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An economical proof is given, in the Lagrangian framework, of the no-interaction theorem of rel-
ativistic particle mechanics. It is based on the assumption that there is a Lagrangian, which if
singular is allowed to lead at most to primary first-class constraints. The proof works with
Lagrange rather than Poisson brackets, leading to consi. derable simplifications compared to other
proofs.

I. INTRODUCTION

Classical dynamics contains as an idealization the con-
cept of a spinless and structureless mass point. In the rel-
ativistic context this may be identified as an irreducible
realization of the Poincare group, the mass of the particle
being the only nontrivial Casimir invariant of the realiza-
tion. ' In formulating this point of view one works at the
level of the canonical Hamiltonian version of dynamics,
making use of the Poisson bracket structure to image the
Poincare Lie algebra and canonical transformations to im-
age group elements. Equally well, one could start with
the more elementary Newton-Lagrange notion of a one-
parameter family of space-time points describing a
straight-line world trajectory with Newton s first law of
motion obeyed.

When we pass from a single free particle to a collection
of free particles the Hamiltonian description remains
valid, with the Poisson bracket realization of the
Poincare-Lie algebra now using the sums of the individual
particle contributions. Qne can now ask: can this scheme
accommodate interactions, that is, can the particle world
lines or space-tiine trajectories be made to transform
properly under frame changes, though influencing each
other due to mutual interactions

These two requirements of Poincare invariance and the
geoinetrical world-line transformation property [the
world-line condition, (WLC)] are distinct, and together
they lead to rather stringent limitations on the permissible
dynamics. In fact, in the simplest case of instant-form
Hamiltonian dynamics with no constraints they lead to
the no-interaction theorem. As in other contexts, so in
particle complexes: individual response to change of
reference frame by each particle without reference to the
overall system destroys any cohesion of the system.

While the original proofs of this theorem were couched
in the language of phase space and Poisson brackets, it is
possible to give a Lagrangian proof as well. This investi-
gation has shown that it is not the phase-space formula-
tion that lies at the basis of the theorem. Rather the real
cause resides in the geometrical structures and the con-

flicting conditions formulated in terms of them.
It is, of course, possible to evade the no-interaction

theorem by extending the relativistic dynamical frame-
work without giving up the physical content of the WLC.
All such models work within the generalized constraint-
dynamics formalism. They are not intended, in general,
to be based on a Lagrangian. These theories contain non-
trivial interactions consistent with the WLC. Even the
additional requirement of separability can be accommo-
dated. So one may naturally suspect that the no-
interaction theorem cannot hold in the presence of con-
straints.

The present investigation addresses this question on the
assumption that there is a Lagrangian. We show that if
only primary first-class constraints are present in a La-
grangian theory we can still prove the no-interaction
theorem. In this case it is not necessary to invoke the
constraints explicitly and proceed to a Dirac bracket for-
malism. It is more direct to prove it in the Lagrangian
framework, with the fundamental role played by
Lagrange brackets.

The plan of the paper is as follows. In Sec. II we re-
view and expose the structures of Lagrange and Poisson
brackets from an intrinsic viewpoint. We use this oppor-
tunity to remind ourselves about the natural geometrical
distinction between the two (apart from the algebrai'c rela-
tion between matrices of these brackets in the nonsingular
cases). We also spell out the geometrical way in which the
determination of the dynamics, and the action of the
Poincare group, are to be handled. Both these use the
language of vector fields on the tangent bundle over con-
figuration space. Since in our treatment the independent
parameter in the Lagrangian is physical time, apart from
the dynamical vector field the only other truly nontrivial
vector fields are those generating Lorentz boosts. Section
III deals with the imposition of the WLC: A simple
analysis shows that with this condition the Lorentz-boost
vector fields are determined completely in terms of the
dynamics. Section IV carries through the calculation to
show the emergence of the no-interaction theorem. We
emphasize the irrelevance of the existence of primary con-
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straints at least as far as establishing the absence of any
interaction terms in the Lagrangian. Section V compares
our proof with previous ones and discusses our result in
the light of the constraint formulation of interacting sys-
tems and the prospects of a Lagrangian existing in such
theories.

II. GEOMETRICAL FRAMEWORK

A. General considerations

In dealing with particle dynan1ics in a geometrical
framework, the carrier space is usually identified as either
the tangent bundle TQ (Newtonian and Lagrangian for-
malism) or the cotangent bundle T Q (Hamiltonian for-
malism) on the configuration space Q. While the latter
is suited for the study of the "canonical" aspects of
dynamics, the former with the Lagrangian forinalism is
better suited for the expression of relativistic invariance.

From a geon1etrical point of view the relevance of the
cotangent bundle relies on the existence of the natural
one-form

0=p, dq' (2.1)

on it Thi.s is the starting point for the canonical formal-
ism which goes along the following lines. From 0 one
derives by exterior differentiation a nondegenerate two-

OA11

co=d8=dp„h dq" . (2.2)

This two-form establishes an isomorphism between the set
of vector fields on T Q, namely, W(T'Q), and the set of
one-forms on T*Q, W'(T*Q) (an elegant way of saying
that it allows for raising and lowering indices}. This iso-
morphisin leads to an association of a (Hamiltonian) vec-
tor field Xl EW(T*Q) with any function f on T Q, as
the solution to the algebraic equation

If we introduce the inverse of (co„„),say (cot'"), we have a
more explicit expression

If I
~v f g (2.8)

BP BP
From a geometrical point of view the Poisson brackets are
naturally associated with a bivector field

A=cot'" A (2.9)
c)P BP

whereas the object that the two-form co more naturally
leads to is the Lagrange bracket co(X, F) of any two vector
fields X,FH W( T'Q). The definition of the Poisson
brackets in Eq. (2.6) in terms of co(Xl,Xz) uses the well-
known fact that a reciprocity relation connects the two
kinds of brackets, with one being the inverse of the other
in a suitable sense.

This discussion serves to clarify that it is the Lagrange
brackets, rather than the Poisson brackets, that arise im-
mediately from the natural one-form 8 of Eq. (2.1) on
T'Q. Construction of the Poisson brackets requires the
inversion of (co&„).

On the tangent bundle TQ, i.e., in the qq space, there is
no natural one-form. It is possible however to define a
one-form on TQ if one is given a Lagrange function W
on TQ. This is done by "pulling back" 8 from T*Q to
TQ with the replacement p„~BW/Bq ", i.e.,

g~ —— dq" .BW
(2.10)

Bq

(In geometrical language one first defines the fiber deriva-
tive of the function W, I'W: TQ +T"Q, an—d then pulls
back the one-form 8.) Imitating the passage from 8 to co

on T'Q, we get on TQ the two-form

h dq'
'aw
Bq'

~

tx co=df .f (2.3) ~q ~q 2 Bq Bq

Xg=(Xl )"
c)P

df= dP,
(j p

and the association (2.3) reads

(2.4)

(Xy)"co„„= a
IJ~

ggv
(2.5)

The Poisson bracket of two functions f,g is defined by
setting

co(Xl,X&)= —
If,g I,

or in coordinates

(2.6)

If,gj = —co„„(Xg)"(Xg)".

If we denote the (local) coordinates q",p, of T*Q collec-
tively by P, and the corresponding components of co by
co&, we have

co = ,' co+@h Pd—,

c)2
dq'h dq" .

aq aq

(2.11)

It is clear at this point that co~ is nondegenerate (i.e., in-
vertible) if and only if

det &0 . (2.12)
Bq "c)q '

Thus the definition of Poisson brackets among functions
on TQ requires this nondegeneracy condition, whereas on
the other hand, Lagrange brackets can always be defined
~mo~g vector fields on TQ, once a Lagrange function has
been given. It seems then more natural to work exclusive-
ly with Lagrange brackets on TQ whenever we want to al-
low for the possibility that we have a singular Lagrangian
leading to a constrained system, because then the condi-
tion (2.12) is violated.

Canonical transformations on TQ (with respect to a
given W} can be defined as those which preserve the
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Lagrange bracket. They need not be lifts to TQ of point
transforinations on Q, but can mix q's with q's. For an
infinitesimal transformation generated by a vector field
XE W( TQ), the condition to be canonical is

L&co~——0 . (2.13)

B. The N-particle problem

For our specific problem, the independent coordinates
of Q will be written as q,i, with indices appearing as sub-
scripts. Here, indices a, b, c, . . ru. n from 1 to N and serve
as particle labels, while j,k, l, m, . . . go over 1,2,3 and are
Cartesian vector indices. The summation convention on
repeated indices will not be used hereafter, and every sum-
mation will be explicitly indicated. In using the symbol

for velocities, the dot specifies the derivative with
respect to the physical time of an inertial observer.

We write the Lagrangian as W(q, q). The general form
of ~o~ in Eq. (2.11), implies, and is equivalent to, the fol-
lowing three relations:

Dynamical evolution on TQ, generated by b„ is obvi-
ously canonical since from Eq. (2.16) follows

Loco~=0 . (2.17)

We will similarly assume that the entire Lie algebra of the
Poincare group H is represented by vector fields on TQ
obeying Eq. (2.13). Thus we assume the existence of vec-
tor fields Xp.,Xq.,Xx. generating spatial translations, spa-

J J J
tial rotations, and pure Lorentz transformations, respec-
tively, and obeying

L& co~——LX co~ ——L& co~ ——0.
JJ J

(2.18)

[Xtt,h] =Xp. . (2.19)

The forms of Xp and Xz are immediate:J J

The set of ten vector fields b„Xp,Xq,Xx must obey com-
J j J

mutation relations corresponding to the Lie algebra of %;
of all these relations, the only ones we need explicitly in
proving the no-interaction theorem are

co~(BIBq.
&

BIBq.bk ) =0

co~(d/Bq, , d/dqbk ) =to~(B/dqbk, d Idq., )

=() ~I()q, (3qbk.

(2.14a)
Xp ———g BIBq,j, (2.20a)

Co~(() IBq J,8/Bqbk )

,' (a'W/aq. —,aq„k a'W/aqb—kaq., ) .

(2.14b)

(2.14c)

l pe~ = —dE~,
E~ =it,8~ (2.16)

8~= g dq„.
aj ~gaj

(Note that E~ does not depend on A,J; it is the energy
function on TQ.)

Our basic assumption is that the Lagrangian W is ei-
ther nonsingular or, if it is singular, it does not lead to any
secondary constraints, and furthermore it allows Eq.
(2.16) to be solved for a second order 5 all over TQ. In
the former case the accelerations A,i are uniquely deter-
mined functions on TQ and we have an unambiguous
dynamics b, all over TQ. In the latter case, solutions 5 to
Eq. (2.16) do exist at all points of TQ but there is some
degree of ambiguity in the solution, namely, up to ele-
ments in the vertical kernel of co~. But in either case,
every point of TQ is allowed to be chosen as a possible in-
itial condition, which is physically necessary for a system
of N particles.

The dynamical vector field 6, which will have to obey the
Euler-Lagrange equations of motion, is an element of
W( TQ) having the second-order form

gg(~)

(2.15)6"=g(q, jd/dq, j+A,J.BIdq J) .
J

We have denoted the accelerations by A,J. The equations
of motion are expressed as an algebraic condition on 6:

a - ag ejkl qak +qck
Bf l Bg 1

(2.20b)

The structure of Xx will follow in Sec. III from the
J

WLC.
While translations and rotations have associated vector

fields Xp and Xq which have the free-particle form the
J l

vector field 6 for time translations must of nature be dif-
ferent to account for interaction. The question now arises
as to the form of the boost vector fields Xk . By virtue of

J
the Poincare algebra

O'Z;»p, f =&1k~ (2.21)

Consequently if 5 includes an interaction contribution
and Xz does not, than X~ must have an interaction con-

k J
tribution. Hence the particle trajectories cannot transform
by the familiar free-particle formulas. The precise form
of Xx is determined in Sec. III. The "Lorentz-

J
transformation" law is itself determined by the dynamics.

III. THE WLC AND THE BOOST GENERATORS

In the Hamiltonian formalism on T'Q, it is well known
that a canonical transformation describing a symmetry of
a system maps a state at a certain time (the independent
parameter) into another state at the same time so as to
preserve the equations of motion. For a relativistic sys-
tem the pure Lorentz or boost generator gives rise to a
canonical transformation mapping physical conditions at
a certain time in one inertial frame onto physical condi-
tions at the same value of time but in a Lorentz-
transformed frame. It is on this basis that, in the instant
form of relativistic dynamics, the WLC was originally de-
rived. We express this form of the WLC in the language
of TQ: it is then the requirement that
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Lg qak =qaJ qak ~K.
(3.1)

We now show that this condition determines Xz: in terms
J

of A.
Equation (3.1) already fixes the "horizontal" part in

Xx, namely, the part involving 8/Bq. To fix the remain-
J

ing 8/Bq part, we apply Lb to Eq. (3.1), and use the com-
mutation relation (2.19) and the forms of b, and Xl, :

J

Lg q,k
——Lx LgqakK. K.

0
6)~

~qaj Bqbk
=0, a@b . (4.4)

Correspondingly we have a decomposition of the La-
grangian with respect to the dependence on the veloci-
ties

Thus we have obtained some information on the com-
ponents of co~ appearing in Eq. (2.14b), namely, for dis-
tinct particles, a&b they vanish:

=LE q,k+Lb. (q,jq,k)P.

W(q;q)= gW"(q;q )a. (4.5)

~jk +qaj qak +qaj ~ak (3.2)

Putting together Eqs. (3.1) and (3.2), we can see that Xx,
J

takes the form

~ ~ 8
lr g 'qaj'qak +(qaj q k ~jk+qaj ~ak )

~qak 8qak

The ambiguity in the isolation of individual terms W" is
only to the extent that functions of the q's alone could be
reassigned freely.

Step II. To the result of step I we apply first Lb,', then

, compare the results, and derive some conclusions

concerning . the components of to~ appearing in Eq.
(2.14c). So with a&b understood, we apply Lb to Eq.
(4.4) and use Eq. (2.17) to get

(3.3)

This can also be written in terms of the parts b,"of 5,
Eq. (2.15), as

CO~
~qaj

a
7

dqbk

a
+Q)~

qaJ ~qbk
=0.

(4.6)
Xxj = g q.j~"+ g(q.jq.k

—~,k)
a ak ~qak

(3.4)

So when, and to the extent that the accelerations A,J are
determined by the equations of motion (2.16), the boost
generator Xz. gets determined to the same extent. We

J
may note that in this section, in arriving at the above
form for Xk, the Lagrange function W and the two-form

J
co~ have not appeared at all.

~qbk

8 8Ad ()

dqbk I dqbk Bq~l
(4.7)

so Eq. (4.6) gives
r

The first term here is identically zero because of Eq.
Q.14a) and the fact that [E,B/Bqaj] involves only 8/Bq
terms. For the second term we have

IV. PROOF OF THE MAIN THEOREM
8 8

67~
~qaJ ~qbk

a&.l a a
CO~

cl ~qbk qaj ~qcl

Our proof of the no-interaction theorem involves three
steps, each of which is quite elementary. We present these
steps in sequence.

Step I. Apply LX to the identity (2.14a) and use the

property (2.18) to get

a
Qp~ Xg

Bqaj

(4.8)

By Eq. (4.4) resulting from step I, only the term with
c =a survives on 'the right, so application of Lb to (4.4)
has led to

c} a

~qaj ~qbk

a a+Q)~, Xg
~qaj ~qbk

From Eq. (3.3) we find

=0 . (4.1) a~l '

a aco~, , a&b . (4.9)
I dqbk qa& ~qal

Next when we apply Lx to Eq. (4.4) we get at first, as

Xg,
m

QCjfJ

a
qam +

qaj
(4.2)

a
(qam qbm )~W

()q J ~qbk
)

O'W
qam qbm

qaj 'qbk

=0.

(4.3)

where the dots stand for 8/Bq terms which, again because
of Eq. (2.14a), will not contribute in Eq. (4.1). Therefore
Eq. (4.1) simplifies to

in Eq. (4.6),

co~ Xg
nS Qq

a

~qbk

8+~~ ~ Xz
~qbk

=0 . (4.10)

The first, term again vanishes. This time on account of
Eq. (4.4); in fact
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8
Xg

Qaj

8= —&j &qi +-
~gaI

(4.11)
where each term WJ' is either zero or a nonlinear func-
tion of qa. At this stage, the two-form co~ has achieved a
completely separated form:

Xg
aqbk

a= —
qbm a gqam . . + '''

qbk cl aqbk aq&I

(4.12)

where the omitted terms are of the form a/aqb and so
drop out in view of Eq. (4.4). We now use Eq. (4.12) in
Eq. (4.10), realize that in the sum on c only c =a contri-
butes, and so finally get

where the omitted terms are of the form a/aq. For the
second term in Eq. (4.10) we have

(a)N~ = 67~,

(4.19)

CO~ = g d 6 Cfqaj

a~(&)

j ~9'aj

However each (nonzero) W~' is arbitrary up to a purely

q, -dependent function, and the subsequent splitting of V
into V" is also arbitrary.

Step III. The strategy is similar to step II: to the result
(4.15) of that step we apply Lb, and L» and compare

the results. With a&b understood, we have first
lb' ~W

9'aj 9bk

a
qam g

j qbk qaj qal
a~b . (4.13)

CO~
aqaj

a
~9bk

a a+CO~
Qaj Vbk

=0.

(4.20)

If we coinpare the results (4.9) and (4.13), we see that Now

8
(q

~9 j ~Cbk
=0. (4.14)

aqaj

aA, i

a'qaj aqa j
(4.21)

Thus application of Lb, and L» to the results of step I

yields some information on the components of co~ in Eq.
(2.14c), namely,

T

8
CO~

~Caj ~9bk
(4.15)

If we use the already separated form of the Lagrangian in
Eq. (4.5) to evaluate these components of co~ according to
Eq. (2.14c},what we have is

a w"(q q ) a'w' '(q qb)
a&b .

aqbk aqo ' aq aqbk'
(4.16)

then Eq. (4.16) implies

af(q)f,j(q)=
Bgaj

and the linear terms in (4.17) can be dropped because they
amount to a total time derivative in W. Thus at the end
of step II the Lagrangian takes the form

~(q;q)= g W~'(q„q, )—V(q),

This leads to the following sharpening of the decomposi-
tion (4.5): in any nonlinear dependence of W" on q„qb
for b&a cannot occur; while in any linear dependence of
W" on q, we have conditions imposed by Eq. (4.16). So
if we write"

W"(q;q, ) =WJ '(q„q, )+ g f„(q)q„V"(q), —
j

(4.17)

Next when we apply L» to Eq. (4.15) we get

a
CO~ Xx

aqaj aqbk

8+~w
~

~ &sc ~~
Caj 9'bk

=0 . (4.23)

Now we need a different expression for these commuta-
tors than in Eq. (4.11}:

aXk, =g q, 6',
~Vaj

'

c Bgaj

aw„= —gq,
c$ qaj a qadi

(4.24)

Here the omitted terms involve a/aq and a/aq: ail
such terms make no contribution in Eq. (4.23) since a~b.
We then obtain, using Eq. (4.4),

(b) 8 8 ~~bl
qb

~bk Bj'b( 0aj

and similarly with aj~bk. Using such expressions in Eq.
(4.20) and also (4.4) from step I, we get

a~& „, a a a~bIg CO~ CO~ 7 ~

aqaj aq i aqbk & aqbk aqbi aqaj
1

(4.22)

v(q) = g v"(q),
(4.18) (.) a a ~~aI

=qam +COW
9aj Baal 9bk

(4.25)



30 RELATIVISTIC PARTICLE DYNAMICS —LAGRANGIAN PROOF. . . 2115

Comparing this with Eq. (4.22) we get the main result of
Step III:

a a

anal

(qam qbm ) g ~5'
Bq,l &bk

1.e.,

8 (a) 8 Cl+co~, A, )
——0 for a&b . (4.26)

dqbk I ()q j Bq I

Thus this result permits the expression

(a)

qaj
Aal (4.27)

to depend on q„q„and possibly on qb for b&a via A,~.

The conclusion (4.26) does not directly give us some
conditions on the "potential" V(q) in W, such as for in-
stance the separability of V. But this is just what we get
when we combine the information so far obtained with
the assumption that the dynamical equation (2.16) is solu-
ble all over TQ. Indeed that equation now reads, in local
coordinates,

(q„q, )+ A,k+
qaJ

'
k c)qaj(3qak

a'W(„) )(q. ;q. )
9ak

Bgaj Beak

BV(q)

gaj
(4.28)

v(q) = g v"(q. ) . (4.29)

Thus we have arrived at a completely separated form for

We may now use the facts that the left-hand side has no
dependence on qb for b&a, and that we may treat all q's
and j s as independent since solutions Aaj exist all over
TQ, to conclude that indeed V(q) must be separable:

()co~= g dq., j), dq.„
jk ~g ~g k

g2~(a)+—
2 ~gaj~qak

g2~(a)
nl

dqaj j), dqak
(3qak ()qaj

(4.33b)

W(q;q)= g W'„)'(q, ;q, ) —V"(q, ) . (4.30) The vertical kernel of co~' is determined by the null eigen-
vectors of the matrix

~n) (qa~qa ) = ~a 1 g qaj qaj
j

(4.31)

If the Lagrangian is singular, Aa~ is determined up to
the addition of elements from the (vertical) kernel of co~'.
Equation (4.28) by itself can give no further information
about such pieces in A,J, and in fact we can imagine that
they contain interactions with other particles. However,
this cannot happen, as the following analysis shows.
From the separable form of the rotation generator Xj,
Eq. (2.20b), and of the two-form co~, Eq. (4.19), it follows
that because of the vanishing of Lx co~ we have for eachJ
particle

(a)I. (,)co~ ——0,XJ

Let us stress that this form for W has not assumed that
it is nonsingular. If it is nonsingular then we have proved
the no-interaction theorem, since Eq. (4.28) shows that
each particle moves independently of the others. It is a
simple matter to proceed further and establish that, on us-
ing all the consequences of Poincare invariance, each V"
must vanish and each W„')' must take the form'

' 1/2

g2~(a)
n1

~qaj()qak

Because of the manifest rotational invariance implied by
Eqs. (4.32) and (4.33a), and because the rotation group
acts transitively on the set of directions in sI)ace, we see
that we have only two options: either (i) W~ is not iden-
tically zero, the matrix

g2~(a)
n1

()qaj ()qak

is nonsingular and so co(~' is nondegenerate; or (ii) Wz'
vanishes identically since it cannot be linear in j„and
then co~ also vanishes identically. In the latter case, corn-
bination of translational and rotational invariances easily
shows that q, cannot occur in the potential V(q), so all
the variables referring to particle "a" are completely ab-
sent from W. Thus the only sense in which W could be
singular is by virtue of one or more particles, originally
included in the enumeration of degrees of freedom, not
"showing up" in W at all. Since this is a trivial situation,
we have again established the no-interaction theorem.

where

(a) i3 a
XJ g~klm qak +qak

kl l ()9 l

(4.32)

(4.33a)

V. CONCLUSION

The proof given here of the no-interaction theorem is
quite economical in comparison with the original as well
as more recent proofs in the literature. In arriving at the
completely separated form (4.30) for the Lagrangian, only
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the following features played an explicit part in the calcu-
lations: (i) the WLC (3.1), (ii) the form (2.20a) for the
translation generator Xz, (iii) the commutation relation

J
(2.19), and (iv) the annihilation of ro~ by Lt, and I-x

m

Even the successive steps of the calculation in Sec. IV
closely resemble one another.

We may point out that the original proof of the
theorem for any finite number of particles, which inciden-
tally is rather involved, uses as an essential assumption
the possibility of the Hamiltonian being obtainable from a
nonsingular Lagrangian. ' If this is granted, the proof
presented here is much simpler and much more direct
than the one based on phase-space methods. On the other
hand, in our present approach the separability of the La-
grangian is obtained without invoking its nonsingularity
at. all. What we do need to assume is that the second-
order dynamics b, does exist everywhere on TQ, and not
just on some submanifold of TQ. In the terminology of
generalized Hamiltonian dynamics, this means that, in ad-
dition to the absence of secondary constraints, we require
that all the primary constraints be first class. '

For the two-particle system, there are Lagrangian
models available in the literature, containing both interac-
tion and invariant world lines. ' However, in these
models, the independent parameter with respect to which
the velocities j are defined is not physical inertial time,
whereas in the present paper it is. For most of the other
models treating directly a general number of particles, no
Lagrangian is assumed at the outset, and again as in the
two-particle case the independent parameter is not ordi-
nary time. There are some attempts in the literature to
find a Lagrangian basis for these models, ' but it appears
somewhat unlikely that in the general case a Lagrangian
can be found. The directions in which the work of the
present paper may be further examined are then the fol-
lowing: (i) if the independent parameter is not ordinary
time but is dynamically determined, and if a Lagrangian
exists, then —for instance in the two-particle case—at
what point in the present calculations do we see a change
permitting interactions and objective world lines to coexist
and (ii) what happens if there are some primary second-
class and/or secondary constraints? We hope to come
back to these questions elsewhere.

'Permanent address: Centre for Theoretical Studies and
Department of Physics, Indian Institute of Science, Ban-
galore, 560012, India.
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