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A path-integral solution for a Mie-type potential is obtained. The exact eigensolutions for a spe-
cial case of the potential are calculated.

I. INTRODUCTION

The path-integral formulation of Feynman' offers an
alternative approach for solving dynamical problems in
quantum mechanics. A great interest has recently been
devoted- to the application of this technique to the exactly
solvable problems by the Schrodinger equation. To apply
this technique one usually follows the point canonical
transformation and a change of time parameter to reduce
the problem to a proper form that has an exact solution.

Recently the H-atom and one-dimensional Morse-
potential Green's function have been calculated with the
path integral, by converting them to a four-dimensional
harmonic oscillator, and a one-dimensional harmonic os-
cillator with an additional potential barrier, respectively.

In recent years Mie-type potentials have been used to
study the dynamical properties of solids, and are given by

'I k

V(x) =e k o. l o.
(1)

I —k x l —k x

where e is the interaction energy between two atoms in a
solid at x =o, and l & k is always satisfied.

In the present study we solve the path integral for the
one-dimensional Mie potential with l =2k combination.

I

Choosing the special case k = 1, corresponding to a
Coulombic-type potential with an additional centrifugal
potential barrier, we test the validity of our transforma-
tions by comparing the, results with the known exact
eigensolutions of a Coulombic potential.

II. PATH INTEGRAL FOR V(x)

The probability amplitude for a particle of mass m

traveling from a position x, at time t, =0 to xb at time

tb ——T in a Mie-type potential with l =2k,
2k k

V(x) = Vo — ———,Vo ——2@k (2)
1 o. 1 o.

2k x k x

can be written as the phase-space path integral in Carte-
sian coordinates:

K(xb, T;xe,0)

exp —f dt px — —V(x)
2~ A o 2m

I

(3)

which is understood as the limiting case of its time-graded
form

n n+1 dp. ~ n+1
K(x,T;x„o)= lim f +dx; + '

e pn~~, . ) ',.
&

2m

Pip(x —x ))—e 2' —V(x; ) (4)

where e=t; t; &, (n+1—)e=tb t, =T, and xo ———x„x„+~ xb. ——
We define a new coordinate Q E (0, ao ) with the point canonical transformations

~g 1/k
p g 1 —I/k Pk

CT

generated from the function
k

F2(x,P)= — P .X

After evaluating the Jacobian at the point b, the path integral in Eq. (3) takes the form

'2
k Qi i/k f DQDP i

d PQ
1 k Qz~& ~/k~P2 o 1 1 1

2~ '"P
m o 2m o k 2 g' Q
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Introducing a new time variable s by
2

tT
Q

1/k —1

k (7)

we eliminate the factor of the kinetic energy term. Similar transformations on the time parameter have been used previ-
ously. ' With the constraint

'2
g Sf ds(Q(s))"' ", S=s —s, (&)

Eq. (6) may be written as

It ( T. ()) Q
1 —1/k

Q
1/k —1

0 k

2

2

dS5 T ds—— (Q (s) )"'
0 k 2'

' 2

Xexp ~ —f ds —Q' " ' PQ'
k

k
Q

1 —1/k P
0 2m

~0

k 2Q2 Q

where the prime denotes the derivative with respect to s. Introducing the Fourier representation of the 5 function, the

path integral takes the form

It( T. 0)
~ f t'Etf dS f (Q 1/k —1) Q

o 277

S p2
X exp —f ds PQ'

2

(
1 Q2/k —4 Q2/k —3) gE ~ Q2/k —2

k k ' k
(10)

The end points a and b should have equal contributions to the Jacobian in order to have a symmetric Jacobian. This is

possible by rewriting the factor Qt,
'/k ' as

Q
1/k —1 (Q 1/k —1Q 1/k —1)1/2 [

t
1 (Q 1/k —1yQ 1/k —1))

S /'A 1
(Q 1/k —. 1Q 1/k —1)l/2exp

2 k Q

The path integral given in Eq. (4) would also be expressed by startin~ the time division of the momentum variables at
i =0 and ending at i =n. In this case we would have a Jacobian Q,

' '. Following the same procedure to symmetrize

the Jacobian we then get

Q
1/k —1 (Q 1/k —. 1Q 1/k —1)1/2 d 1 Q

2 k Q
(12)

The contributions of the symmetrized Jacobians, Eqs. (11) and (12), to the integrand of the path integral, Eq. (10), are the
same in magnitude, but opposite in sign. If we then use the midpoint method by taking the arithmetic mean of the in-

tegrands, we obtain

g(x T.x 0)
~ f + et'ET f dS f (Q 1/k —1Q1/k 1)1/2

271 0 2'

i S p
X exp .— ds PQ'—

o 2m

2

(
& Q2/k —4 Q2/k —3) PE o Q2/k —2 (13)

k k ' k

Setting k = 1, Eq. (13) becomes

cr RE . , (14)—
2Q' Q

p2
It (xt„T;x„0)=trf e' f dS f exp —f ds PQ' —V, o. —

or equivalently, as
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i

K(xb, T;x„O)=o f e' f d&K(gb, &;Q, o)

2119

(15)

where the kernel is

K(Q, ,S;Q.,O) = f S p2
exp ~

—f ds PQ' —Vpo. 2 1 1 —o. AE
2Q' Q

(16)

its effective Hanultonian is

+(T V() ——+o fiE .P p 1 1

2m 2Q
(17)

The eigenvalues, e„,may be obtained from

e„=e„'+o.AE .
Inserting Eq. (23) into Eq. (15), the path integral takes the

The path integral can also be expressed in terms of the
eigensolutions of the system described by

K(xb, T;x„O)=pe " @„(xb)4"„(x,) . (18)
n

I.et us define a new effective Hamiltonian as

K(xb, T;x,O)

n

H, ff
——H, ff —o PATE

I 2

p2
+o. Vp

2M 2Q~

p A 8
2m Q~ Q

*

(19b)
K(xb, T;x,O)

+ oo dE /
eiET

E+e„'/o'A'

(19a)
integrating over S we obtain

(26)

where A = —,o Vo, and B=o Vo. The eigenvalues of the

Heff are given by
and finally integrating over E we get

K(xb, T;x.,O)

28 m
f2 2(n —s —1)+1

+ (»+I)'+ 8m'
1/2 —2

(20)

i (E„' /~~A) T —1
n b

I~ Q„(Q, )

(27a)

for the eigenfunctions

%„(Q)=Np'e i'~ F( n+s + 1,2—(s.+ 1),p),
where

' 1/2

p=2
—2mE

(21)

where

Et

o. A

" @„(Qb)C'"„(Q,),

1 (n +s)!
(2s + 1)! 2n (n —s —1)!

1/2

1/2

s= ——1+ (2l+1) +1 2 8m'
2

' 1/2

(22b)

(22c)

(22d)

r

2mo ~p
2(n —s —1)+1

+ (2l+1) + ~
2cr V()

1/2 ' —2

(28)

and F is the confluent hypergeometric function.
The kernel, Eq. (16), may be expanded in terms of the

eigensolutions of the effective Hamiltonian, H, ff,

K(gb, &;Q„O)=pe " g, (gb)p', (Q, ) . (23)

1/2

&&F( n+s+1, 2(s—+1),p) .

r

(g) . .1 (n +s)!
(2s + 1)! 2n (n —s —1)!

(29)
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s can be eliminated in Eq. (28) by using Eq. (22b), hence
the eigenvalues can be reduced to the following simple

III. CONCLUSIONS

rm:
4 2

2m 0 ~o n=i, 2, 3, . . . .
4n

As a result the path integral takes the final form

2m ~o4 2

K(xb, T;x„O)=g exp i 2 2
T

4n1

(n +s)! PbP~
X

2n (n —s —1)t [(2s + 1)]2

(30)

In this work we have studied the path-integral solution
for a Mie-type potential. The point canonical transforma-
tions were generated from a second-type function of the
form Fz(x, P). Considering the special case of the Mie
potential with 1=2k and for k =1, the problem was re-
duced to a Coulombic potential with an additional centri-
fugal potential barrier 1/Q . The exact eigensolutions for
this particular case have been obtained, which are similar
to the hydrogenic solutions.
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