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We prove that asymptotically flat extrema of the action S =f[R + (1/28%)R 2] have non-negative ener-
gy, provided there exists a spacelike hypersurface on which R > — B2 Flat space is shown to be the
unique topologically Minkowskian stationary point of the energy. This result leads to a heuristic functional
variational argument for positivity that does not involve restrictions on R. We also prove that flat space is
semiclassically stable. Possible extensions of the theorems and relevance to quantum gravity are briefly

discussed.

I. INTRODUCTION

Higher-derivative theories of gravity are of interest be-
cause, unlike general relativity, they are renormalizable
when quantized.! Yet relatively little is known about these
theories at the classical level. Of particular interest are the
questions of positivity of energy and stability. There are
reasons to suspect that the general higher-derivative theory
is unstable, and this could translate into disastrous unitary
violations in the quantum version."?

In this Rapid Communication we investigate a restricted
class of higher-derivative theories described by the action

-

(We use units in which 167G =1 and conventions
[Va VsIhe=Rasc'Na; Rac=Rap® and signature — + + +.)
We prove that all asymptotically flat extrema of S have
non-negative energy provided that there exists a spacelike
hypersurface 3 on which R > —B? everywhere. The key
element in the proof is explicit construction of a conformal-
ly related metric with positive stress energy. This result can
be extended to show that flat space is a local mininum of
the energy. As argued by Brill and co-workers® in the con-
text of general relativity, the existence of a negative-energy
solution that could be generated by a continuous deforma-
tion of flat space would suggest a saddle point of the energy
functional. We prove that there are no such saddle points.
We also prove that the theory is semiclassically stable in the
sense that there are no asymptotically Euclidean instantons.
We conclude with a few comments on the relevance of the
action (1) and our results to quantum gravity.

R +2L32R2] . 1)

II. POSITIVITY OF ENERGY

The equation of motion derived from (1) is
G®=pB"2(VV*R —g®O0R —R®R ++R%®)=T% . (2)
Because the dynamics of large distances are governed by the
lower-derivative Einstein term, the conserved energy of an

asymptotically flat space-time is given by the usual Arno-
witt-Deser-Misner (ADM) expression*

E=fd2Si(gij,j-gjj.i) . 3)

Because the right-hand side of (2), regarded as an effective
stress energy arising from the R? term, does not obey the
dominant energy condition, one cannot immediately con-
clude that the energy is positive. It has long been known
that the linearized theory does have positive energy.! This,
in itself, does not imply very much—the ¢> scalar theory
also has positive energy at the linearized level. Neverthe-
less, we will show that the energy is positive for a wide class
of space-times.

To demonstrate positivity of energy, consider a spacelike
surface 3 in a space-time (M,g, ) that is asymptotically flat.
In general relativity, the weakest definition of asymptotic
flatness permitting a proof of the positive-energy theorem
is®

3g,~j—’ 8/]4‘0("_1/2_() ,
(42)
Kij'—’ O(r—3/2—s) ,

and we will require the same falloff behavior here. As we
are considering a higher-derivative theory, however, addi-
tional falloff rates must be imposed for the extra canonical
variables.* These variables are the four-dimensional 'scalar
curvature R and its conjugate momentum which is linear in
the time derivative of R. We require

R — 0(,.—3/2—:) ,
(4b)
t°V,R — O (r~¥7¢)

where ¢ is the unit normal to 3. As R is linear in the time
derivative of the extrinsic curvature, (4b) are the weakest
boundary conditions that insure that (4a) is maintained
under time evolution. In addition, we require that spatial
derivatives on R fall off faster than r ~2. This excludes os-
cillatory behavior at spatial infinity. [Without this require-
ment there would be an additional contribution to the ener-
gy expression (3).]

The proofs will be phrased in terms of four-dimensional
quantities rather than the three-dimensional Cauchy data
because it is notationally simpler and emphasizes the rela-
tion to an Einstein-scalar theory. The correspondence
between the three- and four-dimensional formulations, i.e.,
the well-posedness of the Cauchy problem, has been
demonstrated with the restriction R > — 82 (Ref. 6).

We now state and prove the following:

Theorem I. Let 3 be an asymptotically flat, nonsingular
spacelike surface in a space-time (M, gu). If
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(& K,R,1°V,R) satisfy t,G*®=1,T* and R > —p% on 3,
then the energy is non-negative.
Proof. Define a conformally related four-metric

n=04+B8"2R)ga . %)

Because of the falloff rate of R, E[g]l=El[g]. So we now
need only show that & has positive energy. To do so, simply
compute

1 ~ab ~ab

G*=3 (T~ 15"V VD) — 38"V ($)

é=In(1+B7°R) , (6)
V(g)=g(1-e 92 .

(These equations may be derived from the action
§=[IR-3V0¥9-V(p)] %)

by varying with respect to & and ¢.) It is easily checked
that G obeys the dominant energy condition, implying
E[g1=0. Hence, Elg]=0. Q.E.D.

We have shown that the energy is non-negative in a
neighborhood of flat space and it is easily shown that flat
space is the only zero-energy solution in this neighborhood
and is therefore a local minimum of the energy. As argued
in Ref. 3, if there did exist a negative-energy solution con-
nected by a continuous path in solution space to flat space,
then one expects a saddle point of the energy ‘‘in between”’
these two solutions. These authors further point out that
such arguments cannot be made rigorous without detailed
knowledge of the geometry of the space of solutions. The
nonexistence of nontrivial extrema of the energy is
nevertheless suggestive of positivity. We therefore prove
the following:

Theorem II. Flat space is the unique topologically Min-
kowskian extrema of both the action S and the energy E.

Proof. The proof follows readily from the work of Brill
and co-workers,> who show that such extremizing space-
times are static. We first show that there are no asymptoti-
cally flat static solutions containing a region in which

R < —pB% Consider the boundary of this region where
R = — B2, On the boundary, the equations of motion imply
1287 4V*VR = — g , (8)

which implies the space-time is not static. Hence, R > — g2
for static space-times.

Since all static solutions have R > —B2, one can
transform to the variables § and ¢ and look for static extre-

ma of (7). The ¢ equation of motion is, for time-
independent ¢,
3V, Vb= a’;fb ) ©)
Multiplying by ¢ and integrating by parts we obtain
_ i — K14
3fzv,¢vqs_fz¢a¢ . (10)

Both integrands are positive definitg so the only solution is
¢=0. The remaining equation 35/9¢ =0 reduces to the
vacuum Einstein equation when ¢ =0. It is well known that

the only topologically Minkowskian, static solution to this:

equation is flat space.®* Q.E.D.

The above proofs could be readily extended to prove that,
under the above conditions, flat space is the only zero-
energy solution and that other solutions have future-
directed, non-null four-momentum. It seems likely that one
could also prove positivity of the Bondi’ and Abbott-Deser?
(with the addition of a cosmological constant) energies.
Much less obvious is whether the theorems involving black
holes® can be extended to R + R? gravity.

We emphasize that we have not proven, under the weak-
est physically reasonable assumptions, the positivity of ener-
gy of nontrivial classical extrema of S. In particular, the ex-
istence of solitonlike solutions with R < — 8% somewhere
that cannot be reached by continuous deformation of flat
space has not been ruled out. [Because the supersymmetric
extension of (1) has positive-norm fermions, it might be
possible to obtain a more complete proof using spinors.]

Even if such solutions do exist, however, it appears that
the dynamics of the sector of the theory for which
R > —pB?%is, modulo the usual problems with singularities,
in some sense complete. It appears from inspection of the
action S that initial data satisfying this bound will continue
to satisfy it under time evolution. In order to violate it, the
field ¢ would have to climb over the exponentially high po-
tential past minus infinity. We now give a semiclassical ar-
gument indicating that it may be possible to restrict oneself
to this sector of the theory quantum mechanically as well.

III. SEMICLASSICAL STABILITY

To demonstrate the semiclassical stability of flat space, we
look for asymptotically Euclidean (AE) extrema of action
(1). The traced equation of motion is

OR =8°R/3 . (11)

Multiplying by R and integrating by parts, we obtain
- fVaR V°R =32 fR2/3 . (12)

For a Euclidean metric this implies R =0. The equation of
motion is then equivalent to the usual vacuum Einstein
equation, for which it is known that there are now AE solu-
tions.!® This implies the semiclassical stability of flat space,
and is certainly consistent with the nonexistence of nontrivi-
al zero-energy classical solutions.

IV. DISCUSSION

We conclude with comments on the relevance of this
result to quantum gravity. S is not a candidate for a funda-
mental quantum gravitational action because it is not renor-
malizable without the addition of the cosmological constant
and the squared Weyl tensor. Nevertheless, there are many
examples in field theory where one can consistently impose
some symmetry requirement that restricts one to a subsec-
tor of the theory. In this subsector, the omitted terms may
not be relevant. Possible examples are the requirements
that the metric be conformally flat or that it be spherically
symmetric. The former case is relevant to cosmological
mini-superspace models!! and the second is relevant to the
study of black-hole evaporation.!? In the former case the
Weyl term is probably not relevant because it vanishes for
conformally flat metrics. In the latter case the Weyl term
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might be consistently omitted because its dynamical content
consists of nonspherically symmetric, spin-two radiation.
The positivity of energy of classical extrema of S then sug-
gests that, if S describes a consistent quantum theory for
these special cases, there will not be difficulties with stability
and unitarity. The quantum theory derived from S could
provide an interesting theoretical laboratory for understand-
ing quantum gravity.
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