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%'e give a close approximation to a static, but unstable, solution of the classical field equations of
the steinberg-Salam theory, where the weak mixing angle 0 is considered to be small. Its energy
increases from —8 TeV to —14 TeV as the Higgs coupling A, runs from 0 to oo. Furthermore, it
has a large magnetic dipole moment and its baryonic (and leptonic) charge is 2 . The possible physi-

cal relevance of this solution is discussed.

I. INTRODUCTION

Recently it was shown that the field configuration
space of the classical Weinberg-Salam theory' without fer-
mions has noncontractible loops passing through the vac-
uum configuration. This makes it likely that there is a
static classical solution of the field equations, which is a
saddle point of the energy functional, and therefore unsta-
ble. The solution would be the maximal-energy configu-
ration on some noncontractible loop, and all other loops
homotopic to this one would pass through configurations
of equal or greater energy. It would therefore be at the
top of the energy barrier for going from the vacuum to
the vacuum along a topologica11y nontrivial path.

One believes that there is such a saddle-point solution
by analogy with the work of Taubes, who has shown
rigorously that in a slightly different context, namely the
zero-monopole sector of the SO(3) gauge theory with an
adjoint Higgs field and vanishing Higgs potential, one can
apply Morse-theory arguments to relate topological infor-
mation about the space of field configurations to the ex-
istence of stationary points of the energy functional.
Forgacs and Horvath have reviewed a number of other
field theories, in one, two, and three spatial dimensions,
where explicitly known saddle-point solutions are related
to the topology of the field configuration space.

We have coined the word "sphaleron" to describe any
classical solution of this type in a relativistic field theory.
A sphaleron, being static and localized in space, is parti-
clelike, but since it is unstable, we do not want to call it a
soliton. Unlike a soliton, a sphaleron almost certainly
does not correspond to a stable particle state in the quan-
tum theory.

We are still unable to make rigorous the topological ar-
gument for the existence of a sphaleron in the Weinberg-
Salam theory, where the gauge group is SU(2) &&U(1) and
the Higgs field is a complex doublet. However, we have
found a more direct approach which appears to lead to
such a solution, and can now estimate quite accurately
some of its properties. The crucial point is that in the
limit that the weak mixing angle 0 vanishes, the U(1)
field decouples and may consistently be set to zero in the
field equations. The Weinberg-Salam theory then reduces
to an SU(2) theory with a doublet Higgs field. Here, as

1

pointed out in Ref. 4, there really is a sphaleron. It is the
solution found numerically by Dashen, Hasslacher, and
Neveu (DHN), and rediscovered in the context of a nu-
clear physics model by Boguta. The solution has finite
energy, and the energy density is localized and spherically
symmetric. The fields, strictly speaking, are only axially
symmetric. Burzlaff proved recently that this solution
rigorously exists, and also proved that it is unstable, by
presenting a one-parameter family of field configurations,
among which it is the configuration of maximal energy.
To make contact with the topological approach discussed
above, we shall demonstrate that there is a noncontractible
loop in the configuration space passing through the vacu-
um and the DHN sphaleron, on which the sphaleron is
the configuration of maximal energy. This loop is essen-
tially the one discussed in Ref. 2.

Unfortunately, neither Refs. 6 nor 7 presented their
solutions in much detail; for example, neither gave the
value of the energy. We have not attempted to recalculate
the DHN solution, but have rather used variational
Ansatze to find approximations for the two radial func-
tions which occur. Unlike in Refs. 6 and 7, we have done
this over the whole range of values of the quartic Higgs
coupling A, , which determines the mass of the physical
scalar particle. These Ansi''tze give upper bounds on the
energy of the sphaleron. The experimental values of the
parameters that occur in the Weinberg-Salam theory
make our best upper bound approximately 8 TeV if A, is
zero, increasing to approximately 14 TeV if A, is infinite.
Subsequently, we have reconsidered the numerical solu-
tion, which was not quite straightforward, and have ob-
tained an estimate of the sphaleron energy of 7.6 TeV (for
A, =O), which is more reliable than the value obtained
from our best Ansatz However, it .is only 3% lower, so
for nonzero A, it is likely that the energies obtained from
the Ansatz are only a few percent too high.

What interested us most was to use the DHN sphaleron
(or rather, our appmximation to it) to find the approxi-
mate form of the sphaleron in the Weinberg-Salam theory
when 0 &0.' It was shown in Ref. 2 that the presence
of the U(1) field tnakes it impossible for the solution to
remain spherically symmetric in any sense. It would,
therefore, be quite hard to find the true solution, even
with numerical methods. However, the field configura-
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II. GENERAL PROPERTIES OF THE SPHALERON

We consider static classical fields in the Weinberg-
Salam theory. Both the fermion fields and the time com-

ponent of the gauge fields are set to zero. The energy
functional is'

where

+(D;y) (D;y)+ V(q )]d'x,

tion space is independent of the value of 8, and the ener-

gy functional changes smoothly with 8 . Since the solu-
tion is an isolated saddle point of the energy functional
when 8 =0 (provided one quotients out the translational
and rotational degrees of freedom and fixes the gauge),
presumably it cannot just disappear as 8 increases from
zero. Instead, it too should change smoothly. This argu-
ment suggests that there will continue to be a solution for
small but nonvanishing values of 8~, and that a perturba-
tion expansion in 8 can be used. It wi11 remain a saddle
point because, by continuity, the eigenvalue of the unsta-
ble mode will remain imaginary at least for small-enough
0

It turns out to be quite easy to find the changes in the
sphaleron's properties to leading order in 0 . To first or-
der, the SU(2) gauge field and Higgs field are unchanged,
but they produce a U(1) current density which is axially
symmetric and which acts as a source for the U(1) gauge
field. The axis of symmetry can be changed by a rotation,
of course. The 0(8~) axially symmetric U(1) field has a
back reaction on the other fields and produces O(8~ )

changes in them, still preserving the axia1 symmetry.
Such changes are hard to compute and we will neglect
them. The asymptotic form of the sphaleron's U(1) field
is that of a dipole, whose strength is proportional to 8
To leading order in 8 the U(1) field ean be identified
asymptotically with the electromagnetic field. Therefore,
the sphaleron has a magnetic dipole moment. The energy
of the sphaleron decreases quadratically with 0„,but only
by about l%%uo even for O„as large as the experimental
value of 0.50 rad.

The outline of this article is as follows. In See. II we
review the classical Weinberg-Salam theory and discuss
the general form of the sphaleron, both when 0 =0 and
for small, but nonzero, values of 8~. In Sec. III we

present Ansatze for the radial functions that occur in the
8 =0 sphaleron and our estimates for its energy. We
also verify that this sphaleron is the maximal-energy con-
figuration on a noncontractible loop. In Sec. IV we calcu-
late to leading order in 0„ the effects of the U(1) field,
from which we deduce the sphaleron's magnetic moment
and the shift in its energy relative to the 8~ =0 value. In
Sec. V, we argue that the sphaleron has a baryon number
and a lepton number of —,'. This is a consequence of the
anomalies in the fermionic currents of the Weinberg-
Salam theory, whose significance was first discussed by
't Hooft. " Section VI contains a discussion of our results
on the sphaleron, together with some remarks on its possi-
ble relevance for particle physics.

fbi =r)tai r)i at ~

1 «g a
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V(f )=k(f 0 ——,'u ) (2d)

and

(D,F;,)'= ,'ig[yt—o'—D;y (D;p) —a'y),

d, f;, = ,'ig'l—V—'D;V (D m—)"ml

D;D; q =2A, (pter ,' u )y—, —

(4b)

(4c)

where

(D,F,, )'=a, F,', +go"W,'F,', .

When g'=0, the U(1) gauge potential a; deeouples and

may be consistently set to zero. Then the field equations
reduce to (4a) and (4c), where now

D;q=B;y ——'igo'W y .

A solution to these SU(2) equations is possible with fields
of the form

8 o'dx'= ——f(gur)dU" (U" ) (7a)

U
0

h (gur) U"
&2

where

1
U 00

y
—x +ly

x +iy
(7c)

A physically equivalent Ansatz is obtained by replacing
U by

(U )'=UL, U Ug,

UL and U~ being constant SU(2) matrices. The effect of
UL on the field is simply that of a rigid gauge transfor-
mation. On the other hand, Uz has the effect of a physi-
cal rotation. W,

" is unchanged by Uz and is spherically
symmetric; however, y changes and is not. Perhaps
surprisingly, some gauge-invariant quantities, including
the energy density, are spherically symmetric for the An-
satz (7). This can be understood by considering these
fields as fields of an SO(4) gauge theory. In this larger
context, the spherical symmetry is manifest.

The DHN Ansatz is not identical to Eq. (7), but is re-
lated to it by a transformation of the type (8), with

The weak mixing angle is given by tan8~=g'/g. The
semiclassical masses of the Wboson and Higgs boson are,
respectively,

Mw= 2~gu MH ——~2k, u .

The field equations are
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0 1

1 0
0 —i
—i 0

hE = —f ,' f,)—f,jd'x (14a)

(14b)

This transformation will be used in Sec. V.
It is convenient now to introduce the dimensionless ra-

dial distance g=gvr. The radial functions f and h which
appear in (7) are functions of g, and the use of g simplifies
many of the expressions for physical quantities that we
shall consider.

For the fields (7), the energy functional becomes
2 '2

so we see that EE is negative.
With W and y given by (7), and a; vanishing, the

current j; has the form

, z h (gur)[1 f(—gvr)]j = —,g'v ( —y, x,O) .
T

Clearly this is axially symmetric about the z axis, but not
spherically symmetric. Since the current only involves
L = 1 spherical harmonics, it is simple to find the induced
U(l) field, which is a pure dipole field outside the region
where the current is concentrated. We parametrize a; as

+[h(1—f)]'+ — — g'(h' —1)' dg.
g2 a= —,'g'u p(gur)( —y, x,O) . (16)

This U(1) gauge potential is divergenceless, so Eq. (4b) is

The field equations reduce to

=2f(1—f)(1—2f) — h (1 f), —d2f g2

dg' 4

—V a=j (17)

When everything is expressed in terms of the dimension-
less distance g, this reduces to

=2h(1 —f) + g (h —1)h .

d +4/ = —h'(1 —f)
dg'

p must satisfy the boundary conditions

(18)

b, E = f ( ,' f,J.f,J a;j; )d x . —— (13)

When Eq. (4b) is satisfied

The boundary conditions on the functions f and h are
the following. Near /=0, f=a/ and h =Pg. As g~ao,
f =1—y exp( ——,

'
g) and h =1—(5/g) exp( —+2k, /g g).

a, P, y, and 5 are constants of order unity which can only
be determined by finding the complete solution.

The solution of Eqs. (11) minimizes the energy func-
tional (10); the instability of the solution involves field
fluctuations outside the class allowed by the Ansatz (7).
Further, by regarding the solution for one value of A, as an
Ansatz for a lower value of A, , it is clear that the energy of
the solution increases with k.

Let us consider next the case of nonzero 8~. Now it is
inconsistent to suppose a; is zero because the U(1) current

Jt= ~ w'[v D;m (D;q»'q]—1 (12)

is generally nonvanishing and acts as a source for a;. To
find the approximate sphaleron solution when g'/g, and
hence 0, is small, we suppose 8" and y are unchanged
from their 8„=0 values, and we compute this current
and then the U(1) field it induces through Eq. (4b). Com-
pared with W, the magnitude of a; is smaller by a factor
8 . One could compute the changes in W and y that
are induced by the nonzero a; by linearizing Eqs. (4a) and
(4c) about the background 0„=0solution. Such changes
are of order O~ compared with the background values,
and we have not attempted to find them.

The change in the sphaleron energy is of order 0
compared with the energy value when 0 =0. This ener-

gy shift comes entirely from the terms involving a; and is

lim g p(g)=0, lim p(g)=0.
$~0 g—+DO

The solution of (18) which satisfies these boundary condi-
tions is easily obtained. It is

p(k) =, f dna'h'(n)[1 —f(n)]

+ f drI h'(rI)[1 —f(g)] .
3g

(20)

The asymptotic behavior of p determines the magnetic
dipole moment of the sphaleron. Since a pure dipole of
moment p has a field

poxa—
34wr

(21)

the dipole here has a moment p =(0,0,p), with strength

p= f g h (g)[1—f(g)]dg.

b, E = ——
3 f g h (g)[l f(g)]p(g)d f . (23)—

p is truly a magnetic moment for the following reason.
In the unitary gauge, . and to first order in 0, the elec-
tromagnetic vector potential A; equals a;+0 8';, using
the usual mixing formula. But the electromagnetic field
is only well defined far from the sphaleron, where the
Higgs field has its vacuum value, and there A;=a;. This
is because 8; is proportional to 1 f in the unitary—
gauge, as can be deduced from (7), so it vanishes rapidly

asymptotically.
The energy shift hE may be similarly expressed, using

our parametrization of the fields, as
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In the following two sections we shall estimate the func-
tions f and h and with them determine the magnetic mo-
ment and energy shift.

A particularly simple Ansatz, labeled a, for the radial
functions is

III. THE SU(2) SPHALERGN
2

In this section we shall find the approximate form of
the 0 =0 sphaleron, and its energy, by a variational
method. We have shown already that the true solution
may be expressed in terms of two radial functions f and
h, which minimize the energy functional (10). Here we
use trial functions for f and h, which each depend on a
free scale parameter and which have the correct behavior
at r=0 and as r —+Do. By mi.nimizing the energy with
respect to these parameters we obtain an approximation to
the true solution and an upper bound on th.e energy of the
sphaleron.

I

&, g(nh'(g)= 0 '

1, g)Q.

(24)

Recall that g is the dirnensionless radial distance gur The.
Ansatz (24) is similar to the one used in Ref. 2, but there =
and 0 were set equal. Its energy is given by

47TV 1

g 210

3
1248 0 0 0

112—105 —+56 ——12 +4 ' Q3 (2S)

The scale parameters = and 0 that minimize (25), togeth-
er with the energy value, are presented in Table I for a few
values of A, /g . Since the optimal:- and 0 are approxi-
mately equal when A, =O, we obtain essentially the same
upper bound as in Ref. 2 on the sphaleron energy. As
k—+ m, the optimal:" has a nonzero limiting value,
whereas Q~O. The energy remains finite because the
Higgs field takes it vacuum expectation value almost
everywhere and, being an upper bound on the sphaleron
energy, that remains finite too as A, ~oo. Note that the
't Hooft-Polyakov monopole has similar behavior when
the Higgs coupling is large. '

Ansatz a is useful for order-of-magnitude estimates of
the sphaleron properties, but it treats the asymptotic
behavior of the radial functions too roughly. A much
more accurate approximation to the sphaleron is provided
by the following Ansatz, labeled b:

f (g)= =-(=-+4) '

1 — exp[ —,(:-—g) ],
4
+4

(26)

oQ+1 +
„b )

oQ+2 0
1 — —exp[cr(Q —g)], g) Q .Q 1

oQ+2 g

The parameter o equals +2k, /g . These functions have
the correct behavior near /=0 and for g~ao. Also, at
the crossover points g=:" and g=Q, the functions and
their first derivatives are continuous.

We have determined numerically, for several values of
A, /g, the values of the scale parameters = and Q which

TABLE I. The minimal energy E and the optimal values of
the scale parameters = and 0 for the Ansatz a. The energy is
given in units of 4'/g, which has a value of 5.0 TeV in the
steinberg-Salam theory.

0.
1

2.40
2.88
3.56

4.83
1.90

0

4.98
3.79
3.34

minimize the energy. These are shown in Table II, to-
gether with the energy values. The corresponding radial
functions for A, =O and oo are shown in Figs. 1(a) and
1(b). For all values of A, /g, the energy is lower than that
given by Ansatz a, so Ansatz b is certainly better. The en-

ergy increases with k/g, as does the true energy of the
sphaleron. The minimal energies obtained with our two
Ansatze a and 6 are presented in Fig. 2.

The energy values presented in Tables I and II are in di-
mensionless units. The physical energy is obtained by
multiplying by 4mu/g. The experimental data9 give a
value for this quantity of 5.0 TeV. Our estimate of the
sphaleron energy, for 0 =0, using Ansatz b, therefore
varies between 7.9 TeV for A, =0 and 13.7 TeV for A, = oo.

The conversion factor between the dimensionless dis-
tance g and physical distances is (gu) ', whose experi-
mental value is 1.23)&10 fm. From Figs. 1(a) and 1(b)
we. see that the sphaleron core has a radius of approxi-
mately 10 fm.

It is interesting to compare the results of these varia-
tional calculations with the numerical solution' of Eqs.
(11), for A, =O. The radial functions obtained numerically
are shown together with those from Ansatz b in Fig. 1(a).
The resulting sphaleron energy is
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TABLE II. The minimal energy E and the optimal values of
the scale parameters = and Q for the Ansatz b. The energy is in
units of 4m&/g=5. 0 TeV. The values of:- and 0 are correct to
within +0.03 or better; the values of E are correct to the accura-
cy given.

4 1
v

L L L

LL
~ ~

A, /g 2

0
10
10
10-'

1

10
10
10

1.566
1.61
1.67
1.83
2.10
2.41
2.61
2.68
2.722

E"™(A,=O) =1.52

2.60
2.52
2.29
1.90
1.25
0.62
0.22
0.07

0

2.66
2.45
2.12
1.65
1.15
0.82
0.74
0.73
0.728

(27a)

2

4J
~ ~

ANSATZ a

~ ANSATZ b

0 I y I I I I

O
" IO' IO' IO'

X/g

I

IO 10' IO'

FIG. 2. Upper bounds on the energy of the 0 =0 sphaleron,
obtained from the optimized Ansatze a and b. The true sphale-
ron energy is probably a few percent lower than the Ansatz-b
bounds. The cross represents a numerical estimate of the energy
for A, =O. The energies are in units of 4mv/g, which is 5.0 TeV
in the Weinberg-Salam theory.

whose value is 7.6 TeV. This is 3% lower than the
Ansatz-b value, so it is likely that Ansatz b gives an esti-
rnate of the sphaleron energy which is only a few percent
too high for all A, . Using the same numerical solution we
can also verify that the sphaleron, for A, =0, is the

IP r

maximal-energy configuration on a noncontractible loop
in the field configuration space, and therefore unstable.
To do this we make use of the loop constructed in Ref. 2,
which is parametrized by an angle p&[O, m]. The loop
starts and ends at the vacuum and passes through the
sphaleron (7) when p= —,m. The energy is given in terms
of p, by the integral (3.3) of Ref. 2. Integrating numeri-
cally, we find the energy to be

E"" (&=O,p, )= (1.28sin p+0.24sin p) .

0.6 This energy increases monotonically from zero to a max-
imurn at p = —,

'
m, and then decreases to zero.

04
IV. EFFECTS GF THE U(1) FIELD

0.2

0
0

I.p

0.8-

4 8
RADIAL DISTANCE f

I I & ~I~~~~
Wb/ f

l2

In Sec. II we discussed the way in which the sphaleron
changes as the weak mixing angle, increases from 0. To
lowest order in 8~, the effects are due entirely to the U(1)
field. Recall that to find the magnetic moment we need
to compute the integral

&—= f,
"

('h'(k)ll —f(k)/dk (2&)

The shift of the sphaleron's energy relative to its 0 =0
value is proportional to

0.6— 30
)(

0.4-
20-tl

0
~ o ~

o z- r

,J,
0 8

RADIAL DISTANCE f
l2

FIG. 1. (a) Radial functions f and h for A, =O from the op-
timized Ansatz b (dashed curves) and from numerical integration
(Ref. 14) of Eqs. (11) (solid curves). g is the dimensionless dis-
tance gur. (b) Radial function f for it= oo from the optimized
Ansatz b hnow is a step. function: h(g)=1 for g'&0, h(0)=0.

Io—

0 ~ 1

Io Io Ia I IO IO IO

X/g

FIG. 3. Estimates of the integral E obtained using the opti-
mized Ansatz b. For small 0, the sphaleron has a magnetic di-
pole moment proportional to 0 EC. The cross is a numerical es-
timate of X for A, =O.
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l.2 I I Ia

~ ~ ~

O.4Ir

L= h 1 — d

where the function p(g) itself is the integral (20). In this
section we shall present estimates of these integrals.

For the radial functions of Ansatz a we have calculated
the integrals analytically, but the results are only correct
to within a factor of 4, so we do not give them here.
Better results are obtained numerically using Ansatz b
with the optimal values of the scale parameters as given in
Table II. Our estimates for the integrals E and L, for
several values of A, /g, are presented in Figs. 3 and 4.
Figure 5 shows the function p for A, =O, 0.1, and oo. The
estimate of K is not very good because it depends critical-
ly on f and h in the intermediate region (g-6), where An

satz b is rather inaccurate. From the numerical solution
for A, =O, we obtain IC"" =27.8+0.3 (cross in Fig. 3),
which is 40% larger than the Ansatz b value.

O ~ I I I I I I I

0 10 IO IO
'

I 10 IO 10 0)
axe'

'FIG. 4. Estimates of the integral I. obtained using the opti-
mized Ansatz b. For small 0, the energy shift EE is propor-
tional to —0 I..

The physical magnetic moment of the sphaleron p is
obtained by multiplying K by 2rrg'/3g v. This factor'has
the value 0.0113 GeV ', so, assuming the value E""
above, p is 0.314 GeV ' for A. =O and approximately the
same for other A, .

It is interesting to compare this magnetic moment with
the magnetic moment of the 8' boson, ' p~=e/M~,
whose value is 0.0038 GeV '. The ratio p/p~ is 83
when A, =O. On the other hand, the ratio of the sphaleron
energy to the 8'-boson mass is —100. Note that the mag-
netic moment of the sphaleron is very large compared
with e/E, where E is the sphaleron energy.

Finally, let us consider the energy shift of the sphaleron
b,E = —(nvg' /3g )L. The factor multiplying the in-

tegral L, has the experimental value —125 GeV. This im-

plies that, within our approximations, the sphaleron ener-

gy is lower than its 0 =0 value by 48 GeV when A, =O
and by 135 GeV when A, = oo. These energy shifts are not
immediately significant, as we have not determined the
energy at 0„=0to such accuracy, but it is surprising that
they are so small, given that 0 =0.50 is not really small.
It raises the question of the nature of the sphaleron when

O„ is larger, and in particular in the limit O ~~/2.
Does the energy tend to zero or not?

V. FRACTIONAL CHARGE OF THE SPHALERON

It was pointed out by 't Hooft" that there are
anomalous fermionic currents in the Weinberg-Salam
theory. Both the baryon and lepton currents have Abelian
anomalies, but their difference is anomaly free. For each
family of quarks and leptons, which we assume to be
massless, there is a contribution to the divergence of the
baryon current of the form

I'
0.24-

0.20-

O.I6—

X=O. I

aujg= „e""~(,'g'F„'XI'. + ,' g—'f„„f1, —
3 2'"'

(30)

and equally for the divergence of the lepton current. For
Nf families the divergence of the baryon current is Nf
times the right-hand side of (30). For simplicity we will

only consider the lightest family, which consists of the u

and d quarks, the electron and the electron-type neutrino.
Then the baryon current is

O.I2 jg= 3 (u~y"u +d~y"d~), (31)

0.08

0.04

0
0

T~+
8 I2 I6

RADIAL DISTANCE $

FIG. 5. The function p, for A, =O, 0.1, and c)o, estimated us-

ing the optimized Ansatz b. The U(1) field of the sphaleron de-

pends on this function. When A, = co, p(g)-(constant ——, in/)
for small g.

where a is the SU(3) color index and the, ' occurs because
each quark has a baryon number of —,

' .
A consequence of (30) is that if the gauge and Higgs

fields are time dependent, then the baryonic charge is time
dependent, too. If the fields traverse a noncontractible
loop in configuration space, starting and finishing at the
vacuum, with time as the parameter, then the baryonic
charge changes by an integer. This integer is the Pon-
tryagin index of the time-dependent gauge field, which
equals the winding number of the loop in configuration
space. It is clear from (30) that the Higgs field has no
direct effect on the baryonic charge.

Since the sphaleron represents a field configuration at
the top of the energy barrier between the vacuum in one
gauge and the vacuum in a topologically inequivalent
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gauge, one expects, if things are symmetrical, that the
sphaleron has baryonic charge —,'. This appears to be the

case, as the following calculation shows.
The baryonic charge is

Qg= f d xjg, (32)

so

dt Q, = f d'xa, j,'

~
~

2

Note that only the SU(2) field occurs in (33). Obviously
this'is correct for the 0 =0 sphaleron, since the U(l)
field vanishes. But even when 8~&0, the U(l) field does
not contribute to Q~, because as the sphaleron turns on,
the electric and magnetic fields are perpendicular.

Consider now a time-dependent gauge field (and Higgs
field) with finite energy at all times, starting at the trivial
vacuum when t = —oo and arriving at the sphaleron con-
figuration when t = to. We suppose that Q~ ——0 at
t = —oo. Then

but it is always possible to choose the gauge so that U = 1

there. This is the gauge in which one speaks of an instan-
ton interpolating between topologically distinct vacua. In
this gauge, K= 0 at spatial infinity, so finally

2

Qg(sphaleron) = d x K
32K

(39)

This formula shows that Qz depends just on the sphale-
ron configuration (although one must work in the correct
gauge) and not on the path used to reach it. On the other
hand, Eq. (35) makes it clear that Qz is gauge invariant.

The gauge potential of the sphaleron, as given by (7a),
is not yet in the correct gauge, since it only falls off in-

versely with distance from the origin. %e transform to a
better gauge in two steps. First, for convenience, we per-
form the transformation (g) with UL and U~ given by (9)
so that

2f (gur)~i 2 6i'ahab .
gr

(40)

Such a transformation has no effect on any contribution
to Q~. Next we perform a gauge transformation of the
form

Q~ (sphaleron) U(x) = exp[ —,
' i8(r)o"x], (41)

2

f dt d -" V. jg+ e" ~F' F'
—00

(34) where 8(r) increases from 0 to m as r runs from 0 to ca.
As noted by Witten, ' this changes 8 to

2

+ g f d'xKO,
32&

(37)

where S denotes the sphere at spatial infinity. There is no
contribution to Qz at t = —oo because W& ——0 there, so
K =0.

We know that at spatial infinity, 8'z is a pure gauge,

W' o'dx P = ——(d U) U
2L

(38)

Next, we assume that the fields rapidly approach vacuum

fields at spatial infinity, i.e., pure gauge, and that j z van-

ishes there. Physically there could be a nonvanishing
baryon current at infinity, but we expect that it has no to-

pologically unusual properties and just consists of regular
particles (baryons). The integrated current flow at infinity
would therefore be integral. Since we are only interested
here in fractional parts of the baryonic charge, we neglect

the current at infinity and drop the V' j z term in (34).
This leaves

2 fo
Qz(sphaleron) = f dt d x ,

' e""p F', F'—~ .
327T

(35)

It is well known that 2
e" ~ F„',F& can be written as a

total divergence B&E",where

K"=E"" (F'„pW' ——,'ge, y, W'„Wp8" ) . (36)

Therefore,
2 fo

Qz(sphaleron)= f dt f K dS
32m

[1—2f (gur)]cosO(r) —1
cab Xb

gP

+ [1—2f (gur)] sin8(r) 2(5;,r —x;x, )
gT

1 do Xi&a+-
g c& p

(42)

Q~(sphaleron) = —,
' (43)

as we anticipated. The leptonic charge of the sphaleron is
the same as this baryonic charge. Recall that these
charges were calculated only for the lightest family of
quarks and leptons.

VI. DISCUSSION

In this article we have found a good approximation to a
classical static solution of the field equations of the
Weinberg-Salam theory. It has finite energy and is local-
ized in space. The solution is axially symmetric and
unique up to rotations of the axis of symmetry and
translations. Because it is classically unstable, we have
called it a sphaleron. A solution of this type is expected
for topological reasons, but even our present results do not
rigorously establish its existence, although it seems much
more plausible now. We hope that an accurate numerical

Provided 8(r) approaches m sufficiently rapidly as r~ oo,
this gauge potential approaches zero faster than I/r This.
ensures that the integral of K vanishes at spatial infinity,
so now we are in the correct gauge. It is straightforward
to show, by calculating K for the gauge potential (42),
and evaluating the integral (39), that
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solution for a range of values of A, and e„will be found
in the near future.

Let us now summarize the specific properties of the
sphaleron established in this article. The energy of the
sphaleron E is determined by the scale 4n.v/g -5.0 TeV,
and its actual value increases from -8 TeV to —14 TeV
as A, runs from 0 to oo. Also, it has a classical magnetic
dipole moment along the axis of symmetry. For' X=O the
dipole strength is -80 times that of the W boson, which
is e/Mu . The energy density of the sphaleron is approxi-
mately spherically symmetric for small values of the
SU(2) XU(1) mixing angle O~ and extends —10 fm, but
we do not know what the sphaleron would look like if 8„
approached m/2. Another property is that its baryon and

lepton charge is —,', as a consequence of the anomaly equa-

tions.
This last property brings us to the place of the sphale-

ron in the physical picture. There (probably) is a noncon-
tractible loop in configuration space such that 'its highest
energy configuration is that of the sphaleron; other non-
contractible loops pass through configurations of higher
energies. This. loop runs between "topologically distinct
vacua" and the energy barrier separating these vacua thus
has a definite height, namely the sphaleron energy. This
happens because the Weinberg-Salam theory has a mass
scale (the Higgs vacuum expectation value), in contrast to
the case of a pure-gauge theory such as QCD. These two
vacua have baryon charges 0 and 1, so that our result of —,

'

for the charge of the sphaleron nicely fits the picture out-
lined here.

It has been claimed by 't Hooft that tunneling between

topologically distinct vacua is negligible in the weak in-
teractions because the (Euclidean) action is so large, name-

ly & 8H/g . But this argument only applies to a virtual
quantum process. If there were sufficient real energy
available, more than the sphaleron energy, the tunneling
process might be enhanced. There seem to be two situa-

tions, at least, where this could happen. The first is in
high-energy collisions of particles from a very powerful
accelerator, and the signature of the process would be the
violation of baryon and lepton-number conservation. The
other situation is for a system at very high temperature
(kT-E). Thermal fluctuations might then produce the
baryon-number violating process via the sphaleron at a
substantial rate. This could be important in the Universe
at early times ( t —10 ' sec, k T- 10 TeV), where these
processes could wash out any baryon number created ear-
lier or even play a crucial role in the generation of the
baryon number as observed today, cf. Ref. 16. But, before
one can address these problems, a better understanding of
the role of the sphaleron and other solutions is required.

We do not know in detail how the sphaleron can be pro-
duced and subsequently decay, but energy considerations

give some idea. For definiteness, let us consider the case
where A, =O and 0 is small. Then the W+, 8', and Z
bosons all have a mass of 80 GeV, the Higgs particle is
massless, and the sphaleron has an energy of 7.6 TeV. It
is easy to verify, within Ansatz b, that the energy coming
from the term —,'g (dh/dg) in (10) is 28% of the total.
This should be interpreted as the energy in the physical
Higgs field. The remaining 72% of the energy is the gra-
dient and mass energy in the SU(2) gauge field, and the
energy in the U(1) field is negligible. It is plausible that
when the sphaleron decays, the energy in these fields turns
into the energy of the corresponding particles. (Here we
have shifted to a quantum-mechanical picture. Classical-
ly the sphaleron will decay into outgoing waves, but on
quantization these become particles. ) Since the diameter
of the sphaleron is of the order of 2@he/M~, one expects
that the outgoing gauge bosons have kinetic energy rough-
ly equal to their rest energy. Dividing the field energy
equally between the three types of gauge bosons, which is
sensible because of the symmetry of the fields (7a), we
conclude that the sphaleron is likely to decay into approx-
imately 11 each of W+, W, and Z particles. The num-
ber of Higgs particles is harder to estimate because they
are massless.

It is probably difficult to create a sphaleron in a single
high-energy collision of particles, because a large number
of weak gauge bosons must first be produced and then as-
sembled into a highly coherent state. The strength of the
sphaleron's magnetic moment is a measure of this coher-
ence. ' Only if the energy available were far in excess of
the sphaleron energy might this phase-space constraint be-
come less severe. On the other hand, in an equilibrium
situation at sufficiently high temperature, large fluctua-
tions of the fields occur and the baryon-number-violating
processes connected to the sphaleron configuration may
have a substantial rate.

Note added in proof. After completing this article, we

integrated Eqs. (11) numerically for A, /g2=0, 1, and m.
The SU(2) sphaleron energy, in units of 4mv/g, is 1.52,
2.07, and 2.70, respectively. The corresponding values of
the integral K are 28, 18, and 16.
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