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A new relativistic coupling, covariantly formulated, with respect to a preferred frame is con-
sidered. The new coupling is illustrated here by a scalar field coupled to a particle. The new cou-

pling avoids unphysical features present in the traditional scalar-field —particle coupling.
/

I. INTRODUCTION

We consider the possibility of a coupling between a rel-
ativistic field and a particle, where the coupling is given in
a preferred frame. A necessary feature of the preferred-
frame coupling is a future-pointing, timelike vector
which, when 'adjoined with a right-handed spacelike triad
of vectors, forms a preferred Lorentz frame. Since nature
offers a variety of preferred frames, we are motivated to
establish a relativistic interaction, covariantly formulated,
with respect to such frames.

There are many examples of naturally occurring pre-
ferred frames. The frames comoving with the matter of
Friedmann-Robertson-Walker cosmologies are preferred
frames, and so is the frame in which the blackbody back-
ground radiation is isotropic. In the spacetime surround-
ing a static star, gravitational measurements can deter-
mine the timelike Killing vector which generates time
translations asymptotically. That vector is the "gravita-
tionally preferred" timelike vector of a preferred frame.
Indeed, in any experiment with an externally prepared
field, the frame attached to the apparatus which prepared
the field is "preferred. "

It is our intention here to always consider the relativis-
tic field and the coupled particle as existing in a back-
ground of other noninterfering fields. It is the physics of
those "other fields" which will specify the preferred
frame. We consider the background to be global, encom-
passing the entire spacetime, so that localized experiments
which prepare other fields do not define a preferred frame
unless the prepared field is the relativistic field itself.

In this work, we will illustrate the new coupling with
the scalar-field interaction. One reason for this choice is
that the scalar field is the simplest of all field theories.
Another involves the "unphysical" features of the tradi-
tional scalar field coupling to a single particle. The tradi-
tional coupling gives rise to a field-dependent mass. This
led Leiter and Szamosi' to find arbitrarily large preac-
celeration times for a particle moving (with radiational re-
action) in a scalar field. Furthermore, in one-particle
Dirac theory, a fermion interacting via the traditional
coupling with a scalar potential barrier does not exhibit
the Klein paradox. For this case, there is no hint of the
existence of the fermion's antiparticle. A final reason is
that classical equations of motion involving the scalar
field, remain experimentally untested since long-range sca-

lar fields have not been observed.
For the new coupling to be given below, there is a new

equation of motion under which particle mass remains
constant, and it is clear from the formulation that motion
with radiation reaction will not have arbitrarily large
preaccelerations. It will also emerge below that, in one-
particle Dirac theory, the fermion-potential-barrier prob-
lem does exhibit the Klein paradox under the new cou-
pling.

Except for the final section, we consider scalar fields on
Minkowski space. Our considerations are based on the
use of c-number fields, consistent with the one-particle
concept. A preferred frame in Minkowski space can be
established by directly preparing the scalar field itself, or
by electromagnetic measurements of the isotropy of the
blackbody background. Although blackbody background
radiation is formulated in a big-bang cosmology, we work
in the approximation of system scale size much less -than
the local radius of curvature. Furthermore, we assume
the time scale over which the preferred frame remains un-
changed to be much greater than the times of the scalar
field processes.

The paper is organized as follows. Notation is estab-
lished in Sec. II, and then the traditional scalar field cou-
pling is reviewed. The new coupling is introduced in Sec.
III. Remarks at the end of this section point out the
differences between the two couplings. In Sec. IV, conser-
vation of energy is discussed for both the traditional and
new couplings. Preferred frames in curved background
spaces are established in Sec. V, and conclusions are
presented in Sec. VI.

II. TRADITIONAL COUPLING

Consider a scalar field N(x), which obeys the Klein-
Gordon equation on Minkowski space:

(Cl+p )@=0. (2.1)

&~= —, f (ri""@„@„p@)d4x . — (2.2)

(ri" is the Minkowski metric with signature —2, partial

Equation (2.1) can be derived from a variational principle
with action
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derivatives are denoted by B&N and N &, and we work in
units such that c =1.)

We also consider a particle of rest mass m and scalar
charge g moving on a world line z"(~) with tangent
vt'=dz"/dr T.he free-particle equation of motion is ob-
tained from the action

~2

S = — mvv (2.3)

S«,d
———g f f &b(x)54(x z)(—v v~)' d~d x .

Varying N yields

( +p')@=—p„.d(x),
r2

p«,z(x) =g 54(x —z)(v~v )' dr .
7

(2.4)

(2.5a)

(2.5b)

Varying the world line z" provides the equation of motion

(v v )
'~ [(m+g@)v&(v v )

'~ ]=gB&@. (2.6)
d7

Changing to proper time s, where ds/dr=(v v~)'~, Eq.
(2.6) can be rewritten as

d [(m+g4)u„] =gB„4
d$

(2.7)

with the unit four-velocity u"=dz"/ds. The coupling
constant g has dimensions such that dim(g4) =energy.

Note that the effective mass is field dependent. Leiter
and Szamosi' found arbitrarily large preacceleration times
for a particle moving (with radiation reaction) in a scalar
field where the coupling was traditional.

The total action for particle plus field with the traditional
coupling is given by '

S=S~+S@+St„d,
where

For comparison, Eq. (2.7) is rewritten as

(m +g4) (u~ ) =g(@~ 4—& ~u u~ ) .d
ds

(3.6)

mdv/dt= —gV@. (3.8)

However, one should be able to solve a valid equation of
motion iteratively (to obtain a numerical solution) at all
points along the particle's trajectory. Equa'tion (3.6) fails
this criterion for a particle moving in a long-range field 4&

such that m+g+ comes arbitrarily close to zero' along
points of the particle's orbit, while Eq. (3.5) admits con-
vergent iterations at those same points.

For static scalar fields (BN/Bt =0), using (3.7), Eq. (2.7)
admits the constant of motion

E«.d=r(m+gc ),
and Eq. (3.5) admits the constant

(3.9a)

One can argue that Eq. (3.6) can be reformulated as an
equation with constant mass by introducing

g4 =m ln(m +g4},
but 4 will not obey a Klein-Gordon equation, so that kind
of reformulation is not germane.

To compare the new Eq. (3.5) and the traditional Eq.
(3.6), consider the case of 4 as a given external field. dt is
normal to the t=const hypersurfaces of the Lorentz
frame in which N(x) is constructed as a solution of the
Klein-Gordon equation. We now use

u&=(y, yv), y =1—v

(3.7)
d/ds=yd/dt, B&C&=(B,C, V'4) .

It is readily established that both (3.5} and (3.6) have the
usual classical limit

III. NEW COUPLING E„, =ym+g4 . (3.9b)

A new coupling for the scalar field is given by
~2

S„,„=—g f f @(x)t„v"54(x z)d~d x . (3.1)—

Here, tz is dual to the timelike vector of a preferred
Lorentz frame, and is given by the exact one-form

v = 1 —E,„,d(m +g4) (3.10a)

E„, and E„,d are the total energies (positive) for the
respective couplings. Equations (3.9) can be rewritten in
the explicit form

t„dx"=dt . (3.2) v =1—m (E„, —g4) (3.10b)

(&+p')C'= —p . (x),
~2

p„,„(x)=g t„v~54(x —z )dv,
T]

m [v„(v v ) '~]=gA„„v",
d7.Ap„4qt„——

Upon using proper time s, Eq. (3.4) becomes

(3.3a)

(3.3b)

(3.4a)

(3.4b)

m (u~)=g(C&„t u —
ted@ u ) . (3.5)

In Minkowski space, t& is both curl-free and a unit vector.
The action S=S@+S +S„, yields In a region of attractive scalar field (g@ negative) the

traditional coupling admits orbital points such that
m+g@ approaches zero with

~

v
~

approaching light
speed. Indeed, m+g@ can become negative and leave

~

v
~

undefined. On the other hand, the new coupling al-
lows normal orbital properties [cf. (3.9b) and (3.10b)] for
the same g4. This criticism is purely aesthetic, since
classical scalar fields have not been observed.

For quantum systems, no distinction between the two
couplings can be found at the level of the Schrodinger
equation, since both couplings have the nonrelativistic
limit (3.8). One must therefore search for differences at
the relativistic quantum level.
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Remarks
(a) Note that if 4= k—lr and p =0 (i.e., 4 is static and

long range), then Eq. (3.5) is, with the use of (3.7), the
equation of motion for the "Sommerfeld problem", with
Hamiltonian

H=(m +p )'~ g—k/r .

The orbit equation admits a well-known exact solution
with periapsis advance.

(b) For the Dirac equation, the new scalar field cou-
pling appears the same as an electrostatic potential. The
difference is that here @ can be a function of space and
tl Ale:

( +p )4= —g f 53(x —z)50(t —z )y 'dt

= —gy '53(x —z), (3.11)

where y is given in Eq. (3.7). The faster the source parti-
cle moves, the less it drives the scalar field.

For the new coupling, Eq. (3.3) yields

( +p )@=—g f t u 54(x —z)ds .

In the preferred frame t~u =y, and ds=y 'dt, which
implies

(Cl+p )N= —g53(x —z) .

Here, the source particle drives the scalar field indepen-
dently of the particle's velocity.

For an observer in an arbitrary Lorentz frame, the
motion of the preferred frame is given by

t =yv(1, V) .

[y"(pp g4t—p ) —m ]/=0 .

One has the additional possibility of adding gy"y 2&
[where A&„ is given in (3.4b)] to the mass just as the Pauli
moment term is added in electrodynamics.

For a static external scalar field, the Dirac equation for
a fermion interacting via the new coupling is formally
identical with an electrostatic coupling (for static fields
one can, in principle, distinguish between scalar and elec-
tric charge). Therefore, a potential barrier problem exhib-
its the Klein paradox. This is the standard exhibition
(within the one-particle model) of the limitation of the
external field approximation and a clue to the existence
of the fermion's antiparticle.

The Dirac equation for a fermion with traditional cou-
pling to a scalar field is given by

(y"p& —m —g@)/=0 .

With an external static potential barrier, as above, it has
been shown that the traditional coupling does not display
the Klein paradox.

(c) The traditional and new couplings provide different
sources for the Klein-Gordon equation. For the tradition-
al coupling, Eq. (2.5} can be written as

( +p )4= —g f 54(x —z)ds .

In an explicit inertial frame, ds =y 'dt, and so

The source particle has four-velocity

u =y„(l,u),
and ds=y„'dt. It follows that

(Cl+p )4= —gyz(1 —u.V)53(x —z) . (3.12)

Equation (3.12) implies that, in principle, a scalar wave
detector and a source particle at rest in the observer's
frame (u =0) could be used to measure the relative veloci-
ty between the observer and the preferred frame.

Note that when the source particle is at rest in the pre-
ferred frame, u =V, and Eq. (3.12) becomes

(CI+p )N= gy—„'53(x—z) . (3.13)

Comparison of Eqs. (3.11) and (3.13) shows that, for this
special case, the preferred-frame distinction disappears.

IV. CONSERVATION OF ENERGY

+JLCV tPV+ ~PV (4.1)

where tl'" is the field contribution and H" is the particle
energy-momentum tensor. For the scalar field, the canon-
ical and symmetric tensors are identical and are given by

t""(x)=4 "4'+ ,' rl""(p 4 —44' ) . —

It follows directly that

t&"„=4'"( +p )4,
and using the traditional equation (2.5}

tl'"„=—g4& f 54[x —z(s)]ds .

(4.2)

(4.3)

(4.4)

With overdots denoting d/ds, the particle contribution
has the form

H (x)= f M(s)z"i 54[x —z(s)]ds .

Straightforward calculation yields the divergence

H" „=f (Mz")54(x —z)ds .d
S

(4.5)

(4.6)

Conservation of total energy-momentum (and translation
invariance) is expressed by

Substituting Eqs. (4.4) and (4.6) yields the equation of
motion

d
(Mz~)=g@~ .

ds
(4.7)

Here z&i "=I, and it follows directly that M=m+gN.
Equation (4.7) is identical with the traditional equation of
motion (2.7).

A. Traditional coupling

If one considers a system consisting of particle plus
field exchanging energy, and if the system is translation
invariant, then energy conservation can be expressed with
the use of the total energy-momentum tensor for the sys-
tem
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B. New coupling

l. =m(U "v„)'~z+g@t„v~ .

The particle momentum is given by

(4.9)

The change of momentum density for the field can still
be expressed with t"" as above, and Eqs. (4.2) and (4.3)
remain valid. The new coupling equation (3.3) implies

tI' „=—g4'" t u gx —z s. (4.8)

We have not found an appropriate energy-momentum ten-
sor for the particle, and so we use the particle's canonical
momentum. The actions (2.3) and (3.1) yield

We will consider two classes of background spacetimes:
static spacetimes, where the timelike Killing vector selects
the preferred frame, and cosmologies where the preferred
frame is comoving with the matter.

A. Static spacetimes

Vgq ——a (qV )a,—1

where

(5.5)

Consider a static spacetime with hypersurface-
orthogonal timelike Killing vector P. The covariant
derivative of P is given by

or, in terms of u"=dz"/ds,

pI'=muI'+g +t~ . (4.10)

Conservation of total energy and momentum is expressed
by

dt =a 'g„dx~ .

Closure follows from Eq. (5.5), and tzt"=a
(5.7)

a =Pg„, and P d„a =d, a =0 . (5.6)

There is a closed one-form a 'g&dx" which is locally ex-
act and hence associated with t=. const hypersurfaces:

=0
ds

(4.11) B. Friedmann-Robertson-Walker
cosmologies

With Eq. (4.8) expressing t" on the particle's world line,
Eq. (4.11) is identical with the equation of motion (3.5).

V. CURVED BACKGROUNDS

Consider a Friedmann-Robertson-Walker (FRW) space-
time. The cosmological time t is related to the matter
four-velocity u" by

Here, test fields and particles moving in curve space-
times are considered. Each background, with curved
metric g&, will offer a particular preferred frame. The
field equations and equations of motion for the particles
are obtained from the actions of Secs. II and III with the
substitutions (minimal coupling)

dt =u~dx

where

VW~ =
3 (g~» u~u„)B, —B=Vqu& .

(5.8)

rj"'~g"", d x~v' —g d x,
54(x —z)d x~54(x —z)d x .

(5.1)
Closure of (5.8) follows since u" is tangent to an irrota-
tional flow.

(V V' +p )@=0, (5.2)

where V is the covariant derivative.
The traditional scalar coupling yields, from (2.3) and

(2.4),

u V [(m+gC&)u~]=gV„4, (5.3)

where u"=dz"/ds. The new coupling on a curved back-
ground, from (2.3), (3.1), and (5.1) gives rise to

Thus, using Eq. (2.2), the source-free scalar-field equation
on a curved background is

VI. CONCLUSION

A preferred-frame interaction for the scalar field has
been introduced and extensively compared with the tradi-
tional scalar-field —particle coupling. Difficulties with the
traditional one-particle equation of motion have been dis-
cussed, and it has been shown that those difficulties are
not present for the new coupling.

Since differences between the two couplings can be dis-
tinguished only at the relativistic level, and since classical
scalar fields are not observed, a natural next step is to at-
tempt quantization of the preferred-frame —scalar-field in-
teraction. The recent work of Hartle and Kuchar' on
path-integral quantization of parametrized theories pro-
vides an appropriate starting point.

Vo,up =gAp~u
(5.4)
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