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Solutions for a spherically symmetric self-dual monopole are derived for the case where the SU(2) sub-
group which implements the spherical symmetry is maximal in a simple subgroup of the overall gauge
group. For these solutions the relation between the asymptotic B field and the asymptotic Higgs field is

discussed.

For many interesting cases of a spherically symmetric
self-dual monopole, the spherical symmetry is implemented
by an SU(2) group which is maximal in a simple subgroup,
G’, of the overall gauge group G. Since the maximally im-
bedded (in G) spherical self-dual monopole solutions have
been derived by Ganoulis, Goddard, and Olive! (GGO)
perhaps it is not surprising that solutions for the maximal
imbedding in G’ can be obtained. Some solutions for
G =SU(N) are given in Ref. 2. This note derives such
solutions for a large class of G'CG.

I consider a gauge group G, a subgroup G'CG, and a
maximal (in the sense of GGO) SU(2) subgroup of G. The
subgroup G’ is restricted to be one for which there exists a
Cartan-Weyl basis of G in which the simple roots of G are a
subset of the simple roots of G'. (Thus the Dynkin dia-
gram for G’ is obtained from that of G by removing dots.?)
This implies that there exists a Cartan-Weyl basis and a
choice of simple roots such that the Cartan subalgebra set
(H/) and the simple root ladder operators (E, ) are subsets
of (H;) and (E,). ' :

For self-dual monopoles of a gauge group G, if one de-
fines

Y=_(ne®—T;/r) , (¢))

where @ is the Higgs field, the spherical symmetry condi-
tions become

[T3.2]=0 » (2)

[T;,;NE]=N1T . 3)

T are the generators of an SU(2) subgroup, n=+1 (—1)
if the Bogomolny equations are self-dual (anti-self-dual) and
the gauge field is given by -

eW =Tx(T—nrN)/r? . 4)

The Bogomolny equations become

a‘P =l + -

5 s[IN*,N"] , 5)

BN _ 4w NE] )
or

The radial magnetic field on the z axis is
eB,=en® =¥'—T;3/r? . @)
For maximal imbedding

T;=28"-H , 8)

with

=5 3 ala?,
acot

where ®* are the set of positive roots of G. It turns out
that 28”-a;=1 for a simple root in G. For this maximal

imbedding the most general N ¥ and ¥ satisfying Eqs. (2)
and (3) are given by

1
N*= 3Cx/(r)Ez, , ©

im=1
1
Y= SV.(OH . (10)
im=]

Here / is the rank of G, E tq, are the step operators corre-
sponding to the simple root «;, and H =2a;H/a;% In turn
the Bogomolny equations become

0;'=exp

i=1

1
ZKﬂgl] s an .
where ‘
1
9,’=2\I’i, ln]C,-]2= EKjioir
i=1

and K is the Cartan matrix of G. GGO exhibited the solu-
tion to Eq. (11) and a quite explicit calculational scheme has
been developed for G.*

I will now discuss how these considerations are modified
if T are generators of an SU(2) which is maximal in G’
rather than G. T is now given by

T3=28""-H ,
with
8 =5 3 oYa,
a€¢+'

where @ *’ are the positive roots of G’. One can satisfy the
spherical-symmetry conditions with the ansatz

’

i
N*(r)= 3 C+,(r)E 1q, ,

(12)
i=1
N
V()= 3V.(rH . 13)
i=1
I have introduced the convention that o;, i=1, ...,/
are the simple roots of G’, and «;, i #*1,...,[ are the

remaining simple roots of G. [’ is the rank of G'. Notice
that though the sum involved in N % involves only the rais-
ing operators of the simple roots of G’, the sum involved in
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¥ is over the full Cartan subalgebra of G. Since ¥(oo) is
the asymptotic Higgs field one wants to be quite general so
that the unbroken subgroup H can be chosen as general as
possible. However, Egs. (12) and (13) are not the most
general form for operators which satisfy Egs. (2) and (3).
Generally there are other raising and lowering operators
which satisfy Eq. (2) and there are operators other than
those in the Cartan subalgebra which satisfy Eq. (3), and
thus one would not expect that the ansatz represented by
Egs. (12) and (13) gives the most general solution for this
imbedding. However with this ansatz we can proceed in a
manner which is similar to the procedure of GGO for the
maximal imbedding in G.
The Bogomolny equations become

1 .
Cly)= E\Ir,»K,,-Ci,, jél,...,l’ , (14)
i=1
Y/ =%C()I% i=1,...,I', as)
V=0, j=1,...,I'. (16)
If one defines .
0,',=2\I,,‘, l=1,,1 » (17)
Egs. (14)-(16) become
‘ !
9}’=exp[ EKJ,B,-], j=1,...,10 (18)
i=1
and
0,"‘—':2‘1’,‘7', l’#l,...,[’ . (19)

By use of Eq. (19), Eq. (18) becomes

,I
0;/=exp[ K0+ 3 KuV,(r)) . (20)
i=1 nEL L., !
A change of variables
6,=0,-+wjr, j=1,..‘,l, )
with
II
w;= EK_IU 2 an\I,n »
j=1 nEl, ..., [
where K ™! is the matrix inverse of K; (i j=1,...,I'),
gives
II
01”‘—‘6)(1) Z_Kjioil, j=1, e ,1/ . (21)
i=1

This is the equation solved by GGO. The boundary condi-
tion at r =0 implied by the finite-energy requirement is the
same expressed in terms of 0; as 0; since ¥/ is involved.
The GGO solution for a maximal imbedding in G is
characterized by a vector ¢ in the weight space of G restrict-
ed so that its Dynkin components, g,, are all positive.
However the limit of this solution exists in which all but
one Dynkin component are zero, i.e., g,=g8k. In this
latter case the unbroken symmetry group, H, determined by
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the asymptotic Higgs field is U(1) x K where K is semisim-
ple, and the asymptotic radial magnetic field is the same
direction as the Higgs field."* If one defines a vector Q in
weight space such that

lim eg, - <2 2)
r

r—oo
the Dynkin components of Q, Q,, are given by
Q=0 ,
and those of ¥ by
Wi qgdi -

Similiar results obtain for a maximal imbedding in G'. Of
course Eq. (7) implies that the radial B field, B,, and thus
the asymptotic B field lies in the Lie algebra of G'. If one
again defines a Q by Eq. (22), Q has nonvanishing dual

components, Q;, only for i=1, ...,/ but generally Q; is
not proportional to ¥,;(e0) for i=1, ...,/ and of course
V¥, can be chosen nonzero for i # 1, ...,!I. If one solves

Eq. (21) with g,=¢q8; an analysis similar to that in Ref. 4
implies the Dynkin components of Q are given by

Qi=_Q_8ikr i=1,...,1' » (23)
I 2
[ SKaK Qo nEL 0, (24)
Ap jm]

with no sum on k; and the Dynkin components of the
asymptotic Higgs field are

V(o) =g, i=1,...,0', (25)
I D) ]
‘I’,, = K, —w;
— (°°) anz J-El ”f[ 2 o
+2 S KW n=l...,0 . (26)
Xn pxy, ..., r

Since there are / — /' arbitrary constants, ¥, generally one
can fix ¥,(o) arbitrarily. From Eq. (25) it is clear that the
exact symmetry group H contains the XK' subgroup of G'.
The complete H is determined by the values of ¥, or
gm(oo) :

These results have an obvious generalization if G’
=G"xG'" where G and G’ are simple and if the SU(2)
subgroup which implements the spherical symmetry is maxi-
mally imbedded in both, that is, T=T"+T"', where T
(T""") are the generators of the maximal SU(2) imbedding
in G" (G"").

Note added. After this work was submitted for publica-
tion, I was made aware of two papers’ which bear on the
results of this work. These papers develop techniques for
solving the self-dual monopole equation with nonmaximal
imbeddings. The boundary conditions at the origin and the
relation between the asymptotic B field and Higgs field are
not discussed.
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