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A path-integral formalism is developed on the SU(2) manifold parametrized in terms of the Euler
angles. The Green’s function is studied for the Pdschl-Teller potential and the corresponding wave

functions and energy spectrum are obtained.

I. INTRODUCTION

It is well known that only the linear and the harmonic-
oscillator potentials are solvable exactly by path integrals
in Cartesian coordinates. To do this one employs mid-
point approximations in the time-graded formulations.!
However, many other important potentials of quantum
mechanics are also solved by relating their Green’s func-
tions to the Green’s functions of harmonic oscillators.
For example, the H atom and one-dimensional Morse-
potential problems are solved by this method.>3 To con-
vert these problems into the oscillator forms, point canon-
ical transformations and accompanying time transforma-
tions are used. The action of the transformed Green’s
function usually includes additional quantum-mechanical
terms resulting from the transformation of the path-
integral measure. The radial parts of the Schrodinger
equations of the potentials, which can be brought into
some sort of harmonic-oscillator potentials, all have
SU(1,1) dynamical symmetry* and their wave functions
are of confluent hypergeometric type.

Peak and Inomata® studied the path integral for the
three-dimensional rigid rotator and expanded the Green’s
function in terms of the SO(3) matrix elements, that is, in
the spherical harmonics. Marinov and Terentyev® wrote
the path integral on the n-dimensional sphere S”, and ex-
panded the Green’s functions in terms of the Gegenbauer
polynomials. The symmetric Rosen-Morse potential is
solvable by bringing its Green’s function into the Green’s
function of three-dimensional rigid rotator.’

In this paper we first establish the path integral over
the SU(2) manifold parametrized in terms of the Euler an-
gles and obtain the Green’s function as an expans1on in
terms of the SU(2) matrix elements e™?e™?P. (cos6).
For that, we first write and expand the short- tlme-mterval
Green’s function for a particle moving in SU(2) space,
that is, we follow the method of Ref. 5, whlch is used for
path integration over SO(3) space.

In Sec. II the path integral of the Poschl-Teller poten-
tial is expressed in terms of the Green’s function of a free
particle moving on the SU(2) manifold. The energy. spec-
trum and the correctly normalized wave functions are ob-
tained.

II. PATH INTEGRATION OVER THE SU(2) MANIFOLD

We parametrize the points of the SU(2) manifold,
which is the three-dimensional unit sphere, in terms of the
Euler angles:

o+Y
2 ’

u2=cos-(2isin£—;i

[
u; =cosEcos

b

2.1
o=

. 0
u3=sin—-cos

2 b
Uy =sin%sinu; >

where the ranges of the angles are given by
0<O0<m, O<@p<2m, —2wr<¢<2om.

The free Lagrangian for a particle moving on the unit
SU(3) sphere with “rotational inertia” I is given as
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The kernel connecting the points %; _; and #; which are

separated by a very small time mterval tj—tj_=¢€ can be
approximated by

K;=e", (2.3)
where the action for the short time interval is

A= 26( ,—u,_l) ——(1 cos®;) \ (2.4)

with cos®;=u;_;-i;. Note that @; is the angle that ro-
tates the vector #; _; onto #; around an axis perpendicu-
lar to the “plane” defined by #;_; and #%;. To find the re-
lation of ®; with the Euler angles of #; _; and i;, we re-
call the correspondence between the vectors # and the
SU(2) rotation matrices U:
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uy+iu, iuz—uy

us+u, uyp—iu,
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= 0 P . (2.5)
i sin;e —ie=9)/2 cos—e —ile+4)/2

It can be directly verified that the scalar product of two
|
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vectors %, is given by

t?a'ub=%trUa Ub_l

= trU=cos L cos 2L | (2.6)
2 2

where angles 0,¢,¢¥ corresponding to the rotation U de-

pegd on the Euler angles of the rotations U, and U, !

by

cosf=cosO,cos8y +sinf,sinf,cos( — Y, + ¢, ) , (2.7a)
ip,
ei?= :in 5 [5in6,0056; —c0s6,5in6, cos( — Yy + o) —i sinpsin( —p + )] » (2.7b)
i 1 ea 91, i
Hp+9)/2 _ 28 cos—2 Ir— —
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. ea . 9,, i
+sm7sm76xp E[(q)a—i—t//b)—(t[!,,—}—(pb)] . (2.7¢)
I
On the other hand, since any matrix U of SU(2) can be we obtain
brought into diagonal form by a similarity transforma- . - ekl
tion, Kj=£eie/81 S e AT RO 2.12)

eia/2 0
8=| o -an|= U'uu'-l v'esu2). (2.8)
Using the trace property
trU =tr(U'~18U") =tr$ ,
we arrive at
cos%:cosicosg%‘di . (2.9)

The geometrical meaning of « is that it is equal to the an-
gle of rotation which corresponds to the matrix U.2 Thus
it is the same as the angle ®; defined by Eq. (2.4), that is,

. N ‘@i _1+ A¢._
Jj iYi—1 jPi—1Ti¥i—1
—— =CO!
cos > cos > cos 2
where ;0;_1, j@j_1, j¥;_1 are related to the Euler angles

of the vectors #; _; and #; according to Egs. (2.7). .
Now we can go back to Eq. (2.3) and rewrite it as

> (2.10)

K;=exp ié(l—cos@,—)—l—i—e—

2.11
i (2.11)

Here the extra term €/81 in the action is the well-known
ordering correction in the “polar” coordinate ® represen-
tation of the path integral, which replaces the square of
the conjugate momentum Pg? by Pg?— + in the Hamil-
tonian path integral.” If we expand K; up to 0'(€?) for
€—0, by using the formula®
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which can also be written, by changing the order of the
summation, as
K. L€ giersl 5

at g
j
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(2.13)

By using the formula®
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1
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we can write the difference of the two exponentials in Eq.
(2.13) as
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In the second step of the last equation we have used the
product formula!®

o z2
I1 [1—;2“

s=1

The summation over m; in Eq..(2.13) is, on the other

tion with weight /, and can be expanded in terms of the
SU(2) matrix elements,?

i

2 >
mj=—l; mj=—1,~

—im;Goi _ 1+ 1) Il
e JUTI-VTIT P,,’,j,,,j(cosjej_l).

We can further expand it by using the addition theorem for

hand, just the character of the SU(2) matrix representa-
|

the SU(2) representations:

I] im.®. IJ IJ 1m(¢ —-(p) —in; ('ﬁ 1= ¢' Ij
I e i= Y ¥ e J-17% i- ’P,,’,,,j(cost_l)P,,j,,,j(cosﬂj). (2.15)
mi=—l; mj=—ljnj=—1;
Inserting Eqgs. (2.14) and (2.15) into Eq. (2.13), we obtain for the short-time-interval kernel
2 o ’
& J J —(ie2D(L+1) —im(@; _;—o;
K=|521 3 3 3 @yne G, i _1=¥)pl 1, (080 _I)P,, m (c0S6;) . (2.16)
lj=0mj=—lj nj=— IJ
We can now introduce the ﬁnlte-time-interval kernel in the usual time-graded path-integral form:
1 N+l N+
K(@,,@;T)= lim —— <o 751n0;d6;dg,dy; II (K;), 2.17)
e 167 , =t
where
1 .
dQ= 3 sindd0dedy

. is the invariant volume element of SU(2), #, and %, are the initial and final points corresponding to j =0-and j=N +1,
respectively, and T=(N +1)e is the total time interval.
Note that Eq. (2.17) could also be obtained by employing the usual path integral in Cartesian coordinates with the con-

straint V'i7 2=1, using the method followed by Marinov and Terentyev® for the path integrations over the SO(n) mani-
fold,
+1
€
K(@,i;T)= lim [, dugdu,—1) f_ I I |5-4% ]
e-—-»O
172
w N+1
du;
X f —w 1.131 2me “ ]

X exp

N+1
i I1
j=1
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From this last equation we can see that the measure of Eq. (2.17) is correct.
By virtue of the normalization relation

T 2 2w im.p,+in.p, —ilm; 4n, .
- :

(cosG )=

><P’ , (coso; )P’“l,,

5,
mim; UhiR

the integrals over

N
H (smG,dB,dtp,d;b,)

j=1

can be calculated, and we end up with the result

~Hmeatnda) KMyt pl (1050, )P] (2.19)
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which displays the properly normalized wave functions

172 .

Vmn (6,00,9) = g—jwl—)——e ~imge=in¥pl (cosd) (2.20)
and the energy spectrum

E=—_l+1). 2.21)

To obtain a more compact expression for the kernel of
Eq. (2.19), we sum over n by using Eq. (2.15), and arrive
at the expression

K(_,_;T)— (214+1)e —T/20I(141)
Up,Uq 61‘)’2 2 +

im ®ap (2.22)

x 3 e

m=—1
where @, is defined by
cos 2t _ o a%  aPrtate

2 2 2

and ,0,, ,@p, oV depend on the angles at the points 7,
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1
K(ity,iy;T)=—F———
b>%a 167%in(©,; /2)
D% 2 (21+l)e““T/”””“)sin[(l—{-%)@ab]
=0
(2.23)
or
N eiT/SI a
T 167%in(@,, /2) 30,
®ab T
X0, 20 27l 2.24)
where
®  —{(T/DI+1)2
=23e 2 cos[(1+1)0,1
=0

is the Jacobi theta function.!! Expression of Eq. (2.24) is
the same as the one obtained by Schulman.!? If we insert

and ¥, according to the relations of Egs. (2.7). We can  the following form of the theta function
further simplify Eq. (2.22) by calculating the summation 12 2
over m by using 6= 3 —2_7TI (—)exp |2i7? [ /T
. 1 J=—— 1 T
L ime, Sin+7)8, ®
mg_le = Sin(0,/2) . into Eq. (2.24), we get
|
eiT/SI I 3n © i I )
K(i@y,i#,;T)= — — - 21l j—— 2mil 2.25
o3 D) == G (©m /2) | 2miT ,}_w( (®qy +2mlexp i 72 (Ogp +2mil) 2.25)
which is equal to the sum over the classical paths. Simi- We start with the phase-space path integral
larly, the short-time propagator of Eq. (2.16) is expressible .
in the form of Eq. (2.25) with ®,, and T replaced by ®; - K(xp,x0;T)
?rr:gutee,s and, as €—0 only the term with /=0 con- :f[wz] - Dp, exp f ity x_p 2 .
X [o] [27] x 2u
Q; . I i(®; /2e)1 :
K. =— ie/81 j , .
J 45in®; /2 2mie (3.2)

which is equal to the formula obtained by WKB approxi-
mations.!? These equalities are in agreement with the
work of Dowker who showed that the quasiclassical ap-
proximation is exact for path integrals on simple Lie
groups.’3

III. PATH INTEGRAL FOR POSCHL-TELLER
POTENTIAL

In 1983 Péséhl and Teller introduced the potential'*

1 [KK—1  AG=1)

2

V(x)=
' 2u sin“x

s KA>1. (3.1)

0082x

It has been recently restudied by Nieto,'® together with
some other potentials and the normalization of its wave
functions was found. Since the potential has infinite bar-
riers at each x=+nw/2, n=0,1,2,.. ., it is sufficient to
study it in the range of 0 <x <7 /2.

which is as usual understood as the e—0, N— « limit of
the time-graded definition of the measure

[7/2]
[ Dx Dp, /127]
[0]
w/2 p
= H o [0 T 52 63)
_ _1 2T
and of the action
N+1
A= 3 €lpxj(xj—x;_1)/e—py/2u—V(x;)] (3.4
j=1
with
Xg=Xg, Xp=Xy,1, IT=(N-+1)€.
If we introduce the variable 9 by

6=2x ,
the kernel of Eq. (3.2) becomes
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rl __ Dpg . a2+B2—2chos6—%
K(x,,,xa,T)—Zf 99[ ]exp f dt (pg6— 2I 57 sin?0 , (3.5)
where
a=(A+K—1)/2, B=(A—k)/2, I=u/4, (3.6)

and the factor 2 multiplying the expression comes from the dp,‘IHI—>dp,,N+l transformation. The Hamiltonian in the

action of Eq. (3.5) immediately reminds one of the Hamiltonian for the “SU(2) rotator” written in terms of the Euler an-
gles of Eq. (2.1):

Py +py —2popycosd
sin%0

pe’+

1
HSU(2)=“27

Motivated by this resemblance we introduce the following identity, which can be proven by direct calculation:'®

2w —ialgy—g@,) 2 —iBYy—1,) [ o
fo d e ta\@p —@, f d‘lpe i ‘l’b ’p f duas(ub—l)fo dub

x [ H (du;dep;di;)

dpu dptpj dpdl]

!

0 T . Co. B
><f_‘=° ;i |exp ifo dt |p, it +po@+pyth— 21“ 5

2 2

+pu-—2 cosf

_Pp TPy _lz’cqub _Mu_l)H
21 sin“0

a?+ B2 —2aBcosh

=ex
P 2sin%0

i font —

] , 3.7

where the ranges of the variables are
O<p<2m, —2m<y<2m, O<u<oo .
Using this identity, we can write Eq. (3.5) as
zm 2 . : SIT/8I G <ing. Y172
K(xp,x,;T)=2 fo doy f_zﬂdz//bexp[—za@b—cpa)—zﬂ(zlib—tpa)]e (sinf,sinb, )" “K (3.8)
with K defined as
K(b,a;T)=(sinf,sin6; )~/ fo‘” f0°° dugduy(uy —1)

D (popoPyPu) DA
[27]* [27]

X [ D (ubpy)

if ont

X exp

Puti+Pe0+po@+pyd

Pl Pe*—F P 4Pyt —2pypycosd—

20 2m? 2Iu%sinf

—Mu—1) (3.9

which is the phase-space form of the path integral given by Eq. (2.18), and which describes the motion of a particle with
“rotational inertia” I, on the surface of the SU(2) sphere. In writing Eq. (3.9) we have inserted
rat
o 81
Note that the four-dimensional volume element in terms of the Euler angles

d*u=u3du sinfd@dedy ,

1=e ~T/¥(sing@,sinb, ) /*(sinf,sind, ) ~"%exp |i

and the usual three-dimensional one in polar coordinates

d3r=r%drsinfd0dy



2126

have the same Jacobian factor sinf, for u =1, » =1 constraint
(8Tu?)~"! and (8Tu%sin’0) ! terms, are the same in both cases.’

I. H. DURU

s. Thus the “ordering” contributions to the actioh, i.e., the

We can directly write the expression of K of Eq. (3.8) from Eq. (2.19), and obtain

2 2 2 —ialgy—p,) —iBy—,)
K(xp, %0, T) =7 fo dey f_zﬂdtp,,e e

X (sinf,sin6,)'"* ¥, (21 + 1)exp

1=0

] ] . .
im(@y,—e@,) in(
xS Se o =), ¥y
m=—In=-1

which gives after integrations over dg, and d Uy

)

I=max(|al|,|B|)

)1/2

K(xp,%x4;T)=(sinf,sinb, (2I1+1)e

Since A and K are both positive, |a|=|(K+A—1)/2]
is larger than |B| = | +(A—K)| , thus we can write / as
=+(K+A—1)4+n; n=0,1,2,... (3.12)

and arrive at the expression, with I=p /4 and x =60/2:

o0
—( 2
K(x,,,xa;T)= 2 e (T /2u)XK+A+2n)

n=0
X Y% P ™(xp) (3.13)
where
E, = (K4+A+2n) (3.14)
2
and
P(x ) =[2(sinf cosO)(K +A+2n)]'"2
XPRIAZDAER 1)/ (1—25sin’x) (3.15)

are the correct energy spectrum and wave functions for
the Poschl-Teller potential. By using the relation between
the SU(2) reduced matrix elements P,I,,,,(cose) and the
Jacobi polynomials P{™.™™*")(cos@),® we obtain the
more familiar and properly normalized wave functions
given by Nieto:!®

P(x)=[2(k +A1+2n)]'"

D(n + DIK +A+n)
DK +n+3)T(A4n+7)

172

KP'(lK—IIZ,A—l/Z)( 1

X (cosx Y(sinx) —2sin’x) .

(3.16)

—iT2DU+12

_%[1(1+'1>+%]

_'pa) 1

* Dmn (COSO, )p,l,,,,(coseb), (3.10)

2

) :
Pl g(cos8,)Ph,(costy) . (3.11

IV. CONCLUSIONS

In this paper we have studied the path integrals for the
quantum-mechanical problems which have SU(2) symme-
try. We did this by expanding the short-time-interval
Green’s function for the particle moving in the parameter
space of SU(2) in terms of the matrix elements of the rep-
resentations. The resulting Green’s function then becomes
available for direct use in solving the path integral for the
Poschl-Teller potential.

The SU(2)-group manifold S* considered in this work
coincides with the quotient space SO(4)/SO(3)~S>. How-
ever, the Green’s functions for S” may also be constructed
using SO(n +1)/80(n) ~S™.5

It is well known that all of the special functions which
appear as solutions of problems in theoretical physics are
the matrix elements of representations of some Lie
groups.!” Because of this fact, if one first parametrizes the
problems suitably with their symmetries, it may be possi-
ble to relate their path integrals to the ones written for the
motions on the appropriate group spaces. Working out
the path integrals over the manifolds of Lie groups is thus
important. It is also rather time saving and a technically
easier task, because it allows one to employ several group
properties. :
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