a
similar relation to Eq. (1.15), then the relation Eq. (1.13)
would be again valid even when we consider the contribu-
tion from gluonium. Alternatively, let N and N be
uu+dd components contained in 2)8 (or go) and g8 (or
gp), respectively. If the ratio A, defined by

M(A+B C, + +C„+N)
M(A+B~C, + . +C„+N)

(1.16)

is a constant independent of energy and channel, then Eq.
(1.13) is now replaced by

Szcos(Hp —Hz)+ ASzcos(Hp —82)
Rp ——

S& sin(Hp —8& ) +AS
& sin(Hp —8~ )

(1.17)

i
Rp

i

=0.5 to 0.9

for all channels and for all energies studied so far. The

Note that Rp is still a constant independent of specific en-

ergy and channels. Moreover; if Eq. (1.15) is valid, then
this reduces to Eq. (1.13). The constancy of A. defined by
Eq. (1.16) is plausible in the quark-model, since we can
roughly expect A, to be equal to the ratio of wave func-
tions evaluated at origin for radially excited state and the
ground state. Because of these considerations, the validity
of Eq. (1.13) or (1.17) appears to be reasonable. Hereafter,
we assume this to be so. Systematic study of the validity
of Eq. (1.13) has been undertaken in Ref. 17 and summa-
rized in Ref. 13 for various experimenta1 results before
1976. From several experimental data on n—+p~Ng (or
21'), and h7) (or 2)') as well as other reactions such as
pp~m+m 21 (or g') in various energy ranges of 1—200
GeV, it has been found in Ref. 13 that the absolute values

~
Rp

~

defined by Eq. (1.12) are indeed concentrated in a
relatively narrow range of
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rather large variations of
~
Ro

~
quoted above reflect part-

ly large experimental errors. Some deviation of ~RO~
from the constancy may be attributable to contributions
from radially excited states qs and go as we have already
discussed. Or it could be due to genuine violation of the
quark-line rule especially for low-energy reactions where
the mass difference between 7) and ri' for matrix elements
may not be negligible. Note that the quark-line rule ig-
nores contributions from ss as well as gluonium com-
ponents contained in physical g and g'. We cannot settle
the question at the present since it requires a large collec-
tion of accurate experimental data for various reactions.

Hereafter we assume the exact validity of Eq. (1.13) or
(1.17). Then, the best value for

~

Ro
~

can be perhaps in-
ferred from more recent high-energy precision experimen-
tal studies of the reaction mp~rt. n and rl'n. Apel
et al. ' find

ments. First, Eq. (1.13) reduces to

Ro=cot (Oo —O) . (1.13')

The value of
~
Ro

~

given by Eq. (1.19a) implies then

0=—16'+2' (1.21)

which is intermediate between linear-mass-mixing and
quadratic-mass-mixing values. Note that another solution
O=86' is excluded from other considerations (see Ref. 13).
Genz ' analyzes experimental data for pp~m. mo, m. ri,
m q', qq, etc., at rest with the quark-line rule in a more
generalized sense, and finds

O= —(13' to 16')+6' .

Also, the decay rates for new values of I (g~yy) and
I (g'~yy) are consistent ' with

i
R, i

=o.8o+o.o5 (1.19a) 8=—18'+5' .

from data on 15- and 40-GeV/c pion momenta, while
Stanton et al. ' give essentially the same value

On the theoretical side, a QCD-inspired calculation indi-
cates

I
RO

I
=0 82+0 02 (1.19b) O= —(17' to 20')

from 8.45-GeV/c data. . Also, these values are consistent
with earlier values' determined from pp ~m+m g (or il')
at rest. Similarly, we note the validity' of

3
P'7')

3~R ~z
I (P ily)

I (q'~coy)
3

~ ~

2
k'

r(~ q) )
= ' k

3
(1.20)

under the same condition as before, where k and k' are
magnitudes of the final photon momentum in the decay
modes concerned, and where we have assumed the exact
ideal mixing for the ro-P complex. If we use new values
for two-photon decay rates of iI and g' given by
I (il~yy)=0. 344+0.044 keV and I (g'~yy)=5. 3+0.6
keV, then Eq. (1.20) is now consistent with values of

~
Ro

~

given by Eq. (1.19), rather than the previous small-
er values' for

~
Ro

~

. Various theoretical estimates of Ro
have been given in Ref. 13. Here, we simply note that the
recent model of Ref. 14 will give a small value of
R0-0.43, neglecting contributions from radially excited
states. Also, the model of Rosenzweig, Salamone, and
Schechter' leads to Ro ——0.66, while- that by Gault and
Rimmer' gives Ao ——1.56.

We cannot experimentally determine values of 5&, S2,
Oi, O2, etc. , separately from

~
Ro

~

. However, there are re-
actions from which we can obtain information on other
combinations of these constants. Here, we only mention
one of them, '

while a study based upon the two-gluon-exchange diagram
gives

g~ 13'

Summarizing, we suggest that the g-g' mixing theory
together with the quark-line rule is experimentally well
satisfied. Returning to our original relation Eq. (1.13) or
(1.17), it must also be valid for decays g—+ppg and ppg'.
It is gratifying to see that the experimental ratio of Eq.
(1.5) is consistent with ~RO I

=0.80+0.05 given by Eq.
(1.19a). The same conclusion based upon the more re-
stricted mass-mixing scheme Eq. (1.8) has been noted also
in Ref. 21. In this connection, the branching ratio of
il, (3000 MeV) decaying into ilm+m channel has been
measured to be

r(&, &~+~-)
B„(rk~gm+m. ) = =(3.0+ 1.7) && 10

I rl, ~all

Then, using the value of
~
Ro

~

=0.8, we predict

r(&, & ~+~-)
8„(rt,~ri'm+vr )—:

I (il, ~all)

=(2.17+1.23 ) && 10

Next, we consider the pion energy (or essentially
equivalent to the square of invariant pp mass) spectrum in
g~ppvr decay. In view of the soft-pion theorem, the

M(g~rl'p) S2cos(Oo —O2)

M(/~imp) S,sin(OO —O, )

where we have assumed exact ideal mixing for the co-P
complex and neglected contributions from possible radial-
ly excited states. If we assume the simple mass-mixing
scheme Eq. (1.8), then we can give more definite state-

(b)

FICx. 1. Proton-pole Feynman diagrams for P~ppm. o decay.
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0

(a)

FIG. 4. N*-pole diagrams for t( —eppes decay, where X
refers to any nucleon isobar.

FIG. 2. p-meson-pole Feynman diagrams for g—+ppm decay.

matrix element for g~ppm. will vanish, in general, in the
soft-pion limit E ~0. The exception for this statement
is for proton-pole diagrams of Fig. 1, where the proton
propagator also vanishes in the soft-pion limit so as to
give a finite answer in the limit.

We expect that for small values of the pion energy E
or equivalently for large values of invariant pp mass, the
dominant contribution would come from these proton-
pole diagrams. In this connection, we note that p and p'
pole diagrams depicted in Fig. 2 will give zero contribu-
tion for the zero-pion-momentum limit but also for
nonzero pion mass, because of the selection rule due to
conservation of parity and angular momentum for
g~~ p decay. In any case, the pion energy spectrum
should be essentially model-independent for small values
of the pion energy E~, since decay matrix elements for
g~pp as well as the pion-nucleus coupling constant g zz
are experimentally reasonably well established. Indeed,
the present experimental value is consistent with this ob-
servation as we will see from Fig. 3, and we conclude that
the soft-pion theorem is applicable for /~happ deca. y.
We remark that the same method may also be applicable
to 1(t~mXX and w== decays for us to extract values of
g—— and gz&, directly from the pion-energy spectrum of
these decays. Finally, the presence of the Adler's zero has
been previously established for the decay g'~me. g.

So far, our analysis has been largely model-independent.
However, the rest of our discussion is very model-
dependent with many uncertainties. First, let us consider
the pion energy spectrum for large values of E As we.
see from Fig. 3, the proton-pole diagrams of Fig. 1 give

nearly twice as large a value in comparison to experimen-
tal data for large-E regions. This implies that other
types of Feynman diagrams must contribute for the mode
with negative interference. Since the production of nu-
cleon isobars X in the mass range 1400—1600 MeV ap-
pears to be present in the experimental data, we have to
take into account the N*-pole diagrams of Fig. 4. In the
next section, we will demonstrate that the inclusion of
Fig. 4 together with the proton-pole diagram can explain
the experimental energy spectrum, provided that both
N*(1440 MeV) with J = —, and N+(1535 MeV) with
J = —,

' are both present with comparable rates in
P~N'p mode.

In the above discussion, we have neglected the contribu-
tion from p and p' pole diagrams of Fig. 2. First, the con-
tribution from the p pole can be shown to be small with
negligible interference terms with baryon pole diagrams.
The same remark applies also for that from the p' pole,
provided that p' couples with the nucleon with the same
coupling constant as the p-nucleon interaction. Moreover,
the inclusion of p and p' pole terms may give double
counting of the same quark graphs. The reason is as fol-
lows. The proton-pole diagram of Fig. 1(a) is realized as
quark graphs of Fig. 5. Note that in Fig. 5(c), three
gluons interact with three different quark lines inside the

- nucleon. On the other hand, the p-pole diagram may be
represented as the quark diagrams of Fig. 6. We see that
Figs. 6(a) and 6(b) are topologically equivalent to Figs.
5(a) and 5(b), respectively. However, Fig. 6 does not con-
tain an analog of Fig. 5(c). This fact may suggest that the
baryon-pole diagrams are perhaps more representative of
underlying quark diagrams. Note that the duality princi-
ple indicates the importance of quark graphs rather than
ordinary Feynman diagrams. Nevertheless, the calcula-
tion for p-p' pole diagrams will be discussed in Sec. III.

3.4—

w 2.8-
& 2.4—
LIJ

o 2.0—
Q
LIJ I.6—

z 1.2-

0.8—

0.4—

0
I.8 2.0 2.2 2.4 2.6

p-p INVARIANT MASS (GeV)
2.8 3.0

(a)

(b)
)(

FIG. 3. Plot of [di (t( ppvr )]/dM /I (g~pp), where

M stands for the invariant mass of the pp system. The calcu-
PJJ

lated value takes into account only the proton-pole diagram of
Fig. 1. The experimental values are taken from Ref. 11. The
soft-pion limit corresponds to large M

PP

(c)

FIG. 5. Quark diagrams corresponding to proton-pole graph
of Fig. 1. Three curly lines refer to three gluons.
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P

C

'7f Of' g

(a)
'9 O" '9

P

C

I
C

FIG. 7. Proton-pole Feynman diagrams for g—+ppq and
ppg' decays.

FIG. 6. Quark diagrams corresponding to p-meson-pole

graph of Fig. 2.

0.05 if d/f =2.7
gN» g~» —021 if d/f =2 0, (1.23)

which are too small in comparison to the value given in

Finally, we will turn our attention to decays g~ppil
and ppil'. We have already noted that their decay ratio of
Eq. (1.5) agrees well with the general principle based upon
the quark-line rule without recourse to dynamical detail.
However, the large ratio given in Eq. (1.6) is more diffi-
cult to explain. We have already remarked that the
proton-pole diagram of Fig. 1 gives the dominant contri-
bution for P~ppndeca. y. But the same mechanism can-
not be correct for lt ~ppg and ppg' decays because of the
following reason. Consider the proton-pole diagram of
Fig. 7. Assuming the general mixing model, Eq. (1.7), to-
gether with the exact validity of the quark-line rule as
well as the flavor SU(3) group, the coupling constants of
g and g' with the nucleon are expressed as

g„xs,=S,sin(8p 8, )(3f d—)g„—
(1.22)

g„,~g S2cos(8o ——82)(3f d)—g~» . —

Here, f and d are the standard f and d coefficients with
normalization f+d = 1. Note that the ratio R p

=gn.»/gz» satisfies the general universal equations
(1.13). From the known value of the coupling constants

g» and gkzz, it is, in general, believed that the d/f
ratio is approximately 2.7. Assuming the mass-mixing re-
sult Eq. (1.8) with 8i ——82 =—8= —. 16' in conformity to Eq.
(1.19), we then calculate

r

Eq. (1.6). Therefore, we have to consider ¹-pole dia-
grams which are analogs of Fig. 4. Since the experiments, l

decay rates of I (N*~qN) are rather large for both
N (1440 MeV) and N" (1535 MeV), these are indeed now
the dominant, diagrams. Although we can roughly ac-
count for total experiinental decay rates I (g~ppg) and
I (g~ppil') in terms of these diagrams, it gives unfor-
tunately an incorrect spectrum for the decay especially for
gp mass plot in comparison to the experimental data.
However, in view of many uncertainties both experimen-
tally and theoretically, this fact may not be serious. In
this connection, we have also computed the contribution
from the proton-pole diagram for f~ppco The to. tal de-
cay rate so computed amounts only to one-tenth of the ex-
perimental value, and we conclude that the baryon-isobar
pole diagrams must be also important for P~ppco decay.

Last, we would like to comment on the ratio of Eq.
(1.3). If the charge independence based upon SU(2) sym-
metry is exact, then the ratio should be precisely —,

' which
is consistent with Eq. (1.3). Moreover, the SU(2) requires
the identical energy spectrum for m and m.+ mesons in de-
cays g~m pp and m+np, respectively. The present exper-
iment appears to be consistent with it. This fact may im-

ply that the SU(2)-violating one-photon intermediate dia-
gram should give negligible contribution for f +m NN de-—
cays. An example for such a SU(2)-violating process is
two-steps inode /~++A followed by virtual decay

+np. Note th—at the corresponding mode g~n. m. fol-
lowed by m. ~pp is forbidden by charge-conjugation in-
variance. The validity of the SU(2) invariance is also con-
sistent with near experimental equality of I (g~pp) and
I'(P~nn). However, the one-photon-exchange diagram
may give '7 a sizeable contribution for Q~V9I'9 decays
through its interference with the normal SU(2)-preserving
three-gluon-exchange diagram.

II. CONTRIBUTION FROM BARYON-POLE DIAGRAMS

Before we analyze g~m. pp, we will first discuss the g—+pp mode since it is relevant for our evaluation of the proton-
pole diagram Fig. 1. The S-matrix element is written as

2

S(/~pe)= (2n) i5' '(q —p+p')—
2qopo I po I

I"
1/2

u(p) FMy„e (q)+ +p(p+p')„e"(q) v(p'),
2m

(2.1)

with pp )0 but pp (0, where m is the mass of the proton and e~(q) is the polarization vector of g with four momentum
q. The dimensionless real decay constants I'~ and I'0 are defined by

2

(pp l
(V+M )g„(x) l

0) =
po lpo I

I"
1/2

~(p) +Ml'„+ Fo(p+p )„v(p )e
2m

(2.2)
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in terms of the interpolating field operator g&(x) for P/J
with mass M. It is sometimes more convenient to use the
electric and magnetic coupling parameters, Fz and FM in
whose terms Fo is expressed as

4m
Fo ——

~ 2 (FM FE)—. (2 3)
M —4m

The total decay rate for /~A is now calculated to be

2mI (@ pp)= IF~ I'+ IFE ~' (M' —4m'}'"
12' M

(2.4)

In reality, 1( —+pp is experimentally observed in the reac-
tion e+e —+g~pp. If 0 is the angle between the incom-

ing electron and the final proton, then the angular depen-
dence of the production cross section is

1+acos 0,
where a is given by

stant with

(g~~ ) /4m. =14.8 . (2.10c)

Mi ——g~p u(p)y5
(k.y)(~ y) (~ y)(k y).+ 2,k k2 M

p 6 p'6'

2p.k+ k 2p'. k —k

In accordance with the equivalence theorem on PS-PS
and PS-PV couplings in the lowest order, both interac-
tions Hi and H i give exactly the same final result for the
present problem, if we add both diagrams Figs. 1(a) and
1(b). Especially, the soft-pion theorem is manifest for
PS-PV form Eq. (2.10b}. The S-matrix element for the
proton-pole diagram of Fig. 1 is now calculated to be

Si(/~happ. ) =(2m)5' . '(q —p+p' —k)
2 1/2

X Mi (2.11)
4eokopo leo I

I"

IFM I2 (4~2/M2}IF, I2

i F~ i
+(4m /M ) [ FE

i

(2.5)
F

X(k y) v(p'), (2.12)

The numerical value of a has been determined to be

1.45+0.56 (Ref. 11),
0.61+0.23 (R f. 12) .

(2.6a)

(2.6b)

Since Eq. (2.5) implies
~

a
~

&1, Eq. (2.6a) can be con-
sistent only if Fz -0. More precisely, we find

[ FE
i

&0. 14
i
F~

i

[ FE )
=(0.45+0.27) )F~ i

(2.7a)

(2.7b)

Fo/FM= IFo I /IFM
I

e". (2.8)

Together with Eq. (2.3), Eqs. (2.6) and (2.8) then require

respectively, for Eqs. (2.6a) and (2.6b). Together with the
total rate given by Eq. (2.4), then we estimate ~Fz

~
and

~
F~

~

. However, for evaluation of I (P~m pp), we have
to know the values of ~Fo

~

and ~FM
~

instead, as we will
see shortly. This will introduce another unknown phase
factor 5 defined by

where k& is the four-momentum of the outgoing pion
with k =m . Note that for the soft-pion limit k„—+0,
Mi remains finite because of the vanishing denominator.
Strictly speaking, FM and Fo here depend upon values of
pk and p'k since the intermediate proton state is virtual.
However, for the soft-pion limit, the off-shell effect is ex-

pected to be very small, although we must be careful
about its effect for large-pion-energy regions.

As we explained in the previous section, the soft-pion
theorem implies that M& mill give the dominant contribu-
tion for small values of E . Therefore, we suppose for a
while that it will give the whole contribution without any
correction. Then, as we will show in the Appendix, the
interference term proportional to Re(FoFM} contains a
factor k =m~ which is very small and can be negligible.
This implies that the differential decay rate contains
essentially only two terms proportional to ~FM

~

and

~
Fo ~, but not to interference effect Re(FoFM). In Fig.

3, we have plotted our calculation of the pp-mass distribu-
tion R (M ) defined by

~

5
~

& 22',
~
Fo

~
/

~
FM

~

=(0.34 to 0.82)

I
Fo

I
/

I
FM

I

=(0.09 to 1.07)

(2.9a)

(2.9b) R(M -)=
I (P pp) dM—

(2.13)

H ~
——i'm~ Ny5~N

or pseudoscalar-pseudovector (PS-PV) form:

(2.10a)

H )
—— g~g Nygyp&N. B&m,

2m
(2.10b)

where gag„ is the standard pion-nucleon coupling con-

for two values of u given by Eqs. (2.6a) and (2.6b), respec-
tively.

We will now turn to g~n. pp decay. First, we discuss
the proton-pole diagram of Fig. 1. The pion-nucleon in-

- teraction can be chosen either as pseudoscalar-
pseudoscalar (PS-PS) form:

for th«e choices «
I
Fo

I
/

I
FM

I
=0, 0.5, and 1.0, and

compared them to the experimental data of Ref. 11.
Here, M refers to the invariant mass of the pp system.
Note that the high (or low) values of M correspond to
low (or high) values of the pion energy E since

M„- =(Mg +M ) 2MgE— (2.14)

We see that our calculations reproduce fairly well the
high-mass distribution of the pp system in both shape and

' magnitude especially for Fo ——0. However, the values of
( Fo ( /

~
FM

~

=0.5 and 1.0 are still consistent with data,
especially when we compare them with the experimental
data of Ref. 12. This confirms the validity of the soft-
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pion theorem. However, for smaller values of M —, our
calculation tends to give almost twice as large values in
comparison to the data. Indeed, the total decay rates
I (g~ppm ) are calculated to be

() 89 f«
I
Fo

I
~

I
FM

I
=o

1.08 for (F() [ l[FM (
=0.5,

pp}
I
Fo

I
~

I
FM

I

= l.0
(2.15)

1 1

Q2 +2,FM, FM0(~ (2.16)

for b, =2p. k+k or 2p' k —k, where the form factor
P(b, ) is normalized to P(0) = 1. Since we expect

~
P(b. )

~

& 1, this will certainly lower the total decay rate

I

which should be compared to 0.50+0.06 of Eq. (1.2).
This fact may be partly due to the off-shell effect of the
virtual (instead of real) proton intermediate state as we
remarked already. This implies that we have to replace
F~, for example, as

as well as the partial rates for high pion energy E . How-
ever, since we have no reliable way of calculating P(h ),
we consider other Feynman diagrams which can destruc-
tively interfere with the proton-pole contribution and
hence will lower total decay rate. We take into account
the isospin- —,

' N*-pole diagram of Fig. 4, since N*-
resonance production in the mass region 1400—1550 MeV
has been experimentally observed' for g~N'p. In pass-
ing, we note that there is no evidence for production of
b (1232 MeV) with I= —, in g~b p. This is consistent
with our theoretical expectation, since the exact SU(2) in-
variance will forbid g~Ap in absence of the SU(2)-
violating one-photon-exchange process. For mass ranges
1400—1600 MeV, there are three known baryon isobars;
1440 MeV (J = —, ), 1520 MeV (J = —, ), and 1535
MeV (J = —, ). We neglect here the contribution from
the J = —,

' isobar, partly for simplicity and partly from
expectation that its effect will be small due to centrifugal
barriers. We now define analogs of magnetic and electric
form factors by

(N~ /(CI+M )P„(x) /0) = ma

po I po I

I"
1/2

u. (p') F~ ) „+ Fo'(p+p')„+G"(p —p'}, U(p)e'" ""1
(2.17a)

(Npp
~

(I7+M )Pq(x) i
0) =

po lpo I

I"
1/2

u p(p')r5 FM(P)ye+ Fo(P)(p+p )p+ G(P)(p p )p U(p)e (P'-P)'1

(2.17b)

where N and Np stand for N'(1440 MeV) with J = —,

and N' (1535 MeV) with J = —,', respectively. G' ' (or
G(~)) in Eq. (2.17) can be expressed in terms of FM' (or
Fg ') and Fo ' (or Fg') by the constraint 8"g&(x)=0.

The total decay rate for g~N( +—'p with N(+) =N~ and
N' '=Np is calculated to be

I (1t ~N( —'p ) = 2k 1

3~ M —(m+m")

IFM I'+ 2m

=(0.55+0.28) iFM [ + i' iM

F(P) /z+ /F(P)
i

z2m

(2.19a}

&& IF I
+ IF (2.18a}

2m=(I 57+0 81)
I
F~ I'+

z I
FE I'

M
Q

1+a

4m m m2

M —(m+m" )
(2.18b) where we have set

(2.19b)

k = [M —(m* —m) ][M —(m*+m) ] .
4M

(2.18c)
I (Q~Npp)
I (P—+N~)

(2.20)

m*, F~—', and Fo— stand for ma, F~', and Fo ' or mp,
F~~', and Fo~', depending upon identification X'+'=%a
and X' '=Np. Our formula reproduces, of course, Eq.
(2.4) for the special case of N~=p with m*=m. Note
also that Eqs. (2.18) are formally invariant under
m*~ —m* and a~P.

The experimental data are not sufficiently accurate
enough at the present so as to distinguish X and N~ con-
tributions, separately. Then, we estimate

H = g' 'X yy W() +H. .
2m

a~= ' g„'~'X~y„~W.a„~+H.c. ,
2m

(2.21)

which are compatible with the soft-pion theorem. Then,

Next, we have to compute matrix elements of Fig. 4. To
this end, we define N*1Vm interactions by
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the decay rate for X*~Nm with X*=N or X~ is calcu-
lated as

2.0

l.8—

(g* )'
r(N*~Nm ) = (m'+m)

8m '(m')' 4~

X [(m'+m ) —m ]k, (2.22a)

~ l.4
IJJ) l.2
LLJ

o I.O

~ 0.8

zo6
0.4—

k = [(m' —m) —m ][(m'+m) —m ],1

4(m*)

(2.22b)

where m* and g refer to m~ or m~ and g' ' or g'~',
respectively, and where the plus and minus signs corre-
spond to two cases of N'=N (plus) and N*=N&
(minus), respectively. From these formulas, we estimate

0.2—

0 Hi
I.8 2.0 2.2 2.4 2.6 2.8

p-p INVARIANT MASS (GeV)
5.0

FIG. 8. Plot for [dI'(P~ppvr )/dM ]/I (g~pp), where the

calculated value takes account of proton as we11 as N -pole con-
tributions. See the text for details.

I (l(t ppm )/I (1(t pp)=0. 65+0.24 (2.24)

(g' ') =1.30+0.68,
4 7l

(gg') =0.40+0. 19 .
4 7T

(2.23)

from various pole terms.
We should remark that absolute signs for contributions

from interference terms between p, N~, and N~ are un-

determined in Table I. However, since only interference
between p and N~ is numerically significant in view 'of
the different parity of Np, this affects mostly the former.
If we choose now a =0.3 [see Eq. (2.20) for the defini-
tion of a] with destructive interference between p and N,
then we find

Now, we are in a position to compute contributions from
Figs. 1 and 4. However, since we do not know values of
ratios Fo/F~ for N* =N and N~, we assume for sirnpli-
city Fp=Fp =Fp =0 as well as real relative phases(a) (P)

among FM. F~' and F~'. In Table I, we give contribu-
tions for ratios

r(1( ppm')/r(y pp)

(g'„') =9.10+5.58,

(gq~') =7.07+3.46

(2.25)

in agreement with the present experimental value of
0.5+0.064. Also, in Figs. 8 and 9, we have plotted mass
spectra of the decay with respect to variable M and

M, . We see that the agreement of our calculations with
PK

experiments is satisfactory. Also the interference term be-
tween p and N does not seriously affect the low-pion-
energy spectrum corresponding to the soft-pion theorem.
In conclusion, we may say that we can explain the experi-
mental data for g~n pp decay satisfactorily.

We next turn our attention to the decay f +qpp, sinc—e
the discussion for g—&g'pp can be done exactly in the
same way. As we have emphasized in the previous sec-
tion, the proton-pole diagram now gives negligible contri-
bution. Indeed, now contributions from N~ and Np are
dominant for the present case. We note that N (1440
MeV) can decay into pg because of its large width of
-200 MeV. Therefore, in calculating the coupling pa-
rameter g„and gv of q N N~ and rj-N-Ng mtera-c--(a) (p)

tions, we must consider the large widths of these isobars.
The procedure is rather modd dependent. However, we
estimate

TABLE I. The ratios of I'(t(~ppgro) and I (l(~ppg) tp
I (g~pp ), computed on the basis of baryon-pole diagrams Figs.
1 and 4. See the text for details.

2.0

I,8

(.6

D@~ppmo)

pp)

p
N

N Np

0.89
0.29+0.21

1+a
a

Np
' (0.09+0.06)

1+a
N p (0.52+0.44)(1+a )

Npp (0.0003+0.0002)
(1+a )'

—(0.07+0.07)
1+a

pP)

0.0007
0.40+0.32

1+a
(0.44%0.32)

1+a
(Q 03+0 03)(1+a )

—(0.015+0.012)
( 1 +a 2)1/2

—(0.41+0.48)—
1+a

cn l.4
l—

~ I.2
W
LL

I 0

m
~ 0.8
~ 0.6

0.4

0.2

l.2 I.6 I .8
p-7r INVARIANT MASS (GeV)

2.0 2.2

FIG. 9. Plot of [dI (gP +pprr )/dM o]/I—(P~pp), where

M 0 stands for ihe invariant mass of the pm system. The cal-
p8'

culated values take into account the proton and N*-pole contri-
butions. See the text for details.
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from experimental known decay rates I (N~ —+pg) and
I (Np~pq). As for g„zz, we use the value of
g„&z/g &z—0.05 corresponding to d/f =2.7 in Eq.
(1.22). Then, under the same assumption as in the calcu-
lation of I (g~ppm )/I (/~pe, we can compute
r(g~ppq)/r(f~pp ) and have tabulated various contri-
butions in the second column of Table I. To our surprise,
the interference between N~ and Ni) is now found to be
large in spite of the opposite parity. This is perhaps due
to the fact that the phase volume for g~ppg is small and
hence the expected cancellation due to the opposite parity
for the interference is imperfectly realized in contrast to
the case of g~m. pp. Regardless, if we choose a suitable
constructive interference between 1V and N p with
a 0.3 as before, we calculate

I (g~pp ri ) /r(g~pp )=0.64+0.52 (2.26)

2.0

in comparison to the experimental ratio of 1.01+0.20. In
view of the large uncertainties in both experimental and
theoretical- information, this agreement is not unreason-
able. However, if we compute the mass spectrum with
respect to M&z, then we encounter a serious problem as
we see from Fig. 10. The flat nature of the calcula, 'ted

spectrum is mainly due to the large interference between
and Np. One possibility is to postulate the existence

of a new baryon isobar 1V* which couples strongly with
Xg and Xg'-but very weakly with X~ system: Then, the
existence of such a new resonance even in the mass range
of 1400—1600 MeV will not affect the discussion of
g~ppn decay but with a possibly sizeable effect to
g~ppg and ppg' modes. Note that it will be very diffi-
cult to prove or disprove the existence of such a resonance
from the standard phase-shift analysis of pion-nucleon
scattering data. However, we must be cautious about any
such conjecture. First, we made many assumptions in our
calculations such as I'0 ——I'o ' ——I'o ' ——0. Second, the peak(a) (P)

in the g-p mass plot does not appear' to experimentally
reflect any particular resonance at all. Therefore, the situ-
ation is perhaps less definite both experimentally and
theoretically for analysis of the li~ppg mode at the
present time.

We have also computed the contribution from the
proton-pole diagram for li~ppco decay. However, the
calculated value amounts only to one-tenth of the experi-

III. MESON-POLE DIAGRAMS

In Sec. I, it has been remarked that we perhaps should
not take into account contributions from meson-pole dia-
grams in addition to those from baryon-pole diagrams be-
cause of possible double-counting of the same quark
graph. However, we calculate here their contributions for
the resulting completeness and comparison. In order to
estimate matrix elements due to two step processes
Q~V9P9~ppP9 with P9 ——mo, g, and g' (see Fig. 2) we
introduce the following effective local interactions.

H„,= g „,W-i'a„y„(x)a.V,(x)P(x),

Hzxx=gzxxN(x)3 qrN(x) p (x)

(3.1)

+i gp~~N(x)[y„, y„]rN(x) d"p"(x),
4m

H„~~ g„~~N(x——)y)N(x)co (x)

(3.2)

+i g~~~N(x)[y„, y„]N(x)B"co (x) . (3.3)

Note that we need not consider H~&& since it should be
zero' for the ideal to-P mixing because of the quark-line
rule. Then, the decay matrix elements for Q~P9pp are
given by

S~(Q~P9pp)= —(2m. ) i5' '(q —p+p' —k)
2

' 1/2

Mv,X
4koqopo

I po I

V'

q„k E,(q)
g gvP vap

m~ —(q —k)

(3.4a)

&& ~(p»)[(g VNN+gvNN )y p

—( I/2m)gvNN(P+P )p]U(p ) . (3.4b)

Since any of p, p', p". . . and to, co', to",. . . intermediate
states could contribute to g~m pp and g~g(g')pp de-
cays, respectively, the total decay matrix element should
be

mental value, suggesting again the importance of the
baryon-isobar poles. We will reconsider this problem in
the next section.

1.6—
v+~v +~V-+(v) (3.5)

14—

1.2—
LLI

o I 0

0.8—

z 0.6—

0.4—

0.2—

0
1.4 1.5 1.6 1.7 1.8 l.9 2.0 2.2 2.4

p-7} INVARIANT MASS (GeV)

Before going into further detail, we note the following.
Take the rest frame q& ——(O,M) of P, and consider the
zero-momentum limit k~O (but ko~m &0) for the
pion. From Eq. (3.4), we see M' '~0 in this limit, in ac-
cordance with a stronger version of the soft-pion theorem
as we have already emphasized in Sec. I.

The value of g~vp can be easily determined as follows.
Consider first the g~mp decay. We then calculate

FICx. 10 Plot for .[dI (g~ppg)/dM~„]/1(g~pp), where
M~„refers to the invariant mass of the pg system. For details,
see the text.

r(q ~p)= '
(g~,.)'k',

4m

where k is the magnitude of the pion momentum in the
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rest frame of f. From the known decay rate of I (f~mp)
we estimate

TABLE II. Branching ratios for I'(g —+pptrn) and

1(g~ppt)) calculated on the basis of vector-meson pole dia-
grams (see Fig. 2).

~ g~~ ~

=1.78X10 (GeV) (3.6)
I (tj'r pptro)/I'(g all) I (1(t ppt))/I (f all)

ggreti=SiSin(~O ~i)gcpprr

gpreri =S2COS(80 82)ggprr

(3.7)

For g&„„and g~„„,we assume the exact validity of both
SU(3) and the quark-line rule to find

A, '=0
A, '=0.5
A, '= 1.0
Experimental

0.93X 10
1.57 X 10-'
2.22X 10

{1.1+0.1)X10

0.27 X10-'
0.44X10-4
0.62X 10

(2.3+0.4) X 10

Here, we assumed ideal mixing for the co-P complex.
Note that the ratio g~ z/g~ „ is equal to Rc as in Eqs.
(1.12) and (1.13). Values of gzitritr and gi~~ can be
evaluated from the Sakurai's universal p-coupling hy-
pothesis together with the p./co dominance model for
electric-magnetic form factors of the nucleon. Then, we
find

gppp
———2f~ = —,'(2.8X4~)'1/2

gppp=(~p I"»)gppp

as well as

(3.8a)

(3.8b)

g~sp=3gpsu ~

grepp =(Pp+P» )grepp ~

(3.9a)

(3.9b)

1 1

mi (q —k—) my —(q —k) (my ) —(q —k)

where pp and tM» are anomalous magnetic moments of the
proton and neutron, respectively. The introduction of
higher radial excited states p',p",. . . and co', ~",. . ., etc. ,
requires knowledge of additional coupling parameters
g, , g, , etc. Here, we simply assume that the effect of
V', V",. . . may be approximated by replacing the Vprop-
agator in Eq. (3.4b) as

propagators. However, for the latter case, we expect a
large peak for large pion energy E in the spectrum,
which does not appear to exist in the present experimental
data.

So far, we did not consider the 0—+-meson-pole dia-
grams. The two-step decay /~re)' followed by q (or
q )~pp is forbidden by the charge-conjugation invariance.
Similarly, the normal 2+ mesons f and f' will not con-
tribute for P—+rjpp decay since g~rlf and rjf

' are forbid-
den again by charge-conjugation invariance. If an abnor-
mal scalar meson g, with negative charge-conjugation
parity exists, then two-step mechanics P~g, g (or g') fol-
lowed by 7), ~pp may contribute to g~ppg (or g'). Since
there is no experimental evidence for such a scalar meson
g„we have nothing to say about such a possibility.

Concluding this section, we have also calculated the
contribution for g—+ppco from the proton-pole diagram
where we replace ~ by co in Fig. 1. Since the coupling
constants g„- and g are known from Eqs. (3.8) and

(3.9), the calculation is straightforward. Assuming F0 =0
again, we find then

PP '=O. O61
pP)

/pl+ 2 + 0 ~ ~

(mt ) —(q —k)
(3.10) in comparison to the experimental ratio of

for suitable parameters A, ',A,",. . ., etc.
In what follows, we neglect contributions from higher-

order radial states p" and co", etc., and assume 0(A,'(1.
The calculated ratios of

I (g~rlpp)/I (g~all)

are tabulated in Table II for three values A, '=0, 0.5, and
1.0. From Table II, we see that the contributions from
vector poles are smaller by a factor of 10 in comparison to
those from baryon-pole diagrams. Moreover, we find also
that interferences between vector-pole and baryon-pole di-
agrams are, in general, very small in magnitude. There-
fore, the main results of Sec. II will reniain unchanged,
even if we have to include vector-meson pole diagrams.
Of course, there are exceptions. First of all, the value of
A,

' may be very large. Second, there may exist p" and co"
whose masses are very near twice the proton mass, so that
their contributions will be significant because of small

pp~)
I (g~pp ) experimental

This suggests that the main contribution for P~copp
must result from other Feynman diagrams, such as %*-
pole diagrams. However, since there is no information
available for the N*-N-co interaction, we cannot make any
definite conclusion. We note that g~cog (or g') followed
by g (or i) )~pp will give negligibly small contribution
because of the same reason as in /~i)pp decay. One pos-
sibly important diagram may be the 2+ tensor pole dia-
gram where we have /~cd ~copp. Since many unknown
coupling parameters are involved in the calculation, we
will not, however, pursue the issue here.
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Here, we give explicit expression for the decay rate for P~m. pp due to the proton-pole diagram of Fig. 1. Summing
over possible spin states of final baryons and changing the sign of p' into —p' (so that po & 0 now), we then find

I' '(P rr pp)= I j f 5' '(q —p p' —k)—[ iF~ i At+ iF() i
A2+Re (F*FM)A3],

4M kopopo

where we have set
'I

I

At ——(m +pp')[(a —b )( ek) +b e k ] 2ab—(e.k)[(p.e)(p'. k) —(p'.e)(p k)]
—2b [E(p k')(p''k) —(e k)[(p k)(p''E)+(p'e)(p 'k)]+k (p E)(p 6)I

2

A2= [(m —p p')k +2(p k)(p' k)]2 p E pE'
Pl 2p k+k 2p' k+k

2

4k' P'& P &3=
2p.k+k' 2p'-k+k'

(A2)

(A3)

(A4)

In Eq. (A2), we have set for simplicity,
1 1a=

2p k+k' zp' k+k' '

(A5)

b= 1 1

The spin average over the polarization vector e~(q) can be
obtained by substituting, for example,

e = —1,
(A6)

st =(p+p')'=(q —k)',

s2 ——(p'+k) =(q —p)
(Aj)

as is given in Ref. 31.

Since k =m~, all terms involving k are numerically
small, and may be omitted. Especially, we may set A3 ——0
so that the interference between Fo and FM is practically
zero for g~nopp dec.ay. We can further integrate Eq.
(Al) in terms of two variables s~, and s2 given by
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