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Application of the Newman-Penrose tetrad scheme to the light-cone gauge
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We adapt the Newman-Penrose tetrad formalism to a systematic and efficient evaluation of Feyn-

man integrals in the light-cone gauge. Our procedure exploits the traditional assumptions of locality
and power counting as well as the useful tenso'r technique. It is shown that this program yields the

same results as the much lengthier Feynman parameter method. There are no double poles to one-

loop order.

I. INTRODUCTION

The aim of this paper is to apply the tetrad formalism
of Newman and Penrose' to a systematic study of certain
noncovariant Feynman integrals, called light-cone gauge
integrals. As the name implies, these integrals are charac-
terized by a constant null vector n&. The most important
single feature of the Newman-Penrose formalism is a
four-dimensional basis spanned entirely by null vectors.
The scheme originated in the context of gravitation and

cosmology, where null vectors are virtually ubiquitous.
The light-cong gauge ' continues to intrigue particle

theorists, because it is free of ghosts and appears to be
more effective than other noncovariant gauges in studying
the ultraviolet finiteness of certain supersymmetric
Yang-Mills theories. "" The light-cone gauge is
specified by the condition n A'=n&. A& ——0 and n2=0,
@=0, 1,2, 3, A& being a massless Yang-Mills field and nz
a constant null vector.

The crux of the paper is the following. In the light-
cone gauge n& has to satisfy n =0 [We sha.ll take
n„=(no, n3, 0,0) to simplify matters. ] The latter condi-

tion implies that the components of nz are linearly depen-

dent, with n3 ——+np or n3= —np, np) 0; hence there are
two possibilities: n„=(no, +no, 0,0) and n& = (no,
—no, O, D) Conside. r now the integral

I& ——fdq q&G(q, (q p), q n) =—Ap&+. Bnz,

which follows from symmetry and Lorentz invariance. If
n &0, this is a perfectly good ansatz giving unique coeffi-
cients A, B (see Sec II). Howeve. r, if nz is a null vector
with linearly dependent components, the above ansatz
fails and has to be replaced by

Ip ——App+Bnp+Cn„* .

This is where the tetrad calculus of Newman and Penrose
becomes effective. Under ordinary circumstances, the in-
troduction of n& into the ansatz would seem a bit strange,
but in the elegant Newman-Penrose formalism, where any
four-dimensional vector can be represented in terms of
four null vectors, the appearance of n& is almost natural.
This will be demonstrated in Sec. III.

Application of the Newman-Penrose scheme to the

II. REVIEW OF TENSOR METHOD

As is well known, integrals of the form

dq F(qp~qpqv~ )
g

G(q', (q —p)')
(2.1)

may either be computed by the Feynman parameter tech-
nique, or by the much quicker tensor method (as we shall
call it) which exploits the symmetry and Lorentz invari-
ance of the integrals. ' ' If certain basic, i.e., scalar, in-

tegrals are already known, the tensor method allows us to
compute (2.1) without further integration, as illustrated
below.

(a) Couariant gauge integrals-: Consider the Euclidean-
space integral

I„„=Jdqq„q [q (q —p) ] (2.2)

light-cone gauge has a two-fold advantage. Besides offer-
ing new insight into the structure of the integrals, the
scheme permits, under the traditional assumptions of lo-

cality and power counting, ' an efficient and systematic
evaluation of integrals such as

2(0 f'
( 9'p, V„V (1.1)

g(q', (q —p)', q.n )

These had been previously computed, albeit with an irn-

proved prescription for (q n) ', by the "safe" but tedious
Feynman parameter technique. ' The word "locality" is
short here for "locality of the diuergent part of the in-

tegral in the external rnomenta. " We employ dimensional
regularization in a space of 2co dimensions with a Min-
kowski metric (+,—,—,—).

The article is planned thus: Section II begins with a
short review of the well-known tensor method which en-

ables us to calculate integrals by exploiting symmetry ar-
guments as well as Lorentz invariance. ' ' We then
demonstrate the failure of the tensor method if a conven

tional ansatz for light-cone integrals is employed. In Sec.
III the Newman-Penrose formalism is summarized and
then adapted to the light-cone gauge. The new procedure
is explained in Sec. IV by means of three examples. The
article concludes with a discussion.

30 2167 1984 The American Physical Society



2168 GEORGE LEIBBRANDT 30

which depends on the single parameter p&. From symme-
try considerations and Lorentz invariance, I&„has to be a
linear combination of the rank-two objects 5&„and pzp„.
The tensor method consists, therefore, of making the an-
satz

Ipv =3&pv+ Bpppv (2.3)

and finding the coefficients (amplitudes) A,B by multiply-
ing (2.3) with p&p„, then contracting p with v. Thus,

f dq(q p)'[q'(q —p)'] '=Ap'+Bp, (2.4a)

f dq q'[q'(q p)']—-'=2~A+Bp'. (2.4b)

To calculate (2 4a), let q.p =
2 [q +p2 —(q —p)2] and use

the scalar integrals'

qq q —p '=I=a I co —1 I 2 —co

X[1(2' —2)] '(p )"

(2.5)

reference, that the divergent part of I& is local —terms
like p&I/p n do not occur—and that (2.13) satisfies naive
power counting. ' The axial-gauge integral (2.13) has
been tested repeatedly in explicit calculations, both in
Yang-Mills theory' and quantum gravity, ' and there
can be little doubt about its correctness.

The obvious question now is "What happens to (2.13) in
the light-cone gauge where n =07" If we make the same
ansatz as for the axial gauge,

I& ——f dqqz[q (q —p) q n] '=Aop&+Bort&, (2.14)

multiplication by n„gives I=Aop. n+Bon, so that
Ao I/——p n which is clearly nonlocal On. the other hand,
if locality is to be preserved, Ao must be zero, implying
I=0, which contradicts the well-established value of I in
Eq. (2.5). Accordingly, the conventional ansatz (2.14)
leads either to nonlocal expressions or to integrals that are
inconsistent. In Secs. III and IV we shall propose, and
then apply, an improved ansatz for the light-cone in-
tegrals (1.1) and (2.14).

f dqq = f dq(q —p) =0.
The resulting equations

4p I=Ap +Bp

0=2coA +Bp

are solved by

A = p I[4(2' 1)—] ', B =2—coI[4(2' 1)]—
so that

qqq q q —p

(2.6)

III. THE NEWMAN-PENROSE FORMALISM

As mentioned in the Introduction, the tetrad scheme
was developed by Newman and Penrose' in the context of
gravitation. We summarize its main features ' and then
adapt the scheme to the analysis of a certain class of
light-cone gauge integrals.

Consider the set of orthonormal 'vectors I eo, e&, e2, e3I,
where

= (2top~p„p5~ )I[4(2—a) 1)] ' . (2—.7)

(b) Axial gauge inte-grals: The axial gauge, specified by
n A'=0 and n &0, leads to integrals like

I„=f dqq„[q (q p) q n] ', —n2&0. (2.8)

Since Iz depends on p& and n„, the proper ansatz is

eo=(1,0,0,0), e~=(0, 1,0,0),
e2 ——(0,0, 1,0), e3=(0,0,0, 1),

satisfying

eo eo ——1, eo. e; =0, e;- ej =5;J, i,j =1,2,3,

(3.1)

(3.2)

Ip ——App+Bnp . (2.9)

(2.10a)

I=Ap n +Bn

with"

(2.10b)

Multiplication of (2.9) by n„, p& yields, respectively,

p nI/n =Ap +Bn.p,

with metric gz„——(1,—1, —1, —1), p, v=0, 1,2,3. One of
the chief characteristics of the Newman-Penrose (NP)
tetrad scheme, and a distinct advantage for our purposes,
is its representation of any four-dimensional vector by
four null vectors 8, k, m~, and m2.

f dq[(q —p) q n] '=2p nI/n, n &0,

f dq[q (q p) q n] —'=0.,
(2.11)

(2.12) 1
8 =(eo+ e ~)/V 2=(1/V 2)

where only the divergent part of the last integral is given.
Solving Eqs. (2.10) we find A =0, B=I/n, so that

I„=f dqq&[(q p) q q n] '=n&I—/n, n +0,
(2.13)

which is identical to the expression obtained by the
cumbersome parameter technique. We observe, for later

—1
k =(eo—e))/v 2=(1/~2)

0
(3.3)
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0
0

m& ——(ez+ie3)/V2=(1/v 2)

0
m2 ——( e2 —i e3)/v 2 = (1/v 2)

The new basis vectors are indeed null,

with

=k =rn, =m

k = 1, m1'1112= —1

ui = EA1+ kBi+mlci +rr12Di ~ i = 1,2,
has the form

U 1' U2 =A 1B2+A 2B1—C1D2 —C2D1

while

8 rn1 ——E.rnid ——k.m1 ——k rn2 ——0 .

The inner product between two vectors u1 and u2,

(3.4a)

(3.4b)

(3.4c)

(3.5)

(3.10) is either given by Znov'2 or knov 2. These vectors
may be distinguished by the notation

n„=enov 2,

n& ——knoV 2;
clearly, n =(n') =0, while

n n'=(n+), n+=nov2=n3V2.

(3.12a)

(3.12b)

(3.13)

Confining ourselves, for the moment, to the two-
dimensional ( no, n3) subspace, we deduce from (3.12) that
both n& and n& are needed to span the appropriate sub-
space. The presence of n& is not sufficient. The reason
for this is that n& possesses linearly dependent com-
ponents.

IV. APPLICATION TO LIGHT-CONE INTEGRALS

I„=PA 1+k A 2+m1A 3+m224,

The purpose of this section is to apply the results of
Sec. III, coupled with the tensor method of Sec. II, to
three one-loop integrals in the light-cone gauge.

(a) Example A. Consider the integral

I„=f dqq„[q (q p) q—n] '. , n =0. (4.1)

In view of the discussion in Sec. III, we propose the an-
satz

( u;) =2(A;8; —C;D;), i =1 or 2 .

In order to adapt the Np formalism to the light-cone
gauge, we must relate the components of the vector

p& ——(po,p3,P&,pz), in the old basis 8 = I eo, e3, e&, ezI, to
its components in the new basis 8'=I l, k, m&, mzJ. It
turns out that

P„=8(po+P3 ) /V 2+ k(Po P3 ) /V 2+m�—i(p & ipse ) /V 2—

where A;=A;(p, n', n'), i =1,2, 3,4. From locality and di-
mensional arguments —integral (4.1) diverges
logarithmically —we deduce that A; =A;(n, n ). More-
over, in the simple frame

n& ——(no, n3, 0,0)= PnoV'2

[cf. Eq. (3.10)], where nq nz ————0, the coefficients A3, A4
vanish and

+m2(p]+ip2)/v'2, i =v' —1, Iq ——7'A)+kA2 . (4.3)

pp ——~p++ kp +m]pi+m2pj,

p =2(p p pj.pi)—
where

P+=(Po+P3)/ '2 P =(Po P3)/ 2—
(3.7)

(3.8)

(3.9)

A~, Aq are easily found by the tensor method, as shown
below.

Since

q n =(Fn+) (Pq++kq +m~qz+m2qz)=n+q

multiplication of (4.3) by n& yields I&nz n+Aq, or-—
A2 I /n +, while——multiplication by

Pj = (P ] —iP 2 )/W2, P j. = (P ~ +iP 2 ) /W2

Similarly, for the light-cone vector n&
——(no, n3, n ~,n2),

n& = 8(no + n3)/v 2+ k(no —n3 )/v 2+mi(n i
—in2)/v2

p& ——Pp+ + kp +m1pz +rn2pz

gives

f dq q p [q'(q p)'q'] '=p—A, +p+-A, . - (4.4)

+m2(n)+in2)/v 2, (3.10)

n =2(n+n nj nz ) =0 . — (3.11)

To simplify the algebra, and without affecting the basic
arguments, we may set n& (no, n3, 0,——0) The con.dition
n =no —n3 ——0 is then equivalent to n3 ——+no, no&0,
and implies that in the NP-representation (3.3), the vector

The left-hand side (LHS) of (4.4) is trivially solved, using
q.p = —,[q +p —(q —p) ] and the formulas

f dq[(q p) q n] —'=2p.+I/n+, (4.5a)

f dq[q'(q —p)'q. n] '=o, (4.5b)

which must be computed by the parameter method.
Hence, (4.4) becomes p+I/n+=p A&+p+A2, implying
A1 ——0. Finally,
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f dqq&[q (q —p) q n] '=kIln+, n =0,
=n&Iln n", (4.6)

Ip ——anp+bnp+cpp (4.8)

and then apply locality and dimensional arguments to ex-
tract the general structure of a, b,c. The last step is not
essential but it does simplify subsequent arguments con-
siderably. Also, we shall denote the dimension of a quan-
tity H by square brackets: [H]. Since [I„]=[p], the
coefficients in (4.8) must possess the form

a =A(p n") /(n. .n*), c =r(p n*)ln.n',

b =crp In n' or b =.pp np. n'I(n n*)
(4.9)

with A, ,o.,~,p pure numbers proportional to I. In deriving
(4.9) we made use of the fact that 1/n ceases to be an ac-
ceptable invariant in the light-cone gauge. ' As a result,
terms with the dimension [p/n] are necessarily restricted
to the form p n*ln n*. Hence, Eq. (4.8) reads

I& An&(p n*——) l(n n*) +rp„p n. *ln.n'
T

crp In n"

pp np n*l(n n*) (4.10)

where the last step follows from Eqs. (3.12b) and (3.13).
It is clear that the integral (4.6) respects locality and naive
power counting, just like its axial-gauge counterpart, Eq.
(2.13). Notice, also, . that in the transition from the axial
to the light-cone gauge, n is formally replaced by the
new invariant n n* Fu.rthermore, multiplication of (4.6)
by n& correctly gives I=I, in sharp contrast to the em-
barrassing result I=O obtained with a conventional an-
satz [cf. Eq. (2.14)].

The last example was discussed in some detail to
highlight the interplay between the various Newman-
Penrose null vectors. In the next two examples our ap-
proach will be more succinct, as well as more general,
with n&

——(no, n3, n &, n2) and n&
——(no, n3, —n~, ——nq)

replacing n&
——(no, n3, 0,0) and n&

——(no, —n3, 0,0),
respectively.

(b) Example B. We know from the last paragraph in
Sec. III that the integral

I& ——f dqq&[(q —p) q.n] ', n =0 (4.7)

should be represented by p&, n& as well as n&. Hence, we
make the ansatz

+2(p„n„'p —nln n*)] .

(c) Examp/e C. As our last illustration, consider

I„„=f dqq„q„[q (q p)—q n] .', n =0,
=A5»+B(p&n'„+p„n&)+ Cnzn*+Enon„

+D(nzn*„+n„n&)+Fp&p,

+ G(ppny+p„n~) .

(4.12)

(4.13)

Proceeding as in example B, we infer that the coefficients
A, . . . , G have the structure

3 =ap n'/n. n. ', B=I3ln n',
C =yp nl(n n')

D =5p n'/(n. n'), E =F=G =0,
(4.14)

where a,P,y, 5 are again pure numbers, proportional to I.
Let us justify the form of E. Since [I„,]=[pin], it fol-
lows that

[E]=[pin ]=[p.n /n n" ][n ],
so the question is how to "handle" [n ]. Terms like

p /(p n) have the right dimension but are obviously non-
local, while expressions like (n*) l(n n*) vanish identi-
cally. We conclude that E must be zero. Arguments
similar to these may be used to obtain the structure of the
other coefficients in (4.14). Hence,

Ipy (n n" ) '[ap n—'—5p„+P(p.any +p~n p )

+y(p n ln n*)nzn*„.
+5(p n'/n n*)(n. &n*„.+n„n&)] . (4.15)

Application of the tensor method leads to a quick solu-
tion for a, . . . , 5. Specifically, contracting p with v in
(4.15) and using (4.5a) we get

LHS=I(n n*) '[2p p n' —3p n(p n*) /n n.*], (4.11a)

RHS=(n n*) '[(A, —r)p n(p n') In n'+rp p n*],
(4.11b)

or eventually

(r 2I—)p +(A,r—+3I)p np n. ln n". =0 .

Hence ~=2I, k= —I, p= —2I, and

f dqq, [(q —p)'q n] '

=I(p n*ln. n*)[ n&—p n'/n n'

Multiply (4.10) by n& in which case

op
O=~p n*p n/n n*+ '

pp n*p n/n n*,

2a+P+5=I .

Similarly, multiplication by n&n gives

2P+y=(l/2)I,

(4.16a)

(4.16b)

whereas multiplication by p&n leads to two equations,

so that either r=o =0 or r= —p. Since the first solution
leads to contradictory integrals, we choose p= —~. Sub-
stituting the latter into (4.10) and multiplying the result-
ing expression by p& we obtain a+P+y+5=0.

(4.16c)

(4.16d)
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The solution of system (4.16) is a=P= , I—, y =5= ——,I,
and thus,

f drle„e [rI'(e —S)'q n] '

=(2n n') 'I[p.n*5„„+(p„n",+p„n„)
(—p n/. n.n')n&n*

—(p n*/n n )(n&n*+n„n&)] .

(4.17)

application of the tensor method.
Invoking locality and dimensional arguments, we ap-

plied our new procedure to three single-loop integrals
[Eqs. (4.6), (4.12), and (4.17)]. We found complete
correspondence with the expressions obtained earlier by
the cumbersome Feynman parameter method. This agree-
ment between two conceptually different procedures is en-
couraging: it reinforces our view that even light-cone in-
tegrals should respect locality and power counting, just as
do integrals in the covariant Feynman-Landau gauges. '

This integral agrees exactly with the expression originally
derived by the much lengthier and less transparent param-
eter technique and without imposing any "constraints"
such as locality or validity of power counting.

V. DISCUSSION

In this article we have adapted the tetrad formalism of
Newman and Penrose to a systematic evaluation of light-
cone integrals which are characterized by the null vector
n& It wa. s found that the tetrad calculus provided not
only a deeper insight into the structure of these integrals,
but it also led quite naturally to an improved ansatz. The
latter utilizes both n& and nz and is vital for a successful
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