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A new time-dependent solution to the Euclidean SU(2) gauge theory is constructed by making use of a
solution recently discovered by Arodz. The solution appr'oaches a Wu-Yang monopole configuration as
t k ~. Solutions, with-analogous properties, for the self-duality equation are also discussed.

In a recent paper' Arodz obtained a new time-dependent
solution to SU(2) Yang-Mills theory in Minkowski space.
The solution is of infinite energy and its significance in
quantum theory is not very clear. In this Comment we
point out that a section of the above-mentioned solution can
be used to construct a new solution, with some interesting
properties, in Euclidean space. Solutions with similar prop-
erties are also found for the self-duality equations.

The ansatz

A'= —....—", [1—H(r, t)), 2[[=0

reduces the Yang-Mills equations of motion,

We note that (8) can be obtained from (3) by a general
independent-variable transformation2

A + Bt+ C(r' —t')
2f

8'+ 4AC =1,
where A, B, and Care constants. Transformation (9), how-
ever, sets the domain of the variable ~ = x —1 to be
—o. & v & ~. This change is not in any way advantageous
because no regular solution exists for v & —1. However,
the situation is different if we consider the Euclidean ver-
sion of Eq. (3) obtained by the substitution t —it:

to

r2 (H„,—H„) + H H3 =0— (2)

(3)

r2 (H„+H„) + H H3 =0—
In this case the transformation

A+Bt+ C(r + t )
2r

(10)

In Ref. 1, this equation was reduced to the form

(2+r)7H„+2(1+7 )H, +H H3=0-
by means of the independent-variable transformation

t —fp
1 ~

I'

(4)
82 —4AC = —1

brings the Euclidean equation to the form (8). The linear
dependence of t in (11) can be removed since (10) is invari-
ant under time translations t t+ p. If we take
p= —B/2C, then

The fields were considered as evolving from an initial time
t = tp to t = ~. The domain of the 7 variable was thus fixed
as —1 ~ 7 & ~. A regular solution in this domain was ob-
tained in Ref. 1 with the following properties:

1+4C (r2+ t2)

4Cr

Further (10) is invariant under scale transformations
r Xr, t Xt. Choosing A. = 1/2Cwe find

0 0 as~

0& ~H~ & I as r- —1
or

1+ r2+ t2x=
2f

We now observe that Eq. (4) can be obtained by a more
general transformation. For convenience we introduce a
new variable

1+ r2+ t2
1 p2r

the domain of variables now being

1~x& ~, 0~7 & ~

(12)

(13)
in terms of which (5) becomes

(x —1)H~+ 2xH„+ H —H3=0 (8)
The only difference compared with Eq. (4) is the change in
the domain of r as given by (13). Hence to construct a
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solution in Euclidean space we need take only a section (by
excluding the domain —1 » 7 & 0) of Arodz's solution.

As this is a Euclidean solution, the first thing to conSider
would be the evaluation of the action. That the action of
the solution is infinite can be seen in the following way.
We have the action

4mS=
I dt ' dr(H +H )+ (H I)—J ()

' 2r2
t

Since we are considering an H which depends on 7 given in
(12) this can be rewritten as3

t

4~ 12m 11
S= dr' dp (1—p2)H '+ (H 1)2—

g2 40 40 2p2
t

where

ferent from that of the meron. Meron solutions start from
(at t = —~) a vacuum configuration and evolve through a
Wu- Yang monopole configuration (at t = 0), and finally end
up (at t = ~) in a vacuum configuration. 4 In contrast, the
present solution assumes the form of a Wu-Yang monopole
configuration as t +~(r ~) because H(r) 0 at
these limits. In this regard the present solution looks simi-
lar to the bounce solutions5 of scalar field theories which
start from a vacuum at t = —~ and return to the same vac-
uum at t= ~. However, b'ecause of its infinite action, the
implications of the newly obtained solution for the quan-
tized theory can be understood only by going beyond semi-
classical approximations.

Finally we note that it is possible to obtain self-dual solu-
tions possessing properties analogous to those of the solu-
tion presented above. Considering a special case of Witten's
ansatz

1P= 1+.
r'=tan '2t/(I —t r)—

Since H is independent of 7 ',

8n. 2
S= dp (1 —p )Hp + (H2 —1)

g2 JP & 2 2 (14)

gW;= ...„—,[I—H(r, r) ] + s,.H (r, t)
r r

gAI't = ——'[1—H(r, r) ]
12

it may be verified that the self-duality equation

F'p = F'p

(15)

The integral of the first term in the square brackets is evi-
dently convergent. However the second integral is singular
at p=o and is finite only if H 1 as p 0. The limit

p 0 corresponds to the limit v ~, and in Ref. 1 it was
shown that the limiting value of regular solutions is zero as
v ~. Hence the Euclidean counterpart of Arodz's solu-
tion given through relation (12) is an infinite-action solu-
tion. This is, however, not an unexpected result; all the
known non-self-dual solutions are of infinite action. [It is
easy to see that the self-dual solutions within the ansatz (I)
are the trivial solutions +1, of (10) and all other solutions
are non-self-dual. ] However, as has been shown by
Boutaleb-Joutei, Chakrabarti, and Comtet complex solu-
tions can be found for (10) with finite complex actions.

Comparing the above-obtained solution with other known
solutions in the existing literature, we find it is neither an
instanton nor a meron. Even though merons are infinite-
action non-self-dual Euclidean solutions they carry half-unit
topological charge. In the present case, since H(r, t) is reg-
ular the topological charge density is zero everywhere and
the topological charge of the solution is zero. Furthermore,
the Euclidean time evolution of this solution is quite dif-

can be satisfied if

rH, = H(1 —H)

re= pH

The solution to (16) is given by

(16)

rH=
r +t+p (17)
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where p is an arbitrary constant. It may be noted that the
solution corresponding to (17) may also be easily obtained
within the @

4 ansatz. ~ The solutions have singularities at
r =0 as well as on a hypersurface r + t+p=0. As Euclide-
an time t +~, the gauge potentials become that of a
point dyon configuration:

gal = Eatnrn/»

gAg = —r'/r'
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