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Illustrations of vacuum polarization by solitons
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The value and limitations of the adiabatic method for calculating induced charges are discussed in

a general way and illustrated in some simple models in 1+1 dimensions. The relevance of the size
of solitons is emphasized.

I. INTRODUCTION

In a variety of contexts within condensed matter and
particle physics, vacuum polarization effects involving
fermion fields interacting with background solitons have
been shown to induce unusual (including fractional) quan-
tum numbers. '

A powerful method for studying such effects is the adi-
abatic method. In this method, the background soliton
field is imagined to be built up from the normal vacuum
by slow changes of the fields in space and time. In this
situation, the induced expectation value of any conserved
current in the no-particle state is readily calculated by ex-
panding in gradients of the background fields. By moni-
toring the flow of current at spatial infinity one calcu-
lates, invoking the current conservation law, the charge
localized on the soliton. Several remarks of a general na-
ture are important to the interpretation of results calculat-
ed by this method:

(i) Since the final soliton configuration is slowly varying
at spatial infinity, the adiabatic approximation can be
made arbitrarily good for the current flow at infinity.

(ii) The adiabatic result is valid even for solitons whose
spatial gradients are not small. One could imagine form-
ing such a soliton in two steps: first constructing a
smooth soliton with the desired behavior at infinity, and
then changing it locally to give it sharper features. The
adiabatic method can be applied to the first step; the
second involves only local changes and does not involve
current flow at infinity although it may induce level
crossings.

(iii) If level crossings do occur, they change the charge
by an integer; thus the adiabatic method will accurately
reproduce the fractional part of the charge of the ground
state. It would, in fact, be rather silly to expect the simple
adiabatic method to determine the fermionic charges in-
duced by the soliton more fully than this; after all, one
can construct many states with the same background sca-
lar field and fermionic charges differing by integers by
filling successive energy levels.

(iv) The spatial scale of the soliton at which level cross-
ings may occur is set by the fermion effective mass; i.e., if
the Compton wavelength of the fermion is much smaller
than the characteristic spatial scale of background field

variations, the adiabatic method is expected to be accu-
rate.

In this paper, these remarks are illustrated in a theory
of massive fermions interacting nonlinearly with a pseu-
doscalar field y via the Lagrangian

Although our emphasis here is on a mathematically com-
plete analysis of simple models, some general remarks of a
more physical nature are made at the end.

If q&(x) is constant the fermion has a complex mass
which can be made real by a redefinition of g. If qr(x) has
space'dependence the mass becomes a complex function of
space, m (x)=m i + m

2e'~'"'. The resulting Dirac equa-
tion is solved and the energy spectrum is followed as y
changes slowly from tp(x) =0 to a nontrivial soliton con-
figuration, for several (m i,m2) values. Care must be tak-
en in choosing y(x) in order to have a manageable Dirac
equation. Three cases are considered:

(a) infinitely thin soliton, where y(x) is constant every-
where except for one discontinuity;

(b) finite-width soliton, which is approximated by y(x)
constant except for two discontinuities;

(c) infinitely wide soliton, where y(x) is slowly varying:
dy/dx &&m.

In all cases, y is taken to be odd so that a parity operation
may be defined.

The field operator can be expanded in terms of eigen-
states of the solitonic Hamiltonian. The coefficients of
this expansion are the creation and destruction operators
of particles in solitonic energy eigenstates. In this way the
creation and destruction operators in the presence and ab-
sence of a soliton can be expressed in terms of one anoth-
er. The coefficients of this Bogoliubov transformation
have a direct physical interpretation. They give the am-
plitude that a particle in a given eigenstate in the absence
of the soliton will find itself in a given eigenstate in the
presence of the soliton potential, if the potential is turned
on suddenly. Expansion of the number operator in terms
of the solitonic creation and destruction operators shows
that the fractional part of the charge results from a
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change in the number of states in the negative-energy sea.
The results agree with those obtained by the adiabatic
method, which relates the charge of the soliton to the
change in phase of the fermion mass, 50:

Eik
+~ AVEPPPPPXPP

(2)

In this way, the results from sudden and adiabatic switch-
ing are linked. 68 can easily be expressed in terms of
m„m2, and tp(+ oo ).

II. INFINITELY THIN SOLITON

y(x) is taken to be an odd function with a single
discontinuity: y(x) =ax/

~

x
~

.
Consider first the case m~ ——0. The change in phase of

the mass is simply AO =2a. For convenience set m 2 ——m.
The Dirac equation is, in the representation y =cr],

1 ~ 5 0 1=lo3, f ='V p —o2

i o
&

—cr3 —m [cosy(x) —ioqsinp(x)]/=0 . (3)a@ a1(
Bt Bx

The equation is invariant under the parity operation
Pg(x) =o ~g( —x), since qr is odd. For a solution with en-

ergy E, for x &0,
I

—mc E—ms
—E—ms mc

where s =sina, c =cosa. This equation has plane-wave
solutions for

~

E
~

& m and exponential solutions for
~

E
~

& m. For x &0, one simply replaces s by —s.
Eigenstates are obtained by demanding continuity of f

FIG. 1. Energy spectrum as a function of a for m~ ——0,
mg ——Nl.

at the origin. This procedure yields a pair of solutions of
opposite parity for each energy in the continuum, and a
bound state of energy Eb ——m cosa. The energy spectrum,
as a function of a, is displayed in Fig. 1.

Explicitly, the eigenfunctions are as follows. Bound
state (energy m cosa):

1
Xb(x)=(ms/2)'

1 [e '"0(—x)+e '"O(x)] .

Energy +Ez ——(m +p )'~, positive parity:

Ep+ ms Ep+ ms
p~+(x) =N~

'
(ipE~+m sc) . e'~" (mc+ip)(m—s ip) —. e '~" 8(x)

mc —lp . mc+lp
(mc+ip)—(ms ip) E — e'~" +(ipEp+m sc) E e '~" 8(x)

Energy +Ep, negative parity:

pz (x)=N~
'

r

Ep+ ms Ep+ ms
(ipE +m sc) . e'~" (ms+ip)(m—c+ip) . e '~" 0(—x)mc+ip mc —1p

mc —tp . mc+tp
+ (ms+ip)(mc+ip) E

e'~" (ipE&+m sc) —E e '&" O~(x)

Here 8(x) is the usual step function and the normaliza-
tion factor is u~(x) = 1

2Ep

m —lp
~ lpx

Nz [4E&(E&+ms)(m c +——p )(m s +p )]

The negative-energy solutions, vz(x), are obtained from
pz(x) by the substitution Ez~ Ez. They are displ—ayed
explicitly in the Appendix.

These solutions are to be compared to the ordinary (i.e.,
a =0) Dirac equation solutions:

m+lp
vz(x)= ~ E e

2Ep p

[Note the existence of an extra label (the parity) on the
soliton eigenstates. Labeling them by momentum is actu-
ally a fraud: they are not momentum eigenstates. The
states pz+ and p+z, for example, are not independent. The
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"momentum" label on soliton eigenstates is understood
not to take on negative values. ]

The field operator can be expanded in terms of either

[up, vp, —oo &p & oo j or {Xb,pp, vp, 0&p & ao j, each of
which is a complete, orthonormal set:

Thus,

Jf J J~ JN=e e+az az —cz cz—
277

(15)

(16)

f(x)= f [bpup(x)+dpvp(x)]

=eXb(x)+ f g [apjppJ(x)+cpj vp(x)] .
J=+~—

Choosing the coefficient of Xb to be e rather than e is
purely conventional, analogous to the duality of viewing
the Dirac sea as negative-energy electrons or positive-
energy positrons.

From the fermion field anticommutation relations fol-
low the soliton creation and destruction operator anticom-
mutation relations, which will be needed below:

{et,ej =1,
{apj, aq j =2vr5(p —q)5 i,
{cpj, cq j =2m5(p q)5~i . —

All other anticommutators vanish.
One can relate the set [bp, dp j to the set {e,ap~, cpj j us-

ing orthogonality of the eigenfunctions; for example,

bI, =(uI, IX, )e+(ui,
I pp &ap+(uj, I v,')cp

dk=&vk l»&e+&Uk Is,'&a,'+(Uk ~p&c,"
in bra-ket notation, with f (dp/2m) g. implied. This
is useful for writing combinations of one set of operators
in terms of the other set. For example, the number opera-
tor is conventionally defined so that the state in which the
ordinary Dirac sea is filled and the positive continuum is
empty is an eigenst'ate with eigenvalue zero:

N =bkbk —dj, dk . (12)

(Again the momentum integral is implied. ) In terms of
the soliton operators, this is

X= (e (Xb
I
uk)+ap (pp I

uk)+Cp(vp
I
uk))

&&(e& uk
I » &+a,'&uk

I
Vq'&+cq"&uk

I v,
'

&)

(e(vk IXb&+a,'—&Uk IPp)+cp &Uk
I
+ &)

&&(e'&Xb
I

vk &+aq &Pq I
vk &+cq& vq I

"k &) .

This can be considerably simplified using the complete-
ness and orthogonality relations and the anticommutation
relations (8). The result is

K=e e+apj apj cpj cpj+ (—vp I vp ) —(Uk
I

UI, ) .

The last two terms represent the number of states in the
Dirac sea in the presence of and absence of the soliton.
While each of these integrals clearly diverges, the differ-
ence can be computed. This somewhat lengthy calcula-
tion may be found in the Appendix. One finds that the
number of states in the Dirac sea decreases as u increases:

Imagine now that a soliton is formed infinitely slowly
from the ground state. Referring to Fig. 1, a bound state
emerges from the positive continuum and descends to-
ward the negative continuum. Since the process is infi-
nitely slow, the positive sea and the bound state remain
empty; the negative sea remains fully occupied. Taking
the expectation value of the number operator,

(17)

P«)= f 2 I
&Uk IXb& I'. (18)

With Xb and vk as given in Eqs. (5) and (8), the probabili-
ty becomes, after evaluating an elementary integral,

P(a) =——1 sino.

7T cos cE

cos2(x 7T1+2
sin 2a 2

When o.=0, I' is zero, indicating that the bound state,
which has energy +m and is in a sense the zero-

When 0 & a & m/2, there is a bound state of positive ener-

gy. The state reached adiabatically is thus the ground
state, and the adiabatic charge (17) is the ground state
charge.

When AO=~, the bound state has zero energy. This is
no accident; the theory has a charge conjugation symme-
try since the mass is everywhere pure imaginary. [Specifi-
cally, Cf(x)=cr Pi( x)*.] It is, in fact, a chirally rotated,
infinitely thin version of the theory studied by Jackiw and
Rebbi. ' There are two degenerate ground states, with the
bound state empty or full. The charge of the state with
the bound state empty is ——,

' in agreement with Eq. (17).
Once AO is beyond m, the bound state has negative en-

ergy. The state reached adiabatically is no longer the
ground state, since a negative energy level is empty. The
adiabatic state and the ground state therefore differ in
charge by 1.

When 58 reaches 2~, the bound state joins the negative
continuum, which then has one empty state. But at this
point the fermion mass is everywhere —m; it can be made
positive by a redefinition of P. The energy spectrum must
then be identical to that when AO =0. Since the
negative-energy level which came from the bound state is
empty, the fermion number is —1, in agreement with Eq.
(17). Of course, the fermion does not even see the soliton,
and the ground state has charge zero which differs from
the adiabatic state's charge by 1, as stated above.

It is of interest to compute explicitly some of the Bogo-
liubov coefficients. For example, one can ask the follow-
ing question: If the soliton were turned on suddenly rath-
er than adiabatically, what is the probability with which
the bound state Xb would be filled? This quantity is given
in terms of the Bogoliubov coefficients between the bound
state and the states in the ordinary Dirac sea, Uk

..
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ig
&

—g 3
—m '[cosy'(x) +icr2siny'(x) ]/ =0,alai aq

Bt Bx
(21)

where y'(x)=a'x/ ~x ~, if we assign to m' and a' the
values

m'(a)=(m~ +m2 +2m&m2cosa)'
r

(22)

a'(a) =tan
m2sina

m i +m2cosa
(23)

Because of this, much of the work done above can be used
here by simply replacing a and m by a' and m'.

A qualitative difference between solitons with m
& & mz

and those with m» m2 is expected. If m
& & m 2, the soli-

ton "winds around" the origin in the mass plane so that
b,8=2m at a=n, and hence from (2) the soliton charge is
—l. If m~ &m2, however, this is not the case. As a
changes from zero to n., 58 increases from zero to a max-
imum (less than ~) and then returns to zero; the charge of
the soliton is zero.

The distinction can be illustrated neatly with the energy
spectrum. Two features of the energy spectrum are of in-
terest. First, the continua start at energies +m' [see Eq.
(22)], which changes with a. Second, there is a bound
state at energy Eb ——m'cosa'=m ~+m-2cosa. The energy
spectrum as a function of a is displayed in Fig. 2, for
m1&m2 and m1) m2.

For m& &m2 the buildup of the soliton proceeds in
qualitatively the same manner as the m ~

——0 case. As m ~

approaches m2, the energy gap at a=~ decreases until at
m& ——m2 they meet. The Dirac equation is that of a
massless fermion. As m~ becomes greater than m2, the
energy gap at a =m. reappears.

The striking feature is that the bound state, instead of
joining the negative continuum, rejoins the positive con-
tinuum. Keeping in mind the fact that a is changed in-
finitely slowly, the Dirac sea remains full throughout the
entire process, rather than acquiring an empty state. The

momentum state in the positive continuum, has zero over-

lap with the Dirac sea. However, the probability must not
be interpreted as an indication of how close the bound
state energy is to the Dirac sea. For example, when a =+,
P is again zero, despite the fact that the bound state has
reached the negative continuum. But the negative contin-
uum when a=m is not the same as that when a=0;
indeed, the chiral transformation which changes the sign
of the mass also exchanges positive- and negative-energy
states.

Notice that P(a) has no very direct relation to N: the
charge must be assigned to the whole sea, not to the
bound state.

Consider next the more general case, where there is a
bare mass m &&0. The Dirac equation is now

i cr
&

—o 3 [m ~
—+m2cosy(x) +icrqm2sinp(x)]/ =0 .ay aq

dt Bx

(20)

The soliton is still infinitely thin: p(x)=ax/~ x ~. It is
clear that this equation can be written in the previous

rm:

E&s E]a

+I AV/8/Ills lr r

Elk

(o)
r'rrZr r r r Er r ~'r r

(b)

El&

+I r 2Pr Zr'r 8r r'r r r

-I-
-2X

(c)

a
+

r'YYF~ ~'r'r lY~ ~ r.

(d)

FIG. 2. Energy spectrum for m~ =0.9, m2 ——1.0 [(a) and (b)],
and m~ ——1.1, m2 ——1.0 [(c) and (d)]. (b) and (d) are normalized

by dividing by m'(a) so that the energy gap appears to be in-
dependent of a.

charge of the soliton at a=m. is thus zero for m» m2, in
agreement with the adiabatic result.

Figure 2 thereby shows how a discontinuous change in

the adiabatic charge as m ~ & m2 results from a continuous

change in the motion of energy levels.

III. FINITE-WIDTH SOLITON

Consider next a scalar field which has two discontinui-
ties rather than one:

—a (x& —d),
y(x)= 0 ( —d &x &d),

+a (x &d).
(24)

E+m2s
X (x)=A, e"'"+d' (x & —d)b —

1 m1+m2C+K

E
=32 ~ KX

m)+m2+K

+23 e ""
( —d (x (d)m)+m2 —K

E—m2s

m ) +m2C —K (25)

When a=0 the fermion mass is everywhere m&+m2, as
a increases the mass takes on space dependence, similar to
above. The slight aesthetic advantage here is that the soli-
ton with a=@ has some structure, whereas the infinitely
thin soliton with a=a. is totally transparent to the fer-
mlons.

Similar to above, each of the three regions has plane-
wave or exponential solutions depending on the energy;
eigenstates of the Hamiltonian are found by imposing
continuity of the wave function at x =+d. Here we will
concentrate on looking for bound states. The form of a
bound state is
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where
s =sina, c =cosa, «=[(m~+mz) —Ez]'~z,

and
«'=[(m)+mzc) +(mzs) —E ]'

There are five unknowns: A ~, Az, A3, A4, and the ener-

gy E. These are determined by the four continuity condi-
tions and normalization. The result is a transcendental
equation for the energy:

«[«'E —mzs(mr+mzc)]
tanh2«d =

E —E[mz (c+s )—m~(m&+mz —mzc)] x's(m&+mz)mz
(26)

IV. INFINITELY WIDE SOLITON

For the infinitely wide soliton we expect the adiabatic
formula to apply directly as a good approximation for the
charge density. We will now demonstrate this by calculat-
ing the charge density in the mme 'g theory, using a&'IPP5

special device which makes the calculation particularly
transparent.

The interaction with the background field is simplified
by redefining the fermion wave functions, according to

+I i +I r +I

(a) m, =0, d=O (b) m, =O, d=O. I

\

(c) m~=0, d=I.O
+ I

(d) m, =0.9, d=O (e) m, =0.9, d=O. I (f) m)=0.9, d=l.O
+,iiiiiiiii

p
7T 7r

2

(h) m, = I.I, d=O. I

~ p
7r

I I

7r 7r
2

(i) m~=l. l, d=l.O

FIG. 3. Energy spectrum of finite-width solitons, normalized
as in Fig. 2.

Clearly the infinitely thin result, Eb ——mr+mzcosa, is
recovered here if d is set to zero. Numerical solutions of
the equation are presented in Fig. 3 for m ~ =O, m

~ & mz,
and m» m z, for various thicknesses.

For m& &m2, as d increases the bound state no longer
reaches the negative continuum when a=+. A second
bound state emerges from the positive continuum, result-
ing in a charge conjugation-symmetric energy spectrum at
a=@'. As d —+ Op the bound states get arbitrarily close to-
gether. In this case, as a =re the bound states are at infin-
itesimally positive and negative energies. The eigenfunc-
tions are even and odd combinations of bound state eigen-
functions associated with each step. Except for the small
energy differences, the ground state is fourfold degenerate.

For I& &m2, when d is nonzero the bound state re-
turns to the positive continuum before a=a.. As d in-
creases, the bound state's appearance gets more brief up
until the point d —+ oo, where it does not appear at all.

(27)

In terms of these functions the Dirac equation reads

(~X ~i —m+ & X ) 5m')~q )rz=y Eu .

(Jp ) = —B&$7/277 (29)

as expected. By the same method, examining the energy-
momentum tensor, we may evaluate the energy required
to polarize the fermion sea, which is proportional to
(r}~p)'.

We can check how the approximation involved in re-
garding B~y as slowly varying is controlled, by imagining
calculating the current density directly by summation of
Feynman graPhs. In such a calculation of (jp(x)) in-
teraction with the external field at y, involving B,y(y),
will be suippressed by position-space propagators behaving
like e " "~. Therefore, only ~x —y

~

& I/m need be
considered.

Similar techniques have been used to gain an intuitive
understanding of the response of the Fermi sea to a slowly
varying background in condensed matter physics.

V. CONCLUSIONS

Detailed analysis of simple examples has confirmed our
main general points: the fractional part of the charge is
given by the adiabatic method in general, as is the total
charge for very wide solitons (on the scale of the Compton
wavelength of the fermion). Narrow solitons require care-
ful study of level crossings in the steepening step, and

Now notice that the interaction term on the left-hand side
can be brought over to the right-hand side—it represents a
sort of position-dependent energy. Insofar as B~y is slow-
ly varying (B&y «m ) we can simply reabsorb it as an ef-
fective energy. To calculate the Feynman graph giving
the current density we simply replace the energy in the
propagator by the effective energy, arriving at

d'k 2«p —~)
(jp) =

(2m. ) (kp —5) +k) +m

2kp

k, '+k, '+m'

where b, =(m /2)B&p and the normal vacuum contribution
has been subtracted off. Evaluating this to first order in
b„we find
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indeed may become transparent if they are narrow
enough; thus, whatever charge was attached to the wide
soliton must be liberated in the steepening process. Possi-
ble applications of our results to the strong and weak in-
teractions are discussed in a companion paper.
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APPENDIX

Up(x) = 1

2Ep

m+ip —oo (p(oo

y e
—tPK

P (Al)

The negative-energy solutions in the presence of the soli-
ton given by m i ——0, m2 =m, ip(x) =ax/

~

x
~

are

Here we compute the change in the number of states in
the Dirac sea as an infinitely thin soliton is built up. The
negative-energy solutions of the ordinary Dirac equation
are

r T —Ep+ ms —Ep+ ms
v (x)=iV' '

( ipE +—m sc) . e'p" (m—c+ip)(ms ip) — . e 'p" 8(—x)mc+ip mc —Ip

and

mc —ip
+ (mc—+ip)(ms ip)— E

e'p" +( ipE«+—m sc)
P

—= (
W'+'e'p" + rp+'e 'p")8( —x)+(a)~p+ e' "+ir(~j

mc+ip
e 'p" O(x)

p

(A2)

—Ep+ms Ep +ms-
v (x)=N' '

( ipE +m sc—) . e'p" (ms+i—p)(mc+ip) . e 'p" 8 —x
me+i@

Here

mc —ip
+ (ms+ip)(mc+ip) e'p" ( ipE +—m—sc)—Ep +ms

e'p" + ~' 'e 'p")8( —x)—(a &' 'e'p" +o W' 'e '«")8(x)
P p 1 p 1 p

mc+lp
e 'P" 8(x) .

P

(A3)

(+-)
Wp

———

(A4)

Y(+ ) (mc+ip)(ms+ip )
—Ep +ms

[4E«(E« —ms)(m c +p )(m s +p )]'~

The change in the number of states in the Dirac sea, i.e., the charge of the adiabatically-reached state, is

g=(vp~
~ vpi

) —(Up
~ Up ) ~

Showing the integrals and sums explicitly, this is

iV« =[4E«(E« —ms)(m c +p )(m s +p )] '~, s=sina, c=cosa,
and the momentum takes on only positive values. The two-component objects V W( —), Y' —' are introduced to reduce
the bulk of the calculation below. Wp('-) and yp('-) will be needed below; they are

—EpEP+m sc —Ep +ms

[4E (E —ms)(m c +p )(m s +p )] mc+ip

dp id( p'(+)t —ipx+ y(+)t ipx)( pT(+) ipx+ y(+) ipx)—x e e e e
0 2~ —oo

f d (
y'(+ )t —i«x+ ~(+)t e /px)( p(+ )e lpx+ a )fan

+ e
—lpx)x p o]e p o~ o]

0
( pr( —)t ipx+ y( —)1' ipx)(—$y( —) ipx+ y( —)e ipx)—

P P P P

+ f dx(Y' ' o(e '«"+ W' ' o)e'p")(o(Y' 'e'«"+o)8' 'e '«")

p d ( yt +ipx)( y —ipx)
(X) 2~ 00 p P

(A5)
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Changing all the integrals to I dp J dx and collecting like terms,

Q 2 p d ) gr(+)ter(+)+ y(+)ty(+)~ ~(—)ter( —)+ y( —)ty( —) @tv yt y
() 2~ 0 P P P P + P P P P P P P P

P dx[(p (+)ty(+) ~(—)ty( —))e2ipx+(y(+)t~(+)+ y( —)tp ( —))e —2ipx]
0 2~ p P P + P P P P P P

The first term in brackets adds up to zero, so the charge is

Q
p d ) ( pr(+ )t y(+ ) + gr( —)t y( —)

)
ipx

( y(+ )t pr(+ ) y( —)t pr( —)
)

—ipx ]
2w

OO

The x integrals are given by dxe'P" =i /p+n. 5(p). Q becomes
0

Q
~

t
pr(+)ty (+)+gr( —)ty( —)+y(+)ter(+)+ y( —)t~( —)]

2

p
( pr(+)ty(+)+ p ( —)ty( —) y(+)tpr(+) y( —)ter( —))

0 2~p . P P P P P P P P

(A6)

(A7)

Using (A4) this becomes

Q= ——+1 msc dp
2 2~ o (p+ms )(p+m )'

(A9)
or

1 msc= ——+
2

1
CX

m sc
(A10)

The integral can be evaluated by the substitution
(p +m )'~ =t+p; the result is

Qe
2' (Al 1)
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