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We present Monte Carlo results for the force between static quarks on a large (16 &(32) lattice
and with high statistics, obtained by using an action which combines terms in the fundamental and
adjoint representations of SU(3). We discuss universality with respect to the choice of the action,
which appears to be well verified, and propose a phenomenological formula for the force as a func-
tion of separation.

I. INTRODUCTION

In a recent publication' we presented numerical results
on the force between static quarks, obtained by a high-
statistics Monte Carlo (MC) simulation on a 16 &&32 lat-
tice. Wilson's form of the action was assumed: the action
of a plaquette is a linear function of the character of the
plaquette transporter in the fundamental representation.
We explored the domain of values for the coupling pa-
rameter p where the transition from the strong-coupling
regime to the weak-coupling scaling regime takes place.
We found that at all the values of p considered the lattice
spacing could be normalized so as to give consistent re-
sults for the force as a function of separation in physical
units. At the highest values of p the normalization of the
lattice spacing was found in agreement with the expected
asymptotic scaling formula, an indication that the lattice
regularization approximates well the continuum quantum
theory.

The continuum limit should be universal, i.e., largely
independent from the regularization adopted, provided
some general requirements are met. In particular, it
should be possible to define the same continuum physics
starting from a wide class of lattice actions and by letting
the coupling parameter(s) tend to suitable limits. One of
the most straightforward extensions of the Wilson action
consists in adding to it a term proportional to the charac-
ter of the plaquette transporter in the adjoint representa-
tion. This gives rise to a two-parameter class of lattice ac-
tions, which we shall call mixed fundamental-adjoint ac-
tions, or FA actions for short. Lattice systems with FA
actions have already formed the object of several investi-
gations. Here we wish to report the results of a numeri-
cal calculation of the force between static quarks compa-
rable in scope to the calculation detailed in Ref. 1, but for
a system defined with the FA action. We performed this
second computation with the purpose of verifying the
universality of the continuum limit and of determining

whether, in so far as scaling is concerned, the mixed-
action system behaved in any remarkably different way
from the system with Wilson's action.

A numerical analysis extended to a two-dimensional
domain in the FA plane would have been too demanding
on computational resources, thus we concentrated on a
definite trajectory toward the continuum limit. As cri-
teria in the selection of this trajectory we adopted the
facts that it should move farther away than the funda-
mental axis from the known singularities in the FA plane
(this in order possibly to achieve a smoother transition to
the continuum limit), yet that it should lie above the line
where perturbation theory ceases to make sense (so that
theoretical and numerically determined ratios of scales
may be compared). We also wanted a trajectory that
would be contradistinct by some well-defined theoretical
property, rather than by parameters empirically adjusted,
so we investigated the line where the term of the fourth
order in the field strength, in a perturbative expansion of
the action, vanishes. This is the line where the lattice ac-
tion resembles most closely, from a perturbative point of
view, the continuum expression.

We shall give the precise definition of the action togeth-
er with an account of our computation and of our results
in Sec. II. Section III will be devoted instead to a compar-
ison of the results obtained with the FA action and our
previous results on the system with Wilson's action. A
parametrization of the force between static quarks based
both on the numerical results and on theoretical con-
siderations will also be offered.

This paper is meant to be self-contained, in the sense of
not requiring knowledge of the results in Ref. 1 for its
comprehension. Nevertheless, there are elements of the
present analysis, such as the procedure followed to ex-
trapolate the Wilson loop factors to infinite separation in
time or the evaluation of statistical errors, which are the
same as in Ref. 1. To repeat them here would constitute a
useless duplication so we shall be rather brief about those
points. References 1, or 5 for the computer codes, should
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be consulted by the reader who wishes to obtain more in-
formation about all computational details.
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(2.8)

II. THE FORCE BETWEEN STATIC QUARKS
IN A SYSTEM WITH MIXED ACTION

x, ij —3 ReTrUx, ij . (2.2)

The action combining terms in the fundamental and ad-
joint representations is given by

&pA ——y [Pp(1 ——,'Re TrUP)+Pg(1 —
9 ~

T«P ~')] .
x,p(v

(2.3)

When Pz ——0 it reduces to the so-called Wilson action.
If one expresses U~" in exponentiated form

U„"'=exp(igEPa ), (2.4)

where g is the bare coupling constant and F" is a Hermi-
tian matrix in the Lie algebra of SU(3), upon expansion
into powers of g one finds

~pA
x,p&v

2 4T (FP» )

4 s[T (FP&)2]2
144 24

+O(g ) (2.5)

(we made use of the identity, valid for SU(2) and SU(3),
Tr(F„"") = —,

' [Tr(F„" ) ] ). Following the motivation out-
lined in the Introduction, we set

6
(2.6)

which makes the O(F ) term in the expansion of Sp~
vanish. Equations (2.3) and (2.6) define the system we
consider. Henceforth we shall use the notation P for PF.
From the expression of the O(F ) term we see that cou-
pling parameter P and bare coupling constant g are relat-
ed by

9
(2.7)

The asymptotic form of the relation between lattice spac-
ing a and P becomes then

We denote by integer-valued coordinates x" the points
of the lattice, by a the lattice spacing, by p, a unit vector
in the direction p. The dynamical variables are SU(3) ma-
trices U„defined over the oriented links, from x to x +P,
of the lattice. We denote by U„"",

&
the transport operator

along a rectangular path of size i,j in the (p, v) plane,

U~ =U' . U' . -U~'.- U~' .x iJ' x x+(j —1)v x+jv x+(i —1)p+j v

x +ip+(j —1)v x +i@, x +(i —1)pXU . . U .-U . - U~.

(2.1)

The plaquette transporters U"
&& will also be indicated

simply by Ux . The Wilson loop factors are defined as

~~ =&~ 2 (I —
9 I

TrFx'"'Ux
I

'»
k

(2.10)

for the two terms in the fundamental and adjoint repre-
sentation, respectively. In the second step one evaluates
the change of action induced by the attempted upgrading
Ux —+U" and accepts or rejects the change accordingly.

A being the scale parameter for the present computation.
The force between static sources in the 3 and 3 repre-

sentations of SU(3), in the pure gauge quantum theory, is
obtained from the calculation of expectation values of
Wilson loop factors. These have been determined by
means of a Monte Carlo simulation. We proceeded as fol-
lows. From previous analytical and numerical considera-
tions on the lines of "constant physics" in the (PF,Pz )

plane ', we selected a range of values for P, namely, the
interval 6.6 & 13(8.6, which was likely to correspond to
the domain where the transition from the strong-coupling
regime to the weak-coupling regime takes place. We per-
formed MC simulations at six values of /3 uniformly
spaced in the above interval. 600 MC iterations were per-
formed to equilibrate the 16 && 32 lattice at P=6.6, start-
ing from an equilibrated configuration corresponding to
the Wilson action at P=5.6. The resulting configuration
was used to start additional 1000 MC iterations where all
spatial loops of size up to 8)&8 were measured over 100
configurations, with intervals of 10 MC iterations between
measurements. The computations for the other five P
values (7.0,7.4,7.8,8.2,8.6) went as follows: the last config-
uration of the previous P value was used as a starting con-
figuration for 400 equilibrating MC iterations. This was
followed by the 1000 MC iterations with measurement of
spatial loops as explained above. We shall denote by 8';J
the averages of the spatial Wilson loop factors as deter-
mined in the course of the simulation.

The whole calculation was done on a CDC CYBER 205,
exploiting as much as possible its vector processing capa-
bilities. Most of the computation was made in 32-bit pre-
cision, but selected parts, where more accuracy is re-
quired, made use of the full 64-bit precision. We refer the
reader to our previous communications (Refs. 1 and 5) for
details of the algorithm and for such technical questions
as why only spatial loop factors have been measured.
Here we mention only that the inclusion of the term in the
adjoint representation, although apparently trivial from a
computational point of view, actually increases substan-
tially the length of the simulation. To see why, we recall
that the upgrading of an individual link variable U"
proceeds through two major steps. First, one evaluates
the transport operators (or forces) F„"'"', k=l, . . . , 6,
along the three sides distinct from x, x +P of the six pla-
quettes containing the link under consideration.

The corresponding contributions to the action are

SF' Pp g (1——,Re T——rF" U„") (2.9)
k

and
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This second step is repeated n~ (number of hits) times be-

fore going to another U„, for better efficiency. Now it is
crucial that U„" enters linearly in Eq. (2.9) [but not in Eq.
(2.10)]. Thus, in so far as the change in SF' is concerned,
the six forces F„"' ' can be added up into a total force F„"
and the evaluation of SF reduces to a single long vector
product between the elements of the matrices F„"and U„".
But for the variation of Sz the contributions from the six
plaquettes, and indeed both the real and the imaginary
parts of the trace, must be computed separately at each
hit. The number of arithmetic operations in the second
stage of the upgrading (the loop over hits) increases very
substantially and so does the CP time required. As a
matter of fact some of the loss is recovered, because the
corresponding part of the code vectorizes very well and
thus the calculation proceeds at a faster rate. In any
event, to achieve a better balance between the time spent
in the calculation of the forces and the time spent in the
loop over hits, we performed this calculation with nII ——8
hits per upgrading (versus nH ——10 in Ref. 1). Timing
data are as follows: total upgrade time per link 57.5 ps,
of which 20.0 ps in the calculation of the forces and 37.5
ps in the loop over hits, with sustained performance rate
of 130 Mflops. (Corresponding values for the calculations
with the fundamental term only and nH ——8 are

a more detailed discussion of the error analysis). In
Tables I—VI we report also the mean values for the
"internal energies"

Ez ——1 ——,Re TrU„"" (2.13)

and

(2.14)

These numbers have been averaged over the whole set of
1000 final configurations in each run and over all pla-
quettes, including those with one side along the time axis,
and are therefore affected by smaller statistical errors
than 8'&~.

While in principle the force is given by the limit for
i~ co of X~j, in practice a straightforward limiting pro-
cedure cannot be used because the error in the determina-
tion of X,J increases as i becomes larger. It is therefore
necessary to derive a scheme which permits the utiliza-
tion, for the determination of F, of the X~J with small i as
well. This we have done as follows. All values XJ at
fixed j are plotted against I/[i(i —1)] and fit by a
straight line. The intercept bJ of the line is taken as the
limiting value of XJ for i ~ oo. In other words, one fits
all XJ at fixed j by a formula

and

36.3 ps, 17.9 ps, 18.4 ps,
CJ.

XIJ bJ + 0

i (i —1)
(2.15)

101 Mflops,

respectively. )

From the average values WJ of Wilson loop factors the
force between static charges is evaluated as follows. One
defines

Such an expression is motivated by considerations of the
expected short-distance behavior and has been found to
interpolate well all numerical data (see Ref. 1 for a more
extensive discussion). From Eqs. (2.12) and (2.15) one
deduces

a F([j (j —1)]'~ a)=bj . (2.16)

X;J ———ln (2.11) An analogous fit in terms of a constant plus Coulombic
term

Then lim; X;J equals the force, in lattice units, at some
separation r' between (j —1)a and ja. It is convenient to
assign a definite value to r', namely,

r'=[J'(J' —1)]' a,
on the basis of an interpolation which becomes exact if
the potential is the superposition of a linear and a
Coulombic term. Thus, one arrives at the equation

(2.12)

The values found for the Wilson loop factors WJ and
the quantities X;J are reproduced in the tables. The sta-
tistical errors we quote include the effects of cross correla-
tions between different loop factors, but assume a Gauss-
ian distribution of the 8'.J's around the correct quantum
expectation 'values and neglect possible correlations be-
tween values obtained in subsequent measurements. Also,
a linear formula has been used to propagate the errors
from 8'J. to X;J; this clearly cannot be trusted when the
error in Xz is comparable in magnitude to X~J. itself and
thus such errors have only indicative value (see Ref. 1 for

(2.17)

A=3.70&& 10 v o. . (2.18)

The above placing of the asymptotic scaling curve is to
some extent arbitrary and has been motivated by con-
sistency with the procedure followed in Ref. 1, where the

has been used to obtain the string tension o., i.e., the limit-
ing value of the force for infinite separation.

Our results for cr are displayed in Fig. 1. The upper
part of the figure gives cr in lattice units; the lower part of
the figure gives o in terms of the scale parameter A, as-
suming the relationship between a and P to be given ex-
actly by the asymptotic formula of Eq. (2.8). The errors
in Fig. 1, as well as in all subsequent figures, are purely
statistical and do not reflect systematic biases induced by
the extrapolations.

From Fig. 1 it is apparent that a few of the values for
cr, namely, those in the lower to mid range of the domain
of P values, are compatible with an asymptotic scaling
behavior. Assuming the value of o at P=7.0 to set the
scale, we determine
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TABLE i. Results for expectation values of both terms in the action, Wilson loop factors, and X factors for p=6.6.

EF=0.462490 (13), Eg ——0.664297 (12)
10 8;q
4 5

537 457
(53)

310561
(68)

182 312
(65)

107 404
(57)

63 307
(50)

37 327
(47)

22 007
(46)

12 946
(43)

399467
(329)

120 355
(69)

x

49 723
(47)

20 956
(35)

8895
(31)

3751
(31)

1599
(29)

619
(30)

351 309
(503)

x
x

287 160 x 15 415
(2565) x

(51)
x

5087

(31)

1712

(29)

549

{28)

239

{27)

68

(27)

334934
(1114)

224 693
(5057)

x
x

242 730
(28 267) x (39)x

x

345
(29)

108
(26)

—16
(25)

45
(30)

328 325
(2617)

231 907
{14944)

250296
(80 518)

x
86045 x

g3
(417404) x (37)

x

—39
(27)

—76
(24)

—9
(28)

335 109
(6526)

324 455
(14654)

273 817
(45 998)

—20 979
(108 664)

22 218
(224 627)

x —jg
(35)

x
x

31
(25)

14
(37)

x

—24
(28)

—2
(28)

418 973
(40 279)

302 151
(371 811)

x 34
x (35)

asymptotic curve was also placed in between the lowest
points (in rescaled units). If one used the lowest point for
o to set the scale, one would find instead

A =3.85 X 10 v o . (2.19)

The discrepancy between the values in Eqs. (2.18) and
(2.19) can be considered as an estimate for the uncertainty
in the determination of A/v o. We shall return to this
point in Sec. III.

The data for o depart from the asymptotic expression
both at the lowest and at the upper values of p. We inter-
pret the deviation from asymptotic scaling at p=6.6 as
genuine, while we attribute the deviations at p& 7.8 to an
overestimate of the string tension, due to the fact that the
maximum separations achieved in the determination of
F(r) are not large enough. Such interpretation finds sup-
port if all the results for the force are plotted in physical
units. This is done in Fig. 2. The values for F and for r
are expressed in units of o and (o) '~, respectively, as-
suming for p&7 the relationship between a and p given
by the asymptotic formula [Eq. (2.8)], with the scale pa-
rameter as in Eq. (2.18). The data for p=6.6 are instead
rescaled assuming the relation between a and ~o. as given
by the MC computation. A11 the points appear to lie on a

0.20 — X ~

O. i o—

0.05—

X ~

0.02— X ~

0.0 I—

1200—

p l 000—
cr /A

800—

—0.050

—0.035

600— —0.040

I I I I I

6.6 7.0 7.4 7.8 8.2 8.6
P

FIG. 1. Results for the string tension, in lattice units (upper
diagram) and in rescaled units (lower diagram).
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TABLE II. Same as in Table I, but for P=7.0.

EF——0.421 942 (10), Eq ——0.626 764 (10)
10 R,q

578 027

x (4')
363 685

(56)
233 210

(62)
150235

(57)
96 871

(54)
62 502

(52)
40 311

(47)
26005

(41)

x
291487 x 170967

(217) x (68)x
86 515

(58)
44 760

(50)
23 323

(41)
12 169

(36)
6359

(33)
3334

(31)

236 800
(321)

163 773
(942)

37 166
(57)

16721
(39)

7661
(30)

3537
(27)

1572
(29)

682
(29)

219271
(576)

139738
(1471)

101 721
{5703)

6795
(46)

2811
(33)

1185
{29)

519
(24)

226
(24)

213051
(1025)

128 642
(3035)

102 209
(9424)

58 197
(33 537)

1097
(39)

442
(28)

201
(26)

83
(27)

212 340
(2014)

122 417
(6619)

90 506
(22 004)

44 509
(59 790)

406 083
(310755)

x 119
(37)

48
(25)

30
(29)

210 533
(3653)

161 640
(16860)

15 524
(49 304)

—35 179
(124 883)

111468
(609 169)

x
628 767

(1343018) x {35)x
x

19
(25)

207 436
(7550)

189985
(39 534)

—3688
(119914)

54 614
(364 666)

—404 655
(1059 112)

191 159
.(1810703)

130267 x 8

(5062 448)

10 XJ

universal curve, and this we consider as evidence that the
results at the largest values of p are in agreement with the
expected asymptotic scaling behavior.

Ag ——9.63)&10 v o . (3.1)

(We shall use, in this section and in the figures, subscripts
8' and M to characterize results obtained with Wilson's
action and with the mixed fundamental-adjoint action,
respectively. ) Together with the result in Eq. (2.18) this
gives

III. DISCUSSION OF UNIVERSALITY

In a previous analysis of the theory with Wilson action'
we found

9—0

7—
F/cJ.

6—
x

4 — oI

p =6.6 +
7 Q ~

7.4
7 8 x

8.2 o

8.6

+M =3.84
MC

(3.2)

for the numerically determined ratio of scales. We could
also choose to fix A~ by the result at p=7.4 [see Eq.
(2.19)]. But then consistency would require that the point
with the lowest o in rescaled units be used to set the scale
also in the calculation with Wilson's action. This point

0
0

3~
pe 0

r ~e

FIG. 2. Force versus separation in rescaled physical units.
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TABLE III. Same as in Table I, but for P=7.4.

Ep=0.394072 (9), Eg ——0.598 583 (10)
10 W;J

605 924

x (35)
400404

(53)
269 783

(61)
182 641

(59)
123 780

(57)
83 922

(54)
56 919

(50)
38 559

(47)

242 182
(185)

207 682
(68)

115799
(62)

65 880
(52)

37 731
(44)

21 659
(37)

12 468
(35)

7117
(32)

189294
(239)

120 255
(632)

57 252
(62)

29 531
(46)

15 457
(41)

8137
(30)

4286
(28)

2255
(26)

173 933
(393)

97 982
(797)

72 689
(2384)

14 165
(46)x

6948
(36)

3406
(36)

1708
(29)

855
(28)

168 326
(663)

90 043
(1753)

64 873
(4058)

55 751
(12 525)

3224
(38)

1466
(31)

755
(32)

373
(27)

166431
(966)

86 640
(2739)

71 181
(8689)

74 832
(21 879)

—26 988
(62 726)

685
(40)

288
(27)

132
(26)

164004
(1792)

88 739
(6131)

49 523
(15 230)

—26 397
(41 437)

202 746
(102 378)

x
x—9688 x 122

(310532) x (35)
77

(30)

171 289
(3169)

81 493
. (10021)

49 555
(33 208)

13 451
(74 717)

78 406
(214 596)

—317 823
(496 455)

x —5
x (33)x

10 XJ.

(see Ref. 1) is the point at P=6.2 and correspondingly one
f1nds

A=9.84&(10 &o .

Comparing with Eq. (2.19) one obtains

(3.3)

+M

~w
=3.91 . (3.4)

The difference between the two numbers should be con-
sidered as a lower bound on the error with which one can
reliably estimate the ratio of scales.

A one-loop perturbative calculation can be used to
determine the exact value for the above ratio of scales,
which is given by

+M 2 +M=(1—g 5)
MC W TH

(3.7)

using the central value of Eqs. (3.2) and (3.4). The agree-
ment between the numerical results and the theoretical ex-
pectation is rather good. The discrepancy, of about 13%,
can be easily explained by the fact that the numerical cal-
culation is performed at a finite value of the bare coupling
constant, while the theoretical result follows in the limit
g~0. Recently, Ellis and Martinelli have published a
complete two-loop calculation of the 0 (g ) corrections to
the ratio of scales (a partial, but already reasonably accu-
rate calculation had been published in Ref. 8). Their com-
putation leads to an estimate

+M

We thus find

=4.46 . (3.5)

where 6 is given by

5= —0.126r +1.37r

2P~

PF+2P~

(3.8)

(3.9)

AM

Mc =0.869, (3.6)

In our case r = 2, 5=0.28, g =9'/P= 1.18 in the middle
of the range considered, so that Eq. (3.7) predicts

W TH

+M=0.670
Mc

(3.10)



30 FORCE BETWEEN STATIC CHARGES AND UNIVERSALITY. . . 2207

TABLE IV. Same as in Table I, but for P=, 7.8.

EF=0.371 263 (8), Fg ——0.574 109 (9)
10 WiJ

628 708

x
x

430 698
(53)

300 694,
(60)

210 895
(61)

148 067
(61)

103976
(58)

72999
(54)

51 258
(53)

210 846 x 238 961
(162) x (73)x

141 901
(68)

85 932
{60)

52 328
(51)

31 932
(44)

19450
(38)

11 870
(39)

161 858
(178)

x
99 794 x 76 261

(418) x - (64)
42 661

(55)
24 190

(45)
13 741

(40)
7802

(34)
4492

(31)

146 844
(282)

79 299
(599)

58 547
{1763)

X 22 508
(54)

x

12 114
(41)

.6572
(36)

3541
(29)

1939
(32)

142 330
{477)

71 314
(1075)

52 133
(2018)

38 711
(6293)

6273
(44)
x

3258
(34)

1720
(30)

924
(27)

140404
(709)

71 693
{1690)

45 912
(4076)

43 709
(8136)

21 411
(24080)

1656
(46)x
x

869
(31)

413
(31)

142 040
(1138)

70 262
(3192)

52 350
(7029)

20070
(16818)

6668
(37072)

x
51 408

(92 167) x (41)
x

171
(28)

140 247
(1879)

58 164
(5185)

50 201
(14411)

19625
(29 218)

120978
(75 008)

.184 574
(184212)

x
x—303 700 x 92

(470002) x (39)x

5

10,XEJ.

The correction of order g certainly goes in the right
direction and indeed overshoots the numerical result. We
do not consider the fact that the two-loop correction wor-
sens the numerical agreement between theoretical and
Monte Carlo results as significant, because the two-loop
correction is in itself very large and thus cannot claim to
give an accurate estimate of the finite g effects. To
strengthen this point, we notice that rewriting Eq. (3.7) as

=( I+g'&)
MC

[which neglects terms O(g )] we would get 0.752 for the
predicted ratio between

'

W MC

and the asymptotic value

+M

W TH

The large value of the two-loop correction may in turn be
attributed to the fact that, as the line in the fundamental-
adjoint plane moves toward more and more negative
slopes, it soon approaches the limit [pq ———, pF, cf. Eq. —
(3.9)j where perturbation theory ceases to make sense. A
self-consistent treatment of the iTr U„""

i
term in the ac-

tion may then be more appropriate. Nevertheless, in so
far as verification of universality is concerned, we find
that this is well supported by the reasonab1e agreement-be-
tween the numerical ratio of scales and its expected
asymptotic limit, that the O(g ) corrections go in the
right direction and are of a magnitude which can easily
explain the residual discrepancy.

If we take p=7.4 (FA action) and p=6.2 (Wilson's ac-
tion) to be the points where asymptotic scaling sets in, the
corresponding values of the bare coupling constant are
g=1.10 and g=0.98, respectively (g =6/p with Wilson's
action). Scaling appears to begin at a larger value of the
unrenormalized couphng constant in the FA system, but
this is per se of little relevance. More significant are the
corresponding values of the lattice spacing. These are
given by a =0.20/V o. (FA action) and a =0.19/v o ( W
action), i.e., a=0.096 fm and a=0.091 fm assuming
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TABLE V. Same as in Table I, but for P= 8.2.

EF=0 351579 (7), E~ =0.551997 (9)
10 8;J.

5

648 370

x
x

457 267
(41)

328 401
(47)

236 873
(49)

171030
(50)

123 539
(47)

89 246
(46)

64484
(48)

x
188 149 x 267 180

(142) x (61)
166473

(59)
105 579

(54)
67 301

(47)
43 013

(43)
27 511

(40)
17612

(35)

142 058
(163)

84082
(376)

95 360
x (65)

x
x

56 568
(54)

33 974
(47)

20486
(39)

12 385
(35)

7543
(32)

128 661
(231)

66 843
(455)

45 172
(990)

32 075x
(53)

x

18 553
(42)

10761
(39)

6302
(34)

3714
(29)

124 605
(305)

59 555
(830)

37 582
(1428)

31 682
(3445)

10397

x
x

5827
(32)

3343
(28)

1911
(27)

122 382
(542)

58 180
(1138)

38 839
(2533)

34 359
(5094)

45 587
(14048)

3120
(41)x
x

1711
(27)

993
(26)

121 748
(812)

56 350
(1956)

31 758
(+A.A 1)

20 519
(8773)

45 014
(17861)

x
86295 x 1023

(46062) x (42)
x

487
(30)

8 121 021
(1215)

49 875
(3330)

32 914
(8141)

30 598
(13314)

—1,4 851
(30264)

198024
(66937)

x
x—53 634 x 245

(192 135) x

5
10 X~

V cr=420 MeV. The difference between the two values is
minimal and smaller than the variations which can be in-
duced by using slightly different values of P to character-
ize the onset of scaling. Thus, we conclude that the
asymptotic scaling behavior manifests itself in both sys-
tems at comparable values of the lattice spacing, namely,
when a equals approximately 0.1 fm.

Another question which may be asked is whether the
approach to scaling is different in the two systems. To
get some quantitative insight into the matter, we assume
that asymptotic scaling is characterized by the highest
scales for both systems. In the FA system then an ex-
trapolation to p=6.6 would give cra =0.132 for the scal-
ing value, whereas the MC calculation gives o.a =0.197.
For a meaningful comparison, we must interpolate the re-
sults obtained with Wilson's action at p= 5.6
(oa =0.279) and P=5.8 (cra =0.111). Given the ap-
proximatively linear behavior of o.a on a logarithmic
scale, the interpolation is best done on the logarithms of
MC results and gives a value oa =0.197 for P=5.675.
The corresponding scaling value is era =0.118. Thus, at
the same physical value for a the deviation of the extrapo-
lated scaling value of O.a from its actual value is larger in
the system with Wilson's action than in the FA system

and the latter appears to exhibit a somewhat smoother ap-
proach to scaling.

The agreement of the p function with its two-loop per-
turbative value is not a necessary requirement, however,
for a good approximation to the physics of the continu-
um. The obvious criterion is that, once the relationship
between lattice scaling a and coupling parameter P has
been fixed, the physical values of all observables should be
independent of P. The observables at our disposal, in the
present analysis, are the values of the force as a function
of separation. We can check, therefore, both scaling to-
ward the continuum limit (but not necessarily asymptotic
scaling) and universality by plotting all the results ob-
tained for the force in physical units. This is done in
Figs. 3 and 4 (we shall return later on to the meaning of
the continuous line in the figures). In the graph of Fig. 3
(where the points for the mixed FA system duplicate
those of Fig. 2, while those for the 8' system duplicate
those of Fig. 5 in Ref. 1), the lower values for the scale
parameters have been used. The rescaling of force and
separation, we recall, is done according to the asymptotic
formula for /3&7 (mixed FA system} and for p&6 ( JY
system), while the actual numerical results for o.a are
used to set the scales at lower p. In Fig. 4 the rescaling is
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TABLE VI. Same as in Table I, but for 13=8.6.

EF=0.334251 (8), E„=0.531759 (10)
10 W, ;J.

665 767
(33)

x

481 008
(51)

353 652
(63)

261 066
(68)

192 946
(68)

142 636
(66)

105 457
(61)

77 998
(58)

170616 x 293 012
(132) x (74)x

x

189 624
(77)

124 737
(75)

82 531
(68)

54 702
(59)

36 270
(51)

24086
(43)

127 596
(150)

x
74 454 x 113912

(311) x (82)
70 738

(71)
44 422

(63)
28 049

(50)
17 743

(40)
11 200

(33)

115295
(198)

57 606
(384)

39 647
(945)

42 220
(66)

25 662
(55)

15 693
(40)

9661
(33)

5949
(33)

110675
(274)

52213
(562)

32 636
(978)

26 844
(2481)

15 185
(50)

x

9128
(36)

5480
(28)

3308
(30)

109 161
(376)

48 512
(893)

31 995
{1772}

17 108
{2930)

x
19699 x 5381
(7437) x (38)x

x

3176
(29)

1925
(29}

108 912
(628)

47 065
{1328)

27 204
{2260)

25 110
(4331)

16 818
(8414}

x
38 539 x 1804

(21 620) x (37)
x

1086
(28)

107 727
(870)

50 712
(1826)

24 721
(4355)

19972
(8549)

—3890
(14339)

6796
{29196)

87560' ~ 599
{67156) x (36)

5
10 XJ

10—

N. A.

M. A.
IO—

9—

I(
F/cr 6—

F/cr

00

y
'

0
0

r ~cr
FKx. 3. Results for the force w'ith Wilson*s action and mixed

FA action combined and interpolating curve.

r ~cr

FIG. 4. Same as in Fig. 3, but with a slightly different choice
of scale factors.
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done according to the larger values for the scale parame-
ters, using the asymptotic formula for P& 7.4 (mixed FA
system) and P & 6.2 ( W system).

The two graphs show that all Monte Carlo results are
quite consistent with a definite functional form for F(r),
thus giving good evidence for scaling and for universality
with respect to the choice of the action. The qualitative
features of the two graphs are identical and it would seem
very difficult to discriminate between the two choices for
A on the basis of the rescaled data. We use this fact to es-
tablish a lower bound on the error in the determination of
the scales, which we express by quoting a range of values:

A~ ——(3.70—3.95) &(10 v o. (3.11)

for the system with mixed FA action (and f3& ————,'Pz)
and

Ag =(9.63—9.84)X10 Vcr (3.12)

for the system with Wilson's action. The values above
should be considered as correlated: universality demands
that if a lower scale is selected for one system, a lower
scale should also be used for the other.

The degree of uncertainty in. the scales becomes larger
if one wishes to establish the true asymptotic scale, i.e.,
the one that would follow from going to the limit P~ ao.
We have no way to estimate the error in the absolute
determination of A, but we have already shown that for
the ratio of scales such error is =13%. The deviation of
the scale parameter from its theoretical value at P—+ co is
immaterial so long as one compares observables obtained
within the same scheme of renormalization, but is of
course important if lattice results are to be compared with
results derived by different regularizations, like those of
perturbative gCD.

The Monte Carlo results provide a rather accurate
determination of the force, F(r), between static charges as
a function of separation. For phenomenological applica-
tions it may be useful to represent F(r) in terms of an ap-
proximate analytic expression, embodying the expected
short-distance and long-distance behavior and containing
a few parameters which may be fit to the MC data. To
obtain such an expression we write first

where the degree of P is of one unit greater than the de-
gree of Q, recommends itself. The information available
on the small a and large a behavior off (a) could be used
to constrain the coefficients of P and Q, but this is in
practice not necessary. It is more convenient to consider
directly the integrated form of Eq. (3.14), namely,

lnr = +const,(a)da
P(a)

(3.17)

C
lnr =Cp+

CX
+C2lna+ C3ln[(a+ap) +a& ]

a+ap+C4tan-' (3.18)

The constraints

a( r) = [ln(A, r) +,21 lnin(A, o ) ], (3.19)
4m

for r~O, where A, is the scale parameter appearing in
the short-distance behavior of the potential, and

a(r)= 3or
(3.20)

for r~~ may now easily be imposed. We thus arrive at

(A )p
4m' ipse

1
1 la

c
1 1

121 4

(a+ap) +ai+ 242 ln
2 2

CXp +Q]

a+up
+C4 tan-' up—tan

(3.21)

where a parametrization for the integral can be immedi-
ately determined on general grounds once the order of P is
fixed. We found that a satisfactory fit to the MC data
can be achieved assuming that P(a) is a fourth-order
polynomial, with two roots at ap+—ia& and, of course, a
double zero at the origin [cf. Eq. (3.15)]. This gives for
the most general parametrization:

F( )
4a(l )

3r
(3.13) where O, p and a1 are free parameters and C4 is given by

and concentrate on the renormalization-group equation
satisfied by a(r) C4.—— ln 223

2

121(ap +ai )

=f(a) .
din(r )

(3.14)

f(a), which can be straightforwardly related to the P
function, has an expansion

r

p
X ——tan-

2 CXi
(3.22)

f(a)=fpa +fia +O(a ) (3.15) The scale parameter A, can be determined theoretical-
ly: it is related to the lattice scale parameters by

A, =30.19Ag

and

for a~O: on the other hand, F(r)~a for r +ao-
demands a(r) =3r crl4 for r~ 00 and therefore f(a) =a
for a~ ao. Thus, a rational approximation

(3.23)

P(a)f(a)= (3.16) Ac = AM —6.77AM
30.19

(3.24)



30 FORCE BETWEEN STATIC CHARGES AND UNIVERSALITY. . . 2211

A, =0.270' o,
ep ——0.068,

o,') ——0.231

(C4 ———3.943)

for Fig. 3, with

g =80.1;
and

(3.25)

(3.26)

A, =0.279' o,
ap ——0.084,

+i ——0.202

(C4, ———4.403)

(3.27)

for Fig. 4, with

7 =75.0. (3.28)

The quality of the fits is reasonably good (the number of

for the two actions, respectively. In our fitting procedure
we have used for A, the average of the two values which
follow from Eqs. (3.23) and (3.24) and our MC results.
We determined the parameters ap and a& by minimizing
the 7 deviation. When computing the 7 we included
only the points at separation r & v 6a (i.e., the first two
points at all values of P have been left out). This we have
done because at small lattice separations one expects the
distortion due to the lattice to be the largest, while at the
same time the statistical errors affecting the MC data are
the least. Thus, the statistical errors can in no way ac-
count, at separations of very few lattice spacings, for the
degree of uncertainty due to systematic effects and the in-
clusion of the corresponding points in the fitting pro-
cedure would bias the fit.

Our results for the interpolations of the force are illus-
trated by the continuous curves in Fig. 3 (lower choice of
scales) and Fig. 4 (higher scales). The corresponding pa-
rameters are

degrees of freedom is 58), especially if one considers that
the errors entering into the 7 are purely statistical and
that, as discussed already, there are certainly systematic
errors due to the lattice approximation and to our ex-
trapolation procedure. Also, the curves corres'ponding to
our interpolating formula appear to agree very well with
the data at small lattice separation, which have been ex-
cluded from the fit. The short-distance behavior of the
analytic formula is determined mainly by the value of A, :
it is thus almost completely determined by theoretical
considerations and the agreement between the predicted
short-distance asymptotically-free behavior and the MC
data corroborates the validity of the numerical analysis.
The statistical errors of the data at small lattice separation
are, however, much smaller than the size of the corre-
sponding points in the figures. They under-represent the
true degree of uncertainty of the lattice results. If we in-
cluded, for instance, the points at r =V 6a in the evalua-
tion of the X, with the parameters of Eq. (3.27), the X
would be boosted to a value (in our opinion, unrealistic) of
286.

Summarizing, it would appear to us that our Monte
Carlo results for the force between static quarks nicely
confirm universality with respect to the choice of action
and scaling toward the continuum limit, albeit not accord-
ing to the perturbative two-loop formula at the lowest
values of P. The Monte Carlo analysis provides a deriva-
tion of the force entirely from first principles, which is
theoretically important and may have valuable
phenomenological applications.
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