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Path integrals over the SU(2) manifold and related potentials
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A path-integral formalism is developed on the SU(2) manifold parametrized in terms of the Euler
angles. The Green s function is studied for the Poschl-Teller potential and the corresponding wave
functions and energy spectrum are obtained.

I. INTRODUCTION II. PATH INTEGRATION OVER THE SU(2) MANIFOLD

It is well known that only the linear and the harmonic-
oscillator potentials are solvable exactly by path integrals
in Cartesian coordinates. To do this one employs mid-
point approximations in the time-graded formulations.
However, many other important potentials of quantum
mechanics are also solved by relating their Green's func-
tions to the Green's functions of harmonic oscillators.
For example, the H atom and one-dimensional Morse-
potential problems are solved by this method. ' To con-
vert these problems into the oscillator forms, point canon-
ical transformations and accompanying time transforma-
tions are used. The action of the transformed Green's
function usually includes additional quantum-mechanical
terms resulting from the transformation of the path-
integral measure. The radial parts of the Schrodinger
equations of the potentials, which can be brought into
some sort of harmonic-oscillator potentials, all have
SU(1,1) dynamical symmetry and their wave functions
are of confluent hypergeometric type.

Peak and Inomata studied the path integral for the
three-dimensional rigid rotator and expanded the Green's
function in terms of the SO(3) matrix elements, that is, in
the spherical harmonics. Marinov and Terentyev wrote
the path integral on the n-dimensional sphere S", and ex-
panded the Green's functions in terms of the Gegenbauer
polynomials. The symmetric Rosen-Morse potential is
solvable by bringing its Green's function into the Green's
function of three-dimensional rigid rotator.

In this paper we first establish the path integral over
the SU(2) manifold parametrized in terms of the Euler an-
gles and obtain the Green's function as an expansion in
terms of the SU(2) matrix elements e™~e'"+P~„(cos8)
For that, we first write and expand the short-time-interval
Green's function for a particle moving in SU(2) space,
that is, we follow the method of Ref. 5, which is used for
path integration over SO(3) space.

In Sec. II the path integral of the Poschl-Teller poten-
tial is expressed in terms of the Green's function of a free
particle moving on the SU(2) manifold. The energy spec-
trum and the correctly normalized wave functions are ob-
tained.

u4 ——sin —sin
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where the ranges of the angles are given by

0&8&m, 0&y&2~, —2tt&g&2~.

The free Lagrangian for a particle moving on the unit
SU(3') sphere with "rotational inertia" I is given as

L=—u = (ui +u—2 +u3 +u4 ) .
2 2

(2.2)

The kernel connecting the points uj &
and uj which are

separated by a very small time interval tj —tj &
——e can be

approximated by

iA
E~ ——e (2.3)

where the action for the short time interval is

AJ = (uj —uj, ) =—(1—cosOJ )
I 2 I

26' E'
(2.4)

with cosOj =uj l.uj. Note that Oj is the angle that ro-
tates the vector uj l onto uj around an axis perpendicu-
lar to the "Plane" defined by uj 1 and uj. To find the re-
lation of Oj with the Euler angles of uj &

and uj, we re-
call the correspondence between the vectors u and the
SU(2) rotation matrices U:

We parametrize the points of the SU(2) manifold,
which is the three-dimensional unit sphere, in terms of the
Euler angles:

8
u1 =cos cos

2 2

u2 =cos sin v+0
2 2

(2.1)

u3 =sin cos
2 2
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Q1+lQ2 lQ3 —Q4
U=

lu3+u4 u1 —lu2

cos—e ++& 2 l Sjn—e' +
2 2

(2.5)

vectors u„ub is given by

1 —1
ua ub ———,trUa U

=—tr U= cos—cos v'+0
2 2

(2.6)

l»n —e 'V' ~' 2 coS—e '~+
2 2

It can be directly verified that the scalar product of two
I

cos8=cos8, cos8b +sin8, sin 8b cos( —gb +11,),

where angles 8,y, g corresponding to the rotation U de-
pend on the Euler angles of the rotations U, and Ub
b 8

(2.7a)

e'~= . [sin8, cos8b —cos8, sin8bcos( —fb+g ) —l sln8bsln( —gb+f )]
sin&

e' ++~) = cos cos exp —[( gb+—p, )+(—qrb+f, )]i( + )/2 0, Ob

cos(8/2) 2 2 2

(2.7b)

0, Ob
+sin sin exp —[(()() +Pb) —(g +yb)]2 2 2

(2.7c)

e ia/2 0
0 /2 ——U' UU; U' G SU(2) . (2.8)

Using the trace property

trU=tr(U' '5U') =tr5,

On the other hand, since any matrix U of SU(2) can be
brought into diagonal form by a similarity transforma-
tion,

I

we obtain

—(~e/2I)(k 2 ——) ik, o.1

4e JJ (2.12)

l6 ie/8Ie"/" g exp

ZI k = —ooj
which can also be written, by changing the order of the
summation, as

we arrive at

cos =cos cos
a 8 q

2 2 2
(2.9)

—exp — [(lj+1) —
4 ]

The geometrical meaning of a is that it is equal to the an-
gle of rotation which corresponds to the matrix U. Thus
it is the same as the angle Oj defined by Eq. (2.4), that is,

j 8j —( jV'j —)+jWj —(
cos =cos cos 7

2 2 2
(2.10)

lj

m. = —1j j

By using the formula

(2.13)

where j8j (, jyj ), jPj ) are related to the Euler angles
of the vectors uj &

and uj according to Eqs. (2.7).
Now we can go back to Eq. (2.3) and rewrite it as

e~ eb~=(a——1) )xe' +b)~/ 1+ (a 5)x-
4s m

2 2

we can write the difference of the two exponentials in Eq.
(2.13) as

.IK =exp i (1—cosO )+i-J ~ l 8I
(2.11)

exp — (l. ——} —exp — [(1 +1) ——]
lE' l E'

ZI ' zr
Here the extra term e/8I in the action is the well-known
ordering correction in the "polar" coordinate 0 represen-
tation of the path integral, which replaces the square of
the conjugate momentum Pe by Po —

4 in the Hamil-
tonian path integral. If we expand Xi up to 0'(e ) for
@~0,by using the formula

—(i6'/2I)(lj+ 2 )

=(21j+1) e
2I s=1

(21j+1)e

16I ms

J 2
((~/2j)(( + ) )2 sin[6'(21j+ 1)' /4I]

e'" ~""~= exp lk5+ ——V

2U k= —oo

(k' ——, )
2U

—(i e/2I )(l.+—)=(21j+I} e ' ' as @~0.2I
(2.14)
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In the second step of the last equation we have used the
product formula'

tion with weight l, and can be expanded in terms of the
SU(2) matrix elements,

s=1

Z1—
$2

sinmz

m =—l.J J m =—l.J J

l l
im. e. J

J J
—im (. + )J J J ) J~J I P J (cos.O. )

J J

The summation over mJ in Eq. (2.13) is, on the other
hand, just the character of the SU(2) matrix representa-

We can further expand it by using the addition theorem for
the SU(2) representations:

l.

m = —l m. =—l n= —lJ J J J

(2.15)

Inserting Eqs. (2.14) and (2.15) into Eq. (2.13), we obtain for the short-time-interval kernel

lJ
——Om =—l- n. =—l.

We can now introduce the finite-time-interval kernel in the usual time-graded path-integral form:

&+1 2I & 1 ~+1
, II . fg, O, dO, d~, dy, g(~, ),

16m' je~O

where

d 0= sinO d 8 dye d P
1

16m

(2.16)

(2.17)

is the i~variant volume element of SU(2), u, and ub are the initial and final points corresponding to j=0 and j=++1,
respectively, and T=(N+1)e is the total time interval.

Note that Eq. (2.17) could also be obtained by employing the usual path integral in Cartesian coordinates with the con-
stramt ~u =1, using the method followed by Marinov and Terentyev for the path integrations over the S~(n) mani-
fold,

N+1
&(&b,&„'T)= hm f du, 5(u, —1) f& +o0 o - —oo

e~O J=1

xf" g I
27Tl E

' 1/2

d4u J

r

Xexp i + (u~ —u, ) —A,,(+bT. —1)
2I

j=l
(2.18)

From this last equation we can see that the measure of Eq. (2.17) is correct.
By virtue of the normalization relation

'Ir 21T 21r
dO sinO. d d.l.e' +'"

e
' J+'~&+" + ~'

16 2 o
JsIn J o 0'j —2

~'j

l. l. 1XP„',(cosOJ
)P'+' „(cosO )= , 5I JJ J J mj+fnj +I J 2I ~ 1 j j+] mJ™j+I njnj ~I

J

the integrals over

+ (sinOJdOJ. de.dg~ )

can be calculated, and we end up with the result

OO l
I( (g& g ~ T)— g (2(~ 1)e (fT/2I)&(&+&) g g e

—+a+ (a)e ( +b+ ("b)pl
( 8 )pl ( 8

m= —ln= —l

(2.19)
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(2.20)

which displays the properly normalized wave functions

21+1 '/'
4m'

and obtain

K(ub, u, ;T)= 1

16&sin(Sab /2)

and the energy spectrum

E= l(1+1) .1

2I
(2.21)

(2)+ 1)e (cT/—21)l(1+1)sin[($+ 1
)P~ ]

l =0

(2.23)

imeab
l

X (2.22)

To obtain a more compact expression for the kernel of
Eq. (2.19), we sum over n by using Eq. (2.15), and arrive
at the expression

K(u u .T) g (2(+ 1)e (iT/2I—)l(1+1)
00

16 1=0

ol

K(ub, u„.T)=— ei T/8I 8
16m sin(8, &/2) BS,b

O.b 1
2m' 2' (2.24)

where S,b is defined by

Sab a~b atb+alb
cos =cos cos

nad, O ,s,y ,b, g codepend on the angles at the points u,
and ub according to the relations of Eqs. (2.7). We can
further simplify Eq. (2.22) by calculating the summation
over rn by using

sin(l+ z )Sab

sin(O, b /2)
aa 'ai 2

where

—i(T/2I)(l+
2 )

82 ——2 g e ' cos[(l+ —,
' )O,b]

l=0

is the Jacobi theta function. " Expression of Eq. (2.24) is
the same as the one obtained by Schulman. ' lf we insert
the following form of the theta function

1/2 2

( —)exp 2im +l I/T2' l 2 Oab

l ET 277

into Eq. (2.24), we get

i T/8I
K(ub, u„T)=—

4 sin(S, b /2) 2m.i T

3/2

( —)'(O,b+.2ml)exp i (Sab+22ril )
l = —oo

(2.25)

which is equal to the sum over the classical paths. Simi-
larly, the short-time propagator of Eq. (2.16) is expressible
in the form of Eq. (2.25) with S,b and T replaced by SI.
and e; and, as e—+0 only the term with /=0 con-

.tributes:

Q~.
i e/8I

4 sinOI /2

3/2
i(O~ /2e)I

e
27TE 6

III. PATH INTEGRAL FOR POSCHL-TELLER
POTENTIAL

which is equal to the formula obtained by WKB approxi-
mations. ' These equalities are in agreement with the
work of Dowker who showed that the quasiclassical ap-
proximation is exact for path integrals on simple I.ie
gl oups.

%'e start with the phase-space path integral

K(xb,x„T)'
[ /2] Np„T p„Nx "exp i f dt p„x-

(ol [21r] o "
21M

—V(x)

(3.2)

N ~ %+1 jprrd „n (3.3)

and of the action

which is as usual understood as the e—+0, N —+ (x) limit of
the time-graded definition of the measure

[~/2]
&x &p„/[2m. ]

In 1983 Poschl and Teller introduced the potential'

K(K —1) A, (A, —1) t+
sin x cos x

V(x) = 1

2p

It has been recently restudied by Nieto, ' together with
some other potentials and the normalization of its wave
functions was found. Since the potential has infinite bar-
riers at each x =+nm/2, n=0, 1,2,. . ., it is sufficient to
study it in the range of 0 &x & m/2.

%+1~= $ e[p, (x, x, 1)/e p—„,/2p V—(x, ).]—
xa =xo, xb =xii+1, iT=(i'+ 1)e .

If we introduce the variable 8 by

the kernel of Eq. (3.2) becomes

(3.4)
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[u 1 &ps T . pe
K(xb,x„T)=2f &8 exp i f dt p&8—

where

a=(A, +K—1)/2, P=(A, —k)/2, I=@/4,

a +P —2aPcosO ——,
'

2I sin 0
(3.5)

(3.6)

and the factor 2 multiplying the expression comes from the dp„~dpe transformation. The Hamiltonian in the
N+1 N+1

action of Eq. (3.5) immediately reminds one of the Hamiltonian for the "SU(2) rotator" written in terms of the Euler an-
gles of Eq. (2.1):

1 2 pt +py —2pgpycosO
SU(2) 2I P8 +

sin 0

Motivated by this resemblance we introduce the following identity, which can be proven by direct calculation
277f dqrbe ' f dobe

' ' f du, 5(uI, —1) f dub

N ~ N+1
X f + (d, dy, df, ) f g, d „,dp dp(2'�)

2
OO T pu

X dij exp i dt p„u+p y+p&g2~ 2lu 2

p~ +py —2p~pycosO —A, (u —1)
2I sin 0

where the ranges of the variables are

0&y&2n, —2m &./&2m. , 0&u & oo .

a'+ P —2aP cosO=exp i di~

~0 2sin 0
(3.7)

Using this identity, we can write Eq. (3.5) as

K(xs,x, ;T)=2 f drab f dgbexp[ ia(yq —y,—) iP(gs —f, )]e ' —(sinO, sinOb)' K
0 —2'

with K defined as

K(b, a;T)=(sinO, sinOs) ' f f du, dus5(u~ —1)

f ~( 8 ~)
pepqpypu

[2~]4 [2m]

I

T
X exp i dt p„u +peO+p jp+p&g

p„p~ —
4 p~ +p~ —2p~pycost9 —

4

2I 2Iu 2 2Iu sinO

(3.8)

—A, (u —1) (3.9)

which is the phase-space form of the path integral given by Eq. (2.18), and which describes the motion of a particle with
"rotational inertia" I, on the surface of the SU(2) sphere. In writing Eq. (3.9) we have inserted

T
1=e ' ~ (sinO, sinOb)'~ (sinO, sinOb) ' exp i f

Note that the four-dimensional volume element in terms of the Euler angles

d u =u du sinOdOdydg,

and the usual three-dimensional one in polar coordinates

d r =r dr sinOdOdy
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have the same Jacobian factor sinO, for u = 1, r = 1 constraints. Thus the "ordering" contributions to the action, i.e., the
(SIu )

' and (SIu sin 8) ' terms, are the same in both cases.
We can directly write the expression of K of Eq. (3.S) from Eq. (2.19), and obtain

K(xb, x, ; T)= d(pb dobe ' eb,6, +b,. b

00

)&(sing, singb)'~ g (2l+1)exp — [l(I+1)+—,]
l =0

l l
X g g e ' ' e " '

p „(cosg, )p' „(cosgb ), (3.10)
m= —ln= —l

which gives after integrations over

drab

and

drab

—!'(T/2I)(,l+
2 )

K(xb,x, ;T)=(sing, singb)'~ g (2l +1) e ' P t)(cosg, )Pta, (cosgb) .
1=max( [a[, [P[ )

(3.11)

Since A, and K are both positive,
~

a
~

=
~

(K+X—1)/2
~

is larger than
~
P ~

=
~

—,
'

(A, —K) ~, thus we can write l as

(t= —,'(K+I, —1)+n; n =0, 1,2, . . . (3.12)

and arrive at the expression, with I=p/4 and x =8/2:

(iT j2p)(K—+a+2n)~
Xb,Xg )

n=0

XP"(x, )g "(~b), (3.13)

where

E„= (K+A, +2n )'
2p

(3.14)

P"(x )= [2(sing cosg)(K+ A, +2n )]'
{k+A. —1)/2+ n ~ 2

&&P(a+a —i)n, (a—a)n (1—2»n x ) (3.15)

P"(x)=[2(k+A+2n)]'
I (n +1)I (K+A, +n)x

l II'(K+n+ —,)I (i(,+n+ —, )

1/2

)&(cosx)a(sinx) P„' ' ' ' '(1 —2 sin x) .

(3.16)

are the correct energy spectrum and wave functions for
the Poschl- Teller potential. By using the relation between
the SU(2) reduced matrix elements P „(cosg) and the
Jacobi polynomials Pi ~"' +"'(cosg), we obtain the
more familiar and properly normalized wave functions
given by Nieto

IV. CONCLUSIONS

In this paper we have studied the path integrals for the
quantum-mechanical problems which have SU(2) symme-
try. We did this by expanding the short-time-interval
Green's function for the particle moving in the parameter
space of SU(2) in terms of the matrix elements of the rep-
resentations. The resulting Green's function then becomes
available for direct use in solving the path integral for the
Poschl- Teller potential.

The SU(2)-group manifold S considered in this work
coincides with the quotient space SO(4)/SO(3) -S . How-
ever, the Green's functions for S"may also be constructed
using SO(n + 1)/SO(n) -S"

It is well known that all of the special functions which
appear as solutions of problems in theoretical physics are
the matrix elements of representations of some Lie
groups. ' Because of this fact, if one first parametrizes the
problems suitably with their symmetries, it may be possi-
ble to relate their path integrals to the ones written for the
motions on the appropriate group spaces. Working out
the path integrals over the manifolds of Lie groups is thus
important. It is also rather time saving and a technically
easier task, because it allows one to employ several group
properties.
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