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Relativistic corrections to bound-state energies for two-fermion systems

F. Gesztesy
Zentrum fur Interdisziplinare Forschung, Universitiit Bielefeld,

D 480-0 Bielefeld 1, Federal Republic of Germany

H. Grosse~
CERT CH-1211 Geneva, 23

B.Thaller
Institut fiir Theoretische Physik, Universitat Graz, A 8010 G-raz, Austria

(Received 14 May 1984)

Holomorphy of the Breit-Fermi resolvent around the nonrelativistic limit is used to derive a new
method for calculating first-order relativistic corrections to bound-state energies.

I. INTRODUCTION

The problem we are discussing is a rather old one and
simple to state. Start with the Dirac operator with static
external fields. Under mild assumptions on the potentials
the spectrum will consist of continuous parts with a gap
around energy zero and possibly bound states in the gap.
The problem now is how to get information on the
bound-state energies. In the absence of a variational prin-
ciple, the most well-known procedure consists in formally
expanding the Dirac operator for inverse powers of the
velocity of light c. As a first step this Foldy-Wouthuysen
procedure' gives highly singular operators. In a second
step one applies first-order perturbation theory which,
however, is completely unjustified. Although we have
been able to give an interpretation to the second step in
terms of spectral concentration, ' one should try to avoid
the above-mentioned procedure completely. For the one-
particle case we succeeded to prove holomorphy of the
Dirac resolvent in c '. From the explicit expansion of
the resolvent we then extracted corrections to bound-state
energies of the Pauli operator. '

In this paper we shall apply our method to the two-
particle case. To do so, we have to have a Hamilton
operator. In principle, one should start from a relativistic
wave equation (Bethe-Salpeter equation or some other
bound-state equations) and try to obtain a Hamiltonian by
an instantaneous limit. Concerning this (certainly
nonunique) step, we have nothing to say (except for some
comments at the end of the paper). Here we assume that
these steps can be done. For QED this yields the so-called
Breit-Fermi Hamiltonian. At this point we should add
a warning: In case the potential is determined up to a cer-
tain order in a coupling constant (or in 1/c ) it does not
make sense to continue our procedure to higher orders in
these parameters. %'e also remark that our procedure
works for local as well as nonlocal interactions.

In order to clarify the above remarks, let us discuss the
Hamiltonian for the positronium atom. Let H(c)
=Ho(c) + V with

a ~ and P~ (a2 and P2) are Dirac matrices for particle one

(two). I
&

and I2 are 4X4 unit matrices.
The main question concerns the potential V. Take, for

instance,

V(x) =v(r) I ~S 12+w&(r)a~S a2

+w2(r)(a, x)S(a2 x), (1.2)

where x denotes the relative coordinate, r =
~

x
~

and
x = x/r; then for the special case

2

v (r) = —2w&(r) = —2w2(r) =-
r

(1.3)

Eqs. (1.1) to (1.3) represent the Breit-Fermi operator and
the question of a nonrelativistic expansion of bound-state
energies can be posed.

We shall also be concerned with more general interac-
tions than (1.2) and (1.3), which are of interest for quar-
konium spectroscopy. The general ansatz we take for Vis
of the form

U+ 0 0 w+

0 v w 0
V= 0 w v 0

W+ 0 0 U+

(1.4)

where we have used a 16)&16 matrix notation and each
entry of the matrix in (1.4) represents a 4X4 matrix. It
can be shown that special cases of (1.4) will account for
general interactions coming from scalar, vector, pseudo-
scalar, axial-vector, and tensor interactions, although we
shall concentrate only on the two first mentioned.

Ho(c)=(ca~. p+p~m~c )S 1.2

+ I,S ( —ca 2.p +pram 2c ) .

Ho(c) represents the free Hamiltonian of two Dirac parti-
cles in the center-of-mass frame and acts in

L'(R')S C4S C4
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II. PGSITRONIUM

We use the representation

0 o. I 0

cr OJ 0
(2.1)

then Hp can be written in a 16&& 16 matrix form:

hp(c) =Hp(c) —m &c —m2c

0 cA1 0 CA2

There is a long list of publications concerned with rela-
tivistic corrections to bound-state energies and decay pa-
rameters (cf. e.g. , Refs. 9—12 and the references therein).
It is worth mentioning that for a scalar interaction there
exist three different proposals for the correction
terms. ' ' %e shall see that our procedure gives a result
in agreement with Ref. 15. For a determination of the
structure of spin-dependent forces in @CD see Refs.
16—18.

We shall be dealing only with two-body systems; there
are additional problems for the many-body case. ' In Sec.
II we shall explain our method for interactions like (1.4).
Section III is devoted to a discussion of special interac-
tions and to a comparison with results in the literature.

2

n-hm R, (c)= —zo P
c~ co 2p

—1

P+P+ .1 2 (2.6)

Equations (2.4) and (2.5) clearly demonstrate that R, (c) is
holomorphic in c ' around the nonrelativistic limit
c-'=0.

But one notices a difference between the one-particle
and the two-particle case. For the one-particle case even
after multiplying the free resolvent with potentials which
are relatively bounded with respect to a p norm conver-
gence was obtained. ' Since this is not the case here we
shall assume that V is a bounded operator in order to
avoid problems of self-adjointness. Thus, we assume that
v+ and w+ are essentially bounded from now on.

The main idea of our approach consists in discussing
the resolvent of H(c}=hp(c)+V (which is a bounded
operator),

R,(c)=[H(c)—z] ', zE CiR, (2.7)

instead of dealing with the unbounded Hamiltonian H(c).
Next we shall extract in a two-step procedure parts of
H(c) which dominate in the limit c—&ac and write
H (c) z=D (c)—+E ( c) with

2 I2+ jj-1 2cA1 —2m1c CA 2
—2m2c

(2.2)

CA1

CA 1
—2' 1C

2

CA2

0

0

0

where we introduced the notation A1 ——o-1 p, 32
= —cr2. p and subtracted rest energies from Hp(c). Next
define the free resolvent R, (c):

D(c}=
CA2

0

0

0

—2m2C 2

0

0
—2(m ~+m2)c

R, (c)=[hp(c) —z] ', zEC&R . (2.3)

Since all entries in hp(c) commute with each other hp(c)-z
can be inverted in a straightforward calculation. For no-
-tational simplicity we state the result in the special case

1

m1 ——m2 ———, .

E(c)=

0 0 W~

CA2

W V —Z CA1

W g Cc42 CA1 Vg —Z

(2.8)

2

R, (c)= 2p —z—2 Z

2C
P~P~ ~ M(c)

C +Z
Since all elements of D(c) commute it is trivial to in-

vert D(c) Makin. g use of the identity

(2.4) (D+E) '=(1+D 'E) 'D ' (2.9)

where we introduced the projection operators
P'+ (1+P' )/2, an——d the symmetric matrix M(c) in a
4)&4 notation is given by

allows, after multiplying out D '(c) and E(c), to con-
clude that in the limit c~ ao, R, (c) tends to the (interact-
ing) Pauli resolvent in norm:

—Z Z 2
2 Z 2

2

M11 ———+ —p, M22 ——z+ —p =M33,2 2c 2
n-lim R, (c)= +v+ —z

. choo 2p
P~gP~, ZEC&R .

Z
M12 ——A1 C+

2c
Z

M24 ——32
2C

(2.5)
Z Z

M13 ——A2 c+, M34 ——A1
2c 2C

M14 ——A 132——M23,
2

2c

In particular in the nonrelativistic limit choo, R, (c)
converges to the free Pauli resolvent (p /2p —z) ' (where

p '= m& '+ m2
' is the reduced mass) times a projec-

tion operator:

(2.10)

Moreover, following the derivation of Eq. (2.15) in Ref. 5,
the explicit form of D '(c) finally yields our first main
result.

Let H(c)=hp(c)+V, Vbounded, and zECXR. Then
R (z) = [H (c)—z] ' is holomorphic in c ' around
c =0. At first sight it might be surprising that the
resolvent is analytic as a function of c ', while the folk-
lore results for expansions of eigenvalues yield a series in
c . But as in the one-particle case one can go over to a
modified resolvent R, (c),
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R,(c)=8(c)R,(c)8 '(c),
(2.11)

quote those matrix elements that are needed for later pur-
poses:i000

Oc0 08"= oo o
000 c

and with the help of the similarity transformation B(c)
one observes that R, (c) becomes holomorphic as a func-
tion of c around c =0.

More explicitly we first note that 8(D 'E)B ' con-
verges in norm to

d =n-limB(c)D '(c)E(c)B '(c)
C —+ ao

A) A2
(u —z)+ w p,m ) 2m2 2m I

[R1«)]11= p.—2

p w +
2m 2

A2
(u —z) p,2m 2

2—p, 8 p, ,
(2.16)

[R1(z) ]1z——p, A1/2m1, [R 1(z)]13——p, A2/2m z

[R, (z)],4=O .

0
pg v+

0 A1
P 2f72 )

0

0 0

0

0

In order to derive our second main results, namely, an ex-
plicit formula for first-order relativistic corrections of
bound-state energies, we follow the strategy developed in
Refs. 4 and 5. From the fact that

pz V+
m2

0 0 0 0

w+

2(m, +m, )

A2

2(m1+m2)

p'=0 P —z
2p

(2.12)

0
2(m1+m2) [Ro(» —g] '=

A2
p.(p.—0) '

2m 2

'W.p, (p, —g)
' 0

0 0

o

o

In order to get a norm-convergent expansion of R, (c) in
terms of c,we apply formulas (2.9) once again and take
out 1+d from 8(1+D 'E) '8

R, =[1+d+e (c)] 'D '(c)

=[1+(1+d) 'e(c)] '(1+d) 'D '(c),

$~0, (2.17)

we infer as in Lemma 2.2 of Ref. 5 that there is a one-to-
one correspondence between nonzero eigenvalues of p, and
Rp(z). In particular,

+u+ fo =Epfp i.e. , p,fo ——(Eo —z) 'fo
p

n-lim R,(c)=
C~ oc

p, 000
2m)

A2
p, 000

2m 2

=Rp(z),

D(c)=8 (c)D (c)8 '(c), (2.13)

where e(c) denotes the corresponding remaining part.
Explicit multiplication of the matrices in (2.13) then
shows after some calculations that

p, 000

E0ER, zECXR )

lmplles

[Rp(z) —(Ep —z) ']No ——0, Np ——

0

fo

A2
fo

2m 2

0

(2.18)

(2.19)

8'p, 000
w+ A IA28'= +

2(m1+ mz ) 4m1m2
(2.14)

pz = +v+ —z
2p

and that R, (c) is indeed holomorphic with respect to c
around the nonrelativistic limit

Since R, (c) is holomorphic with respect to c around
the nonrelativistic limit, analytic perturbation theory im-
plies that eigenvalues and eigenfunctions of R, (c) and
H (c) [by the similarity transformation 8 (c)] are also ana-
lytic with respect to c . Assuming for simplicity that
E0 is a nondegenerate discrete eigenvalue of the Pauli
Hamiltonian p /21u+u+ and that E(c ) is the corre-
sponding relativistic eigenvalue of H(c) [with E(0)=Eo]
then E(c ) is also nondegenerate and we can expand

E(c )=Ep+c E, +.O(c ) . (2.20)
R, (c)=Rp(c)+c R1(z)+O(c ) . (2.15)

Since R1(z) has a quite complicated structure we only
To calculate E1 explicitly we apply first-order pertur-

bation theory to Eq. (2.15). A standard procedure for
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bounded (but nonself-adjoint) operators then leads to

[E(c ) —z] '=(Ep —z} ' —c (Ep —z) Ei+O(c }

=(Ep —z) ' —c (Pp, R i(z)@o)+O(c ),
!2.21)

where @p represents the eigenvector of Rp(z) to the eigen-
value (Ep —z) ' [cf., e.g., (2.19)] and

4o= () (2.22)

0

is the eigenvector of Rp(z)+ [to the eigenvalue
(Ep —z } ']. Inserting 4p and go into Eq. (2.21) and us-

ing expressions (2.16) for R i(z) finally leads to

A) A( A2
fo v — +

2m& 2m~ 2m2

A2 A) A2 A2 A(
+ W + W

2m2 2m) 2m2 2m2 2m)

—Eo 2+p 1

m~

W+ A]A2+
2(mi+mz) 4mimz

1 +2(mi+mz)W fo l

2

m2
(2.23}

Remarks

(i) In the limit mz~ oo we obtain

t Ai Ai
Ei=l fo v- —Eo

2m i 2m i

2

z fo
I4m i

which is identical to our one-particle result. '

(ii) In practice one has to discard the term

(2.24)

I

For a comparison to results in the literature it remains to
determine the potential; this is trivial for scalar (and pseu-
doscalar) interactions and needs more comments for the
vector case.

A. Scalar interaction

There we have

(fp w+fp )/2(mi +mz )

if the potential is determined up to first order in the cou-
pling constant.

(iii) If Ep is a degenerate eigenvalue of the Pauli Hamil-
tonian similar (but more involved) arguments apply.

III. DISCUSSION

1 0 0 0
0 —1 0 0

V(r)=S(r)pipz ——S(r) p 0 1 0
0 0 0 1

(3.3)

So we identify v+ ———u =S, w+ ——w =O. After some
straightforward algebra (assuming S is smooth enough)
one gets

In order to compare with results obtained by completely
different methods by various authors we first rewrite Eq.
(2.23). Assuming v+, w+ to be smooth enough and using
the eigenvalue equation

ei ——
l fp, [(bS)+4(VS)V+4S.K(

8mi

(o xXp)]fp l+(1 2)
2 as
r Br

(3.4)

~i ——
l
fp, , (2A, v Ai —v+p —p v+)

8m, z

(3.1)

(3.2)

+
&

(2Aqu Az —u+p —p v+ )
1 2 2

8m2

1+ (Aiw Az+Azw A, +AiAzw+
4m (m2

+v+ fo=Eofo
2p s

we can eliminate Ep in Eq. (2.23) and obtain

( p4Ei= —
I fo fo I

3+ 3 +&i'
8 ) mi mz

+(second-order term in w+ )

which is the same result as that of Barnes and Ghau-
dour it disagrees with Gromes' and with Olsson and
Miller. '

B.Vector interaction

U+ =U =U,

W+ —W = iu i 0' i
' Cl p+ Wz( CT i 'X )( 0'g X ) .

(3.5)

We readily obtain from (3.2) the spin-independent ei', the
spin-orbit e], and the spin-spin E'& contributions to

SI+ SO + SS.

Here the identification is a bit more delicate, since there
are different prescriptions for taking the instantaneous
limit. It might therefore be of interest to quote the gen-
eral result for the potential of Eq. (1.2), which means
identifying
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, (fo fo) — (fo t: I tI t~ai) )+ I IPt(xttozxt)I, ) ) lfo)+(1~2»
8yyg ) Sm )m2

Wy
(3.6)

W) W2 + ( o. i.x )( cr 2 x )
W) W2

+wi +2
r r 2 fo I,

where we used the bracket notation of Ref. 13:

I IIi +ijIj ) ) ~Iti+ijuj +pj +ijIti +pipj +ij ++ijpipj

and summation over repeated indices is implied.
The most direct (and safest) approach concerning the

connection to a Bethe-Salpeter kernel consists now in tak-
ing

V(r) =u (r)( 3. i I z —at a2) (3.8)

which means one neglects the go dependence of
u( —qo + q ) in the kernel. Then one identifies

It is interesting to note that both the spin-orbit and the
spin-spin interaction terms are insensitive to the different
hmit descriptions. This is so because both eXpressions de-
pend only on the sum —w'i +wz/r, which is equal to u'

in both cases.
So let us finally conclude that we have given an unam-

biguous scheme to extract relativistic corrections to
bound-state energies of two-particle systems if a time-
independent potential is given; the step from a relativistic
wave equation to the Hamiltonian description depends on
the procedure one chooses.

U =Q, W) = —Q, W2=0; (3.9) ACKNOWLEDGMENTS

Q r
U=Q, WI =—,W2= Q2' 2

(3.10)

Now all three contributions in (3.6) agree with Ref. 13.

this yields agreement of ei and ei with Refs. 13 and 20;
e", differs.

If an expansion of u( —qo + q )=u(q )—qo u '(q )
is allowed one may use current conservation to transform
the second term and obtain
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