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In the framework (1+1)-dimensional fermion theories with scalar, pseudoscalar, and vector exter-
nal fields we discuss the relation between the charge of the vacuum and the topological properties of
the external fields. For theories with a gap above zero in the particle spectrum we prove the known
relation between the charge of the vacuum and the behavior at infinity of the scalar and pseudosca-
lar external fields, and show that a vector potential alters the charge of the vacuum only if it is gen-
erated by a nonvanishing external charge. Some solvable models are also presented and discussed.

I. INTRODUCTION

The classical work of Jackiw and Rebbi' has opened a
wide spectrum of investigations on the problem of a quan-
tized Dirac field in 1+ 1 dimensions interacting with a
background field through scalar coupling, focusing in par-
ticular on the (fermion) charge of the vacuum sector. The
original result of Ref. 1 on charge fractionalization was
extended to realistic models in many-body theories and
critically reconsidered by evaluating the charge fluctua-
tions and by studying the effect of boundary conditions.

A further interesting development came by considering
scalar as well as pseudoscalar background fields: it has
been found that (a) the charge of the vacuum is not re-
stricted to + —,, but can assume any real number; (b) the
results can be extended to the interesting case in 3 + 1 di-
mensions, where the background is given by a monopole
field.

These investigations open a certain number of interest-
ing problems. We shall focus on some of them, and the
general discussion will also be supported by the analysis of
solvable models in 1 + 1 dimensions.

The paper is organized as follows. In Sec. II we review
the C-invariant case of a scalar background field. We
also examine the structure of the theory for a Majorana
fermion, and show that the degeneracy of the vacuum
present when charge fractionalization occurs is replaced
in this case by the existence of two inequivalent vacuum
states, related by the spontaneously broken symmetry
g(x)~ —P(x). In Sec. III we consider the general C-
noninvariant case, i.e., with scalar, pseudoscalar, and vec-
tor external fields:

[i9 A —A(x)e ' —]f(x)=0,
where A,(x))0 and y5

——yoy2 and discuss in the static case
the validity of the relation

(0~ g ~0)= [ (+ ) —( — )]
1

2&

which was proposed in Ref. 4 in a somewhat restricted
situation. We prove the general validity of Eq. (2) under
suitable conditions to be satisfied by the external vector
potential. These conditions yield a simple interpretation
of the result, i.e., that the charge of the vacuum is altered
by the presence of an external vector field only if the total
external charge is nonzero. In Sec. IV some technical as-
pects of the general discussion are illustrated for some
specific models. The pathologies of the A, =O case are also
outlined.

II. EXTERNAL SCALAR FIELD

Consider a Dirac particle in 1+ 1 dimensions interact-
ing with a static scalar c-number field P(x). The Hamil-
tonian for the first-quantized theory is given by

0=pcr2+ ttp(x)tr i,
where o.~, 0.

2 are the usual Pauli matrices so that y =o.~,
y'=icr3, and p = —i8/Bx. In terms of components, the
energy eigenvalue equation reads

u'+Pu =Eu, —u'+tbu =Eu .

These yield the following, decoupled, second-order equa-
tions:

u"+(E'—P'+P')u =0,
u" +(E —P —P')u =0 .

For the second-quantized theory we assume equal-time
anticommutation relations for the complex field g=(,"),

I gt(x, x),g(x,y) I =5(x —y),

I 1b(xo x) y(xo y) J =0 .

The theory is charge-conjugation invariant, with

Q'(x) =Cg(x)C '=crypt(x) .
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It is known that if P(x) has an odd number of zeros and

~
P(x)

~
& C for

~

x
~

~ a& the theory has an isolated zero
mode with the wave function

r

X

fo(x)=const 0 exp p(x')dx'
0

if lim P(x) &0 (8)

and

To examine further the present situation, we introduce
the fermion current j&(x) defined by

j„(x)= lim —,
' (1((x +g)y„g(x) f—(x +g)yg(x)) (17)

g'—+0

so that it anticommutes with the charge-conjugation
operator. We also express g in normal modes

g(x) =af0(x)+g[c„h„(x)e " +d„g„(x}e " ],
0 . x

fo(x)=const
1

exp — p(x')dx'
0

if limg(x)&0. (9)

The existence of a zero mode requires the existence of
two independent vacuum states (zero-energy states for the
second-quantized theory), both belonging to the same ir-
reducible representation of the field algebra. In fact, let
us define

(18)

where the summation is over the discrete and continuous
spectrum.

From Eq. (6) we have the usual anticommutation rela-
tions for annihilation and creation operators; in addition,
a and a anticommute with c„, d„and c„,d„. Positivity
of the energy requires that the vacuum states should be
annihilated by c„and d„. Then the charge density on a
general ground state

a= Jdxg(x, x)fo(x) .

Then from (6) we get

I at, a ) =1, Ia,aI =0
and since f0 is a zero mode

[H,a]= [H,a t]=0 .

(10)

(12)

~
81,82) =cos81

~
01) +e 'sin81

~
02)

is simply calculated and yields

(81,82
~
jo(x)

~
81,82) = ——,

' cos281
~
fo(x)

~

The total charge

Q=g«. c. d.dn)—+ z«a —aa }

(20)

(21)

be a basis for a representation of the algebra (11}. Let
now Q be the fermionic charge defined by

[Q,g(x)] = —1((x)

with the property

(14)

If the vacuum were unique, from (ll) and (12} we would
have

2/ (0/a /0) [
=1 and 2(0/a /0) =0

which are incompatible. In fact the algebra (11) admits
only a two-dimensional irreducible representation. Let

01&»d 102) definedb

(13)

gf(x) =o31t((x)

or equivalently

(23)

has the vacuum expectation value

(81~82
~ Q ~

81~82) g cos281 ~

In order to confirm that the twofold degeneracy of the
vacuum [Eq. (13)], with both vacuum states belonging to
the same irreducible. representation of the field algebra, is
due to the existence of the fermion charge, it is important
to analyze the theory where the field p is a Majorana
spinor. This is possible because P(x) is real.

If we impose the condition

and

CQC '= —Q

[Q,H] =0 . (16)

g'(x) =P(x)

then this implies that

c„=d„and a =a
with a anticommuting with c„and

(24)

(25)

From Eqs. (15) and (16) it follows that either Q is zero on
the

~
01),

~
02) manifold, or has nonzero opposite eigen-

values. From Eq. (14) and the fact that (01~ 1(t ~02)&0
[Eq. (13)] the first possibility is excluded, moreover the
eigenvalues of Q on the vacuum manifold must be + —,'.
Thus it is clear that charge fractionalization occurs as a
consequence only of the existence of the zero mode fo,
charge-conjugation invariance of the theory, and the prop-
erties (14)—(16). In the sequel we examine what happens
when the theory is not charge-conjugation invariant.

c„~O)=0 buta ~0&=+ ~0& .
1

2
(27)

The + sign and —sign in these expressions corre-
spond to two inequivalent representations of the field
algebra, namely,

2a 2

In this case the fermion charge [Eq. (21)] is zero. Fur-
thermore, to obtain an irreducible representation of this
algebra only one vacuum state is needed:
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c„lo &=o,
halo+&= '

lo+&
2

(28)
(ei ~2

l
jo(x)

l
(91 ~2 &

= ——,
' cos2~i

' 1/2

e
—g(x+m/g)

and

c„ lo &=0, a lo &= — lo
2

(29)

P(x)—+ —g(x) . (30)

The vacuum expectation values of g are, in fact, different
from zero:

All elements of the field algebra generated by g(x) have
vanishing matrix elements between

l 0+& and lo &; any
linear combination of these two states corresponds there-
fore to an impure vacuum state and if used as a cyclic
vector would give rise to a reducible representation of the
field algebra.

The existence of the two inequivalent representations
[Eqs. (28) and (29)] is related to the spontaneous breaking
of the symmetry [implemented in the previous situation
by exp(in. Q ) ]

(37)

A linear P(x) can give a good approximation for the
lowest-energy mode. Moreover we notice that by choos-
ing a linear P(x) all states are normalizable and no box
quantization is required. In this way we automatically
fulfill the limiting procedure proposed by Jackiw et al.
and Rajaraman and Bell. Equation (37) shows that the
charge density of the vacuum does not follow locally the
profile of the background field also in the limit of small g
(see the slowly varying field approximation of Ref. 4).

III. GENERAL EXTERNAL FIELDS

In this section we discuss the charge of the vacuum in
the general case where charge conjugation is not a symme-
try of the Lagrangian. The general situation for a Fermi
field in 1+ 1 dimensions can be described by the La-
grangian

(o lÃx) lo &=f,(x)(o la lo &

1=+ fo(x)
2

(31)
M[A, a, A„, ]=@[iy"8„A(x—)e ' ]@(x)

—gjz(x)A "(x), (38)

P(x) =m +gx (m, g & 0) . (32)

Then Eqs. (5) have the same structure as the equation for
the quantum-mechanical harmonic oscillator. The zero
mode is given by

1/4

f (x)= e
—(g/2)(x +m /g)

(33)

and are related to each other by the symmetry transforma-
tion (30). Thus we see that the twofold degeneracy of the
vacuum for a charged field (g&g') is replaced, for a Ma-
jorana field (p= 1t'), with the existence of two in-
equivalent vacua.

In order to illustrate some of the above conclusions and
for further reference we discuss briefly the solvable model
of a linearly varying background field:

j„(x)= lim —,
' [g(x +g)e ~ y„g(x)

g'~0

—g(x +g)yze ~ g(x)], (39)

where, to maintain formal gauge invariance, the limit on g
is to be understood as an average in the following sense:

lim = —,
'

lim + lim
go o g' o
g'=o P=o

(40)

Consider now x-dependent gauge and chiral transforma-
tions on the field P:

(41)

where A&(x), A,(x), and a(x) are external fields, and
A,(x) )0.

The gauge-invariant electric current j~(x) is defined by
the split-point regularization procedure:

If h„ is a positive-energy solution, then

g„(x)=o 3h„(x) (34)

Correspondingly, the Lagrangian (38) is transformed in
the following way:

1/4

h„(x)=
g„(g)

i(g)
(35)

is a negative-energy solution. The positive-energy solu-
tions are given by

M[A, ,a, A„] M[A, ,a+ 2A, A„+B„A—e„,B"A] (42)

[provided A(x) and A(x) are continuous functions and
have the additional regularity properties such that the
equations of motion for both Lagrangians make sense].
Simultaneously, the current (39) transform as

where P„are the harmonic-oscillator eigenfunctions and
g'=g (x +m/g). The corresponding energy is j„(x)~j „'(x)=j„(x)+—e„„BA(x), (43)

E„=&2ng .

In this case the charge density of the vacuum states is
given by

where j&(x) is given by the expression (39) corresponding
to the transformed Lagrangian, i.e., with Ae in the ex-
ponent replaced by Ap+BpA E'p '8 A. The c-number
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term on the right-hand side of (43) comes from the regu-
larization procedure adopted in the definition (39) of the
current (anomaly), and the fact that the small-distance
behavior of the two-point function is the same as in a free
field theory:

(0
~
g(x +g)g(x)

~
0) = . 22~i

(44)

W[k, a,Ap]~M[A, ,a+2A Ap+c —B]A],

jp(x)~jp(x)+ —B&A(x ) .1

(42')

Clearly Eq. (43') allows us to relate the charge of the
vacuum for the different theories described by the La-
grangian M[A, ,a+2A, Ap+c —A']:

Q[a Ap]=Q[a+2A Ap+c —B]A]

Moreover we have used the fact that in the limit g—+0,
g&P~(x +g)ttj&(x) reduces to a c number, as can be seen by
considering matrix elements between particle states.

From now on we restrict our analysis to static external
fields (independent of the time variable) and A„=(Ap,O)

(static case). Therefore also the gauge and chiral func-
.tions A and A in Eq. (41) will be restricted to be

A=cx and A=A(x') .

The fundamental transformation equations (42) and (43)
can then be rewritten in the form

A p (x)~0 for
~

x
~

—+ oo. Under the above conditions we
show that the charge of the vacuum (0

~
Q[O, Ap]

~

0) is
zero.

To prove-the above assertion consider first the theory
with Ap=0. In this case, due to the conditions on A(x),
the normal modes of the field P(x) are separated from
zero, therefore an energy gap separates the particle spec-
trum from the vacuum. Moreover, from charge-
conjugation invariance we know that the charge of the
vacuum is zero. We now prove that the charge remains
zero to all orders in Ap(x). For the sake of clarity we be-
gin by considering the first order.

Since we are considering the static case (A~ ——0), it is
convenient to take in the definition (39) of the regularized
(gauge invariant) current the vector g to be (O, g'). Thus
the charge density takes the form

jp(x) lim —,
' [gt(x +g)1it(x) —P(x +g)g (x)] . (47)

g1 p

Then the first-order contribution to the vacuum expecta-
tion value of jp is given by

(0
~

jp"(x) ( 0)

= —iglim fd z TrypS(x, z}ypS(zx+g')Ap(z'),
o

(48)

where S is the Feynman propagator satisfying the equa-
tion

——[A(+ oo ) —A( —oo )]
1

(45) [iy"d„A,(x)]S—(x,y) =5'"(x —y) . (49)

In particular we see that as long as A(+ oo ) =A( —oo ) the
charge operator (but not the current) remains invariant:

. an obvious result, since in this case the transformation
iy5A(x ~)

from g(x) to e g(x) is an implementable transfor-
mation that commutes with the charge operator.

If a(x ') is a continuous function, choosing
A(x) = ——,

' a(x), we get from Eq. (45)

Q[a, Ap]= [a(+oo)—a( oo)]+Q[0 Ap+ 2a']1 1 p

2m

and the problem of evaluating the charge of the vacuum
in the general case is reduced to that of the charge of the
vacuum induced only by an external vector field. We will
show that under suitable conditions (0~ Q[O, Ap] ~0 is
indeed zero, thus confirming the validity (under the con-
ditions we will specify) of Eq. (2).

To this end, consider the theory defined by the La-
grangian M[A, „O,Ap], with A, (x)&0, A,(x)&8 &0 for

~

x
~

&
~

x ~, and Ap(x) bounded: ] Ap(x)
~

& C, and

In order to prove that the RHS of (48} gives zero contri-
bution to the charge (also for the nth-order case) we use
the Ward identity

i fd yS(x,y)y S(y,x')=S(x,x')(x —x ) . (50)

This identity can formally be derived as follows: from
Eq. (49) we get

S(x,x') [5(x —y) —5(x' —y) ]

= —i [S(x,y)y"S(y, x')] .
ay"

By integrating the above identity over d y, multiplying by
y, and by dropping the contributions at infinity, Eq. (50)
is immediately obtained. However the recognition that, as
a consequence of the energy gap, the terms at infinity do
not contribute, is not obvious and in fact is not true in the
massless or zero-gap case. Therefore it is safer to prove
directly the identity (50) by starting from the representa-
tion of the propagator in terms of normal modes where
the energy gap is explicitly exhibited:

iS(x y)= f dE[fE(x)fE(y)e ' '" '8(xp yp} gE(x)gE(y}e — — @yp xp}l
0

(51)

Then Eq. (50) is immediately derived. It is easily recognized that the integrations over y' and y can be performed in «-
bitrary order and that only in the zero-gap case (Ep ——0) do ambiguous infrared terms arise. Coming back to Eq. (48) we
have
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f dx'(0
~

jI)"(x)
~
0) = —iglim fdx' fd z Tr(S(z,x+g)ypS(x, z)ypAp(z')) . (52)

g1 p

Note that S(x,y) depends on the time variables x, y only through their difference (static case), and that for small g,
S(z,x +g) =S(z —g,x ) [Eq. (44)]. Then by performing first the integration over x ' and z and by using the identity (50)
we get zero, since g =0.

The delicate point is the justification for interchanging the integrations over the x' and z' variables: it is beyond the
scope of this paper to give a rigorous and complete analysis of the conditions on Ap(x) under which this possibility is
guaranteed; however since the large-distance behavior of the integrand in (52) is determined by the energy gap, we as-
sume (and feel justified in doing so) that the conditions are the same as in the A,(x)=m & 0 case. In this case we find that
the conditions

~

Ap(x)
~

& C and Ap(x)~0 for
~

x
~

~Do are sufficient. This is shown at the end of this section where
we also show that in the physically interesting case of Ap(x) =

~

x ~, there is a finite contribution from the RHS of (52).
The proof for the nth order proceeds along similar lines:

f dx'&0~JI)"'(x)
~

0) = g" lim g fdx'd'zi d2z„( i )"—

g ~p perm

XTr(ypS(x, zi+g) )ypS(zi, z2+g2)

XS(z„,x+/)Ap(z) )A()(z2) A()(z„')) .

After integration over x ' and x —z„(the differences z; —z„held fixed), we get

(z„—zi )Tr(S(z„,z(+g)+g)ypS(zi, zz+gq) . . S(z„),z„+g )ypAp(zi )Ap(z2) ' ' ' Ap(z )) .

Upon summation over the terms obtained from the above
by cyclic permutations of the z's, we get complete cancel-
lation.

The result we have obtained can be expressed in simple
physical terms; since the conditions on Ap(x) imply that
the total external charge generating Ap(x) is zero, we have
found that in this case also the induced charge on the vac-
uum vanishes. It is therefore interesting to analyze a situ-
ation in which the external charge is not zero: we do this
in the case A(x)=m ~0, with Ap(x)=kg

~

x' ~. Equation
(52) with S(x,y)=S(x —y) gives

&O~g'"~0)= ' fdx'd qe '&"II+&(q)Ap(q)
(2m. )

= —iglim IIpp(q) A p(q
' ),

q~p

where II&„(x—y) is the vacuum polarization tensor. Near

q =0 we have

(q')'[I+O(q')] .
6m.m

Thus we see that the conditions we have imposed on
A p(x ) and its derivative are sufficient to ensure that
(g(i)) ()

In the present case we have

2kg
Ap(q )=-

(q 1)2

and therefore

I

the charge of the vacuum.
The result that the induced charge on the vacuum is

proportional to the external charge is of more general va-
lidity, as can be seen by the following argument. The
charge of the vacuum, due to gauge invariance, is a func-
tional of Ap, the derivative of Ap(x). We have shown
that the addition of a bounded potential 5A p with
5Ap~o for

~

x'
~

~Do does not alter the charge of the
vacuum, i.e.,

(o
~
Q[A,'+w,'] ~0) =(0~ g[A,'] ~0) .

Thus (Q) can depend only on the values of the electric
field E at infinity. Moreover, since there is a contribution
to (Q.) only from first order, (Q) is a linear functional
of E(+ ao). If A(x)=A( —x) it is immediate to conclude
that (Q) is proportional to E(+ 0() ) —E( —ao), that is to
the external charge.

IV. EXAMPLES

The conclusions of the previous sections are illustrated
by a few examples. The pathologies of the no-mass-gap
case are easily discussed in the extreme case of A,(x)=0.
In the other examples we illustrate the subtleties of taking
the limits and performing the integrations in the right or-
der, and the role of the regularization (anomaly mecha-
nism).

A. External vector field

k(0
i

g(1)
i
0)

3&177
(55)

A massless ferrnion in the presence of a vector field
obeys the equation

while the external charge Q'"'= —k. Since higher orders
do not contribute, we conclude that (55) gives correctly

[iy"()„y"A~(x)]g—(x)=0
which is easily solved by the substitution

(56)
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where

i[F(x)+] &r(x)]
(57) Therefore, according to the general arguments of Sec. III

we expect

A&(x) = —B&I (x)+e&,B"I (x) (58)
&0[ Q [0)= [a(+~)—a( —~)]=-,' .

27T
(67)

and

i(]}X(x)=0 . (59)

Let us fix the representation of I by the two-point func-
tion

The normal modes of the theory are easily found to be

1
fo(x)=g'~ 0 Pp(g), g=vg x

with Ep ———m and

(68)

&0~&( )X(0) ~0&=
X —EEX

(60)

j,(x)=Xr,&:(x) e—„„—a"r(x) .1

7T
"

The charge of the vacuum is then

(61)

Then the gauge-invariant current (39) becomes [see Eq.
(43)]

1/2E„+m

h„(x)=
1/4

4 2ng

E„(E„+m)

' 1/2 (69)

with E„=(2ng+m )'~, n =1,2, . . . [g„(g) are the eigen-
functions of the harmonic oscillator], as well as

&o[Q
/
o) = ——[1(xo,+ ) —1(xo, — )] .1

(62) g„(x)=(T3h„(x) (70)

The charge of the vacuum is, however, ill defined: in
fact the Lagrangian of the m =0 theory, even in the pres-
ence of a vector potential, is invariant under the transfor-
mation

with

i [X(x)+ISA(x)]~'(
) (63)

a„X(x)—e„„a"A(x)=0 . (64)

The current, however, does change under the above
transformation, in fact

j„(x)~j„(x)+e~„B"A(x). (65)

B. Vector and psendoscalar external field

Therefore the charge of the vacuum depends not only on
the external field, but also on the choice of the representa-
tion for g (or equivalent for X). This example shows that
the conclusions of Sec. III, in particular &0

~ Q ~
0) =0 for

a vector potential with zero total external charge, rely cru-
cially upon the assumption of a gap in the unperturbed
spectrum.

with E„=—(2ng+m )', n =1,2, . . . . Second quanti-
zation proceeds as usual. However, in a C-noninvariant
theory there is an ambiguity in assigning creation or an-
nihilation operators to the normal modes, a difficulty that
in C-invariant theories is bypassed by the requirement of
implementability of charge conjugation. To conform with
the discussion of Sec. III we may give the following gen-
eral prescription. We transform the Hamiltonian (66) or
(66') to the scalar-vector form

H'=pcr2+ A, ( )x(T+]—,' a'(x) (71)

and consider the term —,
' a'(x) as an independent perturba-

tion. Then the assignment of creation or annihilation
operators is performed in such a way that after —,'a'(x) is
switched off, charge conjugation is implementable. Any
different prescription, resulting in a different assignment
of n isolated normal modes will alter the charge. of the
vacuum by an integer. This is not in contradiction with
the results of Sec. III.

In the present case, since a (x) & 0, it is immediate that
our prescription leads to the following representation:

P(x)=btfo(x)e' '+g[c„h„(x)e " +d„g„(x)e " ] .

We now discuss a solvable model with the aim of em-
phasizing some points we did not touch on in the general
discussion. Consider the first quantized Hamiltonian The vacuum expectation value of the current is

(72)

H =pcT2+y](x)(T]+&52(x)o 3 (66)

with P](x)=gx, Pz(x) =m (m, g & 0) (this is the C-
noninvariant version of the example discussed in Sec. III).
Also

&0
~ j,(x)

~

0&

= —,
'

~
fo(x)

~

——,
' g[h„*(x)h„(x)—g„*(x)g„(x)].

n

(73)

iysa(x)H =pcrz+ A,(x)cT]e

with

(66') If we have to obtain & Q ) = —,
' [Eq. (67)], it should be true

that

A(x)=(m +g x )', a(x)=arctan
m

fdxg(h„—g„)=g fdx (h„—g„)=0 . (74)
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Since in general, as we shall see in the following examples,
there is a contribution to the charge from all the normal
modes (i.e., the x integral cannot be interchanged with the
integral over the normal modes) we outline a proof of Eq.
(74). We have

(0 '—0 —1')
n=1 n=1

The charge density can be obtained in a straightforward,
manner by summing over the contribution of the normal
modes

(0
I
jo(x)

I
0&

m2 . a ~dE 1 1

2~ 2 k
sin —f —+ sin2k'

I

x '
I

= lim m~g PN

N~ oo
I
EN

I
E,

2 2 1/2I —Ep —2(m —Eo ) )x) (e e(a), (79)

with

1

E„
1

I
E.+t I

(75)

(76)

The first term on the RHS of (75) goes to zero pointwise
in the limit X—+op. The last term is a series of non-
negative integrable functions such that the series of the in-
tegrals converges, therefore the integration can be per-
formed term by term and we get

f dxg(h„—g„)=mug + pc„=0.

C. Chiral external field '

(i9 me ' —)f(x)=0, (77)

In the general discussion of Sec. III we have assumed
regularity properties for the y5-phase a(x). In fact its
derivative should- give a vector potential such that the
Dirac equation is meaningful. A discontinuity in a(x)
would, for instance, given an ill-defined expression for the
vector potential in Eq. (42) and then the equation needs a
careful regularization. On the other hand we have seen
that the charge does not depend on the details of a(x) but
only on its limit values at infinity. Thus we expect Eq.
(46) to be valid also in presence of steplike discontinuities
in a(x).

Let us consider the following example:

where 5=k cos(a/2) —iEsin(a/2) and k =(E —m )'~ .
The integration over x ' can be performed by moving first
the integration on E to the imaginary axis and then by in-
terchanging the order of integration. Then we get

m . cz +'~dE 1 a
(0I g I0&= — sin —f2' 2 -&~ k2 6 2m

(80)

Ao(x)= —g, Ix I
&l

Ao(x)=0,
I

x
I

&l

with g & 0 and g &I in the Dirac equation

[iQ —m —yoAO(x)]li(x) =0 .

(8l)

The bound states are all in the particle sector and their en-

ergy is given by

D. Square-well vector potential

Our final example shows the importance of regulariza-
tion and the necessity of performing the integration and
of taking the limits in the right order. In fact in the pre-
viously discussed examples without vector potential we
have calculated the charge of the vacuum ignoring the
split-point regularization of the current, which actually
was unnecessary to give a meaning to the current as an in-
tegral over the normal modes. In the presence of a vector
potential a regularization is needed and can be performed
either as in Eq. (40) or as in Eq. (47).

Consider a square-well vector potential:

where the constant o. is taken to be kk'cos2k'l +i [m E(E +g) ]sin2k—'l =0 (83)

(~2 E 2)t j2
=tan —.

Ep 2
(78)

Then we have a bound state in the particle sector for
0&a &~ and in the antiparticle sector for —m &o, &0.

0& IaI &m.

The spectrum consists of a doubly degenerate continuum
starting at E =m and of a bound state located at Ep given
by the solution of the equation

with k =(E m)'~, —k'=[(E+g) I ]'~ It —can be.
shown that the zeros of the above equation are only on the
real axis and lie on the interval

m —g&E&m .

The integral over the continuum for the charge density of
the vacuum can be moved to the imaginary axis and the
final result is

—l oo

ping
2 +l oo

(0I jo(x) I0&~„~ t= I'f dEk g«+g)+, 2
cos2k'I —cos2k'x '

E [m E(E +g) kk'b —tt2 E(E+g)—
(84)
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where A=kk'cos2k'I+i [m —E(E+g)]sin2k'I. The last term on the RHS of (84) comes from the regularization pro-
cedure and is the anomaly. Moreover we see that in the procedure of rotating the integration contour the continuum
cancels the bound-state contribution and the final result allows the integration over x first in order to evaluate the total
charge:

1 g (E +g)cos2k'l sin2k'l 2gl

E [m E(E—+g) ] kk'b, [m 2 —E (E +g) ] k' 2b,
(85)

We have verified explicitly up to third order in g that the total charge is zero.
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