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Conformal gravity is examined with the aim of constructing a renormalizable quantum field
theory of gravitation. Acting on suggestions of ghost-free, linear conformal gravity, we éxamine
conformal gauge theory. The correct choice of constraints is determined by comparison with the

~ ghost-eliminating constraints of the linear theory. (These are quite different from those introduced
previously in conformal gauge theories.) Einstein’s field equation appears as the integrability condi-
tion for the constraint. Minimal coupling to massless matter preserves local, conformal symmetry.

I. INTRODUCTION
A. Purpose

The ultimate goal of this work is the reconciliation be-
tween quantum theory and gravitation.

The conflict between quantum theory and gravitation
consists of the fact that general relativity, conventionally
quantized, is not amenable to known procedures of renor-
malization. Although the theory is successful, within the
rather limited range of experimental possibilities, an infin-
ite multitude of renormalization constants robs it of
predictive power in the strict sense. Nor is it advisable to
take the success of low-order perturbation theory as an ex-
cuse for ignoring the problem. Recent progress in the
electroweak domain shows dramatically how far one can
go by paying attention to matters of principle.

B. Conformal invariance

It has often been claimed that conformally invariant
field theories are “manifestly” renormalizable. It is a fact
that the interesting renormalizable field theories—those
that describe particles with spins exceeding one half, are
smooth deformations of massless, conformally invariant
theories. The Weinberg-Salam electroweak theory is of
course the most conspicuous example. Note that there are
probably no quantum field theories in Minkowski space
that are truly conformally invariant. But there are classi-
cal field theories (in compactified Minkowski space) that
are conformally invariant; and these, when carefully de-
formed and quantized, as by the Higgs-Kibble mecha-
nism, sometimes turn out to be renormalizable.!

Einstein’s classical theory of gravitation® in the absence
of massive particles, describes only massless fields, yet it
is not conformally invariant. The attempt made in this
paper is inspired by the idea that prospects for renormal-
izability can be improved by taking a conformally invari-
ant classical field theory as the point of departure, whence
a realistic quantum field theory may be achieved by
smooth deformation and quantization. Our approach is
characterized by our insistence on maintaining conformal
invariance as far as possible.

C. Unitarity

"Up to now, conformal theories of gravitation have been
plagued by ghosts. It is noteworthy, however, that this
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difficulty was understood only in the context of quantum
field theories. It seems likely that classical field theories
that violate unitarity upon quantization must be
unhealthy to begin with, that is, even when they are con-
sidered as purely. classical field theories. If so, it seems to
have gone unrecognized. The early rejection of Weyl’s
conformal theory of gravitation® was not related to its
spectral qualities, but was based instead on its failure to
account for low-energy, observed gravitational phenome-
na. This theory would therefore have to undergo a radical
deformation to make it phenomenologically relevant.

Utiyama and DeWitt* may have been the first to pro-
pose an Einstein-Weyl compromise. The action is a linear
combination of Weyl’s, conformally invariant and dom-
inant at high energies to ensure renormalizability, and of
Einstein’s, to explain the observed gravitational effects, all
of which are low-energy phenomena. (Utiyama and De-
Witt started with Einstein’s action and generated the Weyl
term through renormalization. The reverse is also possi-
ble, as in some versions of induced gravity.’) It has been
stressed that renormalizability of Weyl’s theory is related
less to its conformal invariance than to the simple fact
that the propagator has dimension 4. The investigations
by Stelle® confirm this, but unfortunately he found that
this very feature of the theory is also responsible for the
ghost. Ghosts can be avoided only at the very high price
of admitting tachyons, thereby abandoning the principle
that particles must have positive energy.

There is general agreement that unitarity (absence of
ghosts) is a necessary feature of any viable physical
theory. What distinguishes our approach is the use of this
requirement as a constructive principle. What is natural
and indeed standard procedure in quantum theory, both in
nonrelativistic quantum mechanics and in relativistic field
theories, seems not to have been applied systematically to
the problem of conformal gravity.

D. The linear theory

In Ref. 7, unitarity and conformal invariance were used
as constructive tools, to build a field theory with massless
quanta with helicities +2. The result is a specific theory
of free fields, together with precise requirements to be im-
posed on the sources (whether external or internal). We
do not insist on the uniqueness of this linear theory, nor
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have we made an exhaustive analysis of alternatives, for
destruction, on the basis of criteria that are not absolutely
established, is even riskier than construction. If an ac-
ceptable alternative to the linear theory of Ref. 7 (hen-
ceforth “ the linear theory”) should be found, then it
should be taken as the foundation for another constructive
attempt along the lines of this paper.

The linear theory is here understood as a free, classical
canonical field theory. It was quantized along the lines of
the Gupta-Bleuler indefinite-metric quantization pro-
gram.” The free quantum field operator was constructed
from a space of free field modes that carries a nondecom-
posable representation of the conformal group, character-
ized by the following two essential requirements: (1) In-
clusion as subquotients of the physical, massless, unitary
irreducible representations with helicities 2 and (2) ex-
istence of a nondegenerate symplectic form, necessary for
invariant quantization. The smallest representation of
this type that can be realized on a space of field modes is
the sum of two helicity-conjugate representations, one of
which is the following Gupta-Bleuler triplet:

D(3,2,0)
D(O,%,%)—»( ®D(1,0,2) ]-»D(o,%,%
eD(—1,0,1)

Here D(E,,j,j,) is a standard notation for an irreduci-
ble, positive-energy representation of so(4,2). The arrows
have the following meaning. If 4 and B are representa-
tions, then 4 — B is a nondecomposable extension of B by
A, in which B is an invariant submodule and A4 appears
on the associated quotient. (The arrow represents the
cochain map, or “leak,” from A4 to B.) The representation
on the left is analogous to the subquotient of scalar modes
in electrodynamics; these modes are eventually eliminated
by a gauge-fixing constraint that is analogous to the
Lorentz condition. The representation on the right is car-
ried by the invariant subspace of gauge fields; these
decouple if the sources satisfy appropriate conservation
laws. Next, D(3,2,0) appears on a subquotient that is
identified with the physical, propagating modes. The two
remaining central subquotients are nonunitary; one is fin-
ite dimensional and perhaps not very important; the other,
D(1,0,2), is infinite dimensional and is the one that we
shall refer to as the ghost. (We do not apply this epithet
to the relatively innocuous scalar and gauge modes.) The
ghost-suppressing constraints can be expressed as a dif-
ferential equation for the classical field. It has nothing to
do with gauge fixing, for it is completely gauge invariant
in the sense of the local, Abelian gauge group. Among
the modes used to define the quantum field operator,
those of the submodule D(3,2,0)—>D(0,%,%) satisfy the
constraint, so the gauge modes are not restricted by it. In
quantum field theory the constraint must be imposed as
an initial condition on the physical states, in the manner
of the Lorentz condition in QED.

The linear theory is thus characterized, not only by an
action principle, but by a gauge-invariant constraint. In
fact, the latter is stror:ger than the Euler-Lagrange equa-
tions and actually contains the essential dynamics. The
program of this paper is to find a nonlinear theory of in-
teracting fields that reduces to the linear theory just
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described in the first-order (i.e., linearized, free) approxi-
mation. The main concern is to generalize the gauge-
invariant, ghost-suppressing constraint. There are very
clear indications, in the structure of the linear theory, that
the nonlinear generalization must be a local conformal
gauge theory. Such theories usually need to be con-
strained; the linear theory will tell us how to choose con-
straints that eliminate the ghosts.

E. Summary

Section II introduces the local conformal algebra and
the associated notions of connection, torsion, curvature,
and metric. Section III deals with the problem of expand-
ing around a fixed point in field space and defines the
linear approximation. This enables us to establish an in-
tertwining map between the linear approximation to the
nonlinear gauge theory on the one hand, and the linear
theory on the other. In Sec. IV we use this intertwining
map to translate the ghost-eliminating, gauge-invariant
constraint of the linear theory into constraints on the
first-order torsion, curvature, and metric. These con-
straints are gauge invariant to lowest order and easily gen-
eralized to fully gauge-invariant constraints on the non-
linear conformal gauge theory. Up to this point, all calcu-
lations are done in Dirac’s projective six-cone notation. In
Sec. V we translate these partial results to Minkowski no-
tation and examine the meaning of the constraints to first
order. Einstein’s linearized field equation appears as the
integrability condition for the principal constraint. Weyl
theory is seen to result from a wrong choice of con-
straints. Section VI deals with integrability in the full,
nonlinear theory. The field structure is clarified and the
nonlinear field equations determined. As in first order,
the field equation is the integrability condition for the

_constraints. Finally, Sec. VII formulates matter coupling

and an action principle.
II. LOCAL CONFORMAL GAUGE ALGEBRA
A. Local algebra

Given a Lie algebra @ acting in a differentiable mani-
fold, we define an associated local algebra. Let {/,},
A=1,...,n be a basis for @, and let /[,—>M, be the
realization of @ by the vector fields that determine its ac-
tion in the manifold. Let /,—S, be a faithful represen-
tation by matrices acting in a vector space ¥V, and consider
the realization by operators acting on V-valued functions
given by

ly—mLy=M,+S,, A=1,...,n. (2.1)
Finally, let ¥, denote the vector space of & and define
the structure tensor:

[14,l3]1=Cslc .

The associated local algebra is the space of V-valued
differentiable functions A={A4}, 4=1,...,n, with the
structure determined by that of the Lie algebra together
with the action of the Lie algebra on the manifold:

(2.2)
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[AIALA’ABLB]:[A',A]CLC ’
[A,AIC=A4ABCSy +E'AC—EN'C, 2.3)
E=ANM,, E=ANM, .

The map A—§& is a homomorphism from the local alge-
bra onto the algebra of differentiable vector fields, the dif-
feomorphism algebra of the manifold.

Let /,—S, be a faithful representation of the Lie alge-
bra, by matrices acting in a vector space ¥V, and consider
V-valued differentiable tensor fields on the manifold. For
any A in the local algebra, let £ (£) denote the usual Lie
derivative associated with the vector field £=A-M. Then
A—.L(E) is a realization of the local algebra, faithful
only on the diffeomorphism algebra. Define the “extend-
ed Lie derivative” .Z , by

Lr=ZL(E)+AS, E=AM . ' (2.4)

Then A—.Z, is a faithful realization of the local algebra.
From now on the term “tensor” will be reserved for ob-
jects that transform this way under the action of the local
algebra. If a tensor field is a vector-valued function on
the manifold, then it will be called an “internal” tensor
field. :

B. Covariant derivative

Let the notation remain as above, except that [, —S
need not be faithful, and let there be given in addition a
particular representation I, —S 4, by matrices acting in a
vector space V, fixed from now on. We consider the
space of differentiable functions valued in V® ¥V :

d={d,1}, A=1,...,n,
a=0,1,...,d, d+1=dimV .

The fundamental object of local gauge theory is the co-
variant derivative Q. It is a map from the space of func-
tions valued in ¥V to the space of functions valued in
V&V, and it is determined by the following operators:

Qa=¢aALA, a=0,...,d, LA=MA+SA . (2.5)

An action of the local algebra on ¢ is defined by
A——)SA,

[LaQla=[AQul+ALQp=(82¢)"Ls, (2.6

ALP=(A45,).P . | 2.7)
Explicitly,

(Bpd)d=(L pp) gt —ea A1, (2.8)

ea=¢a"M, . (2.9)

The last term in (2.8) shows that ¢ is not a tensor; we
refer to this term as the “affine” term although &, is a
linear operator. Now Egs. (2.8) and (2.9) give

(Bpda=(Lre)a=[E,ea]+APep , (2.10)

so that e =(e,) is a tensor field according to our defini-
tion following Eq. (2.4), and more precisely a V-valued
vector field. :

The term affine as used above may be justified as fol-
lows. Consider a coordinate neighborhood, let (x?)
denote coordinates, and write d, =3d/0x° If Q, factor-
izes,

Qa =€q +¢aASA =eaa(aa +FaASA ) ’
then (2.8) can be recovered from (2.10) and

(8AT ) 4=(LAT)4—3,A1 .

(2.11)

In the first term .£, acts on " as on Lie-algebra-valued
one-forms. The last, affine term is closely associated with
the last term in (2.8). Note that we shall not suppose that
Q. factorize as above.

C. Torsion and curvature

Recall that Q maps the space of functions valued in ¥V
to the space of functions valued in V®V, and that Q,
acts in the former space. Similarly, Qo Q maps the space
of functions valued in ¥ to the space of functions valued
in V@ V®V, and is determined by operators Qqp acting in
the former space:

Qup=0.0p+(8."54)5"Q, .

Curvature and torsion are vector-valued functions (inter-
nal tensors) defined by

QaB_Qﬂa =RaBASA +taﬁyQy ’ (2.13)

with R valued in (VA V)® ¥V, and ¢ valued in (VA V)® V.
The formulas are

(2.12)

RogC=0."0"Cip +eadp’—eppa"—cap’d,C,  (2.14)
tag? =Copg” +dap’ —bpa” > (2.15)
with ¢ defined (perhaps not uniquely) by

[eqrepl=cqp"e, (2.16)
and

bap’ =025 4)5" - 2.17)

[Note that we do not (yet) have a metric in V.]
D. Generalizations

A more general affine realization of the local algebra is
possible. Although it is rather trivial, this generalization
will become useful later on, so we record the formulas
here. We have agreed to reserve the term tensor to objects
on which the action of the local algebra is given by .7 4.
In view of the appearance of the affine term in its
transformation law, let us call ¢ a “connection.”

Keep all the above notations, and suppose in addition
that 4 =(A4,°) is an internal tensor with values in the
same space as ¢; that is, in V@V, so that 5,4 = L, A.
Then

d=¢p—4

(2.18)
is a new type of connection, transforming as follows:
(8ad)a=(L Aot —eaA?,
(2.19)

(SAE)a=(er )a .
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The local algebra acts on the pair (&,e) in the same way
that it acts on (¢,e). What is new is that ¢ and e are not
related to each other.

Now let

Qu=¢€a+8a"S4 (2.20)
and proceed just as before:
Oup—0pa=Rap"Ss+1a5"Qy (2.21)
RopC=8a"06°C 15 +eabp’—epda” "—Caﬁy‘ﬁy , 222
tag" =Cap” +Gag’ —bpa” - (2.23)
Finally, one may verify that
RC—[(QaA)s—(a,B)]
=RopC—tag"4, —4,145°C 3. (2.24)

E. Conformal case

From now on the Lie algebra is the conformal Lie alge-
bra so(4,2). In R® we choose coordinates y={y®},

a=0,...,5. The pseudo-orthogonal metric is denoted
8=(8,p) and is defined by
¥ =8apy°y®
=(p02—(pH?- —(*?+ (),

it will be used to raise and lower greek indices. The Lie
algebra so(4,2) acts by y— Ay, where A=(Aa5) is a real
matrix such that AaB———ABa A basis is obtained by
writing A———A laB, with [,g=—Ig,,a,f=0, .

Then the structure is

[Lapslys]1=8pylas — Byl s —Opslay +Baslpy -

The representation denoted I, —S, is understood, from
now on, to be just this defining representation of s0(4,2).
We have V. =V AV.

To adopt our notation to this case it is enough to re-
place each capital latln index by a pair of greek indices,
and insert a factor = in the case that summation on a cap-
ital index is replaced by summation on a pair of greek in-
dices, since each pair is counted twice. We give explicitly
the formulas that involve the structure tensor:

Rag"=0a""0g,0+eadg’®—(@,8) —cag’®s vs (2.25)
Rog"°=8,""0p,5+eadp’®—(a,B)—copg’ds"® (2.26)
Rog"—[(Qa4)g"’—(a,B)]

=R — 1,574, —[A," 4,5~ (@,B)] . (227

The notation —(a,B) means subtract the preceding
terms, after interchanging a and 8. The notation (2.17) is
consistent with the present one.
Suppose in particular that @ =(a®) is an isotropic inter-
nal vector field:
a%,=0, (2.28)

and that A is the internal tensor field giveh by
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AP =aPs,t —a8,P . (2.29)

In this case cancellations occur in (2.27) and one gets
Rop"®—[(QaA)g®—(a,B)]=Rop"—10"4,7 . (2.30)

It will turn out that the ghost-eliminating constraint is
most directly expressed in terms of this quantity, rather
than the curvature itself.

The manifold is Dirac’s compactification M of Min-
kowski space M, realized as the projective cone y>=0 in
R®.8 The projection is given by y~Ay for AER—{0}.
The vector fields are

laB_’MaB=yaaB"yBaa (2.31)

Here d,=09/3y is not well defined, since it is not tangent
to the cone, but M,z is nevertheless well defined. (For
any differentiable ¢, d,¢ is defined modulo y,X, and this
cancels in M,g¢. In other words, M,g is tangent to the
cone.)

All fields are defined on the cone; the projection on M
is accomplished by fixing the degrees of homogeneity, for
example,

N Pr=Ng P, N=y-d=y,, (2.32)

where N is a real number. Minimal coupling, that is, the
generation of interactions by substituting d,—Q, in the
matter Lagrangian, suggests that N =—1. Additional
justification for this choice will be found later. For the
gauge parameter field A, the only fixed degree allowed by
the commutation relations is zero:
NA®=0.

This is an absolute requirement, and it appeared to be a
formidable obstruction against any significant comparison
with linear conformal gravity.

The projection introduces some slight changes in the in-
terpretation. Since the manifold is the pro_|ect1ve cone,
and not the cone itself, £= A% «9pand e, = =0 g0, are
not strictly speaking vector fields; they have multiplier or
fiber components as well. The map A—§ is a homomor-
phism from the local algebra onto the local Weyl algebra
(rather than the diffeomorphism algebra). Nevertheless,
we continue to refer to £ and to e, as vector fields and
other, similar abuses of terminology will also occur. Be-
cause of the close relationship between the manifold and
the vector space V =R® of the representation /,—S,, one
ends up using the same type of indices for the components
of world tensors and internal tensors. Thus, e, =e, aﬂ,
but the coefficients e,? are not the components of an
internal tensor field. Instead, (e,?) is a V-valued (lower
index) vector field (upper index). The distinction is ir-
relevant as far as global conformal transformations are
concerned, but not for the action of the local algebra. The
curvature and the torsion are pure internal tensors, that is,
(V®)*valued and (V® )>-valued functions, respectively.
The components of e, define a type of vierbein connec-
tion between internal and world tensors.

F. Minkowski notation

To translate from Dirac to Minkowski notation, intro-
duce the coordinates (x%),a =+,0,...,3,B in the usual
way,



xt=InA-y, xB=p2/2(Ay)?,
xt=y* /Ay, u=0,...,3,

(2.33)
(2.34)

where A is a constant, isotropic (A2=0) six-vector, with
A*=0 for =0, ...
a compactification of de Sitter space. To translate from
Dirac to de Sitter notation proceed in the same way but
with A? fixed, positive). The equation A-y =0 determines
a submanifold M ® of the projective cone M. Minkowski
space M can be identified with M after removal of
M>*:M =M —M>. The choice of A is thus the choice of
the location of Minkowski infinity in the homogeneous
space M.

If A4 is a V-valued function, with components
A"‘—S"‘ﬂAﬂ, then we define A4 ¢ and A,,,a =+4,0,...,B
by

A dy®=Ay)N 14, dx®
A4%9/3y%=(A-y)N ~1 499 /3x°

We find
A,(X)=(Ap) N0, %4,() ,
A%x)=(Ay) Vo 2a%y) ,
{0 amtp8=1{F %8, —x,A%A}
{OaYamtu8={AarBc —Aax*, 9},
ye=y /Ay .

(2.35)

The extension to fields valued in tensor powers of ¥ is ob-
vious. For the metric §=(3,5) we find that the nonzero
components are

3, S+B =SB+=1 Py
(8,,) being the Minkowski metric. Note that
A%, =4, .

Sﬂv=5“v, u,v=0,...,

Exactly the same formulas are used to relate a world vec-
tor field on R® (components 4% to a Minkowski complex
(A%, and a one- -form field (components B,) to a Min-
kowski complex (B ). Of course, the transformatlon
properties are different. See Eqs (2.36)—(2.42).

If the world vector field £ is tangent to the cone, then
£%,=0 and £2=0. All world vector fields will be
tangential, so fields of one-forms will be defined up to
YoX. This means that if £ is a one-form then £p is ir-
relevant. .

The same rules are applied to define A% from A%?
when A is a gauge parameter. If § =A‘M, =A“ﬂyaaﬁ,
then the nonzero components of A are (u=0,...,3 and
a=+,0,...,3)

RBe_ R jo—Fe, R+ucRph, AW
© If (A,) is an internal vector field (a function valued in ),
then

(LAA)  =[E+(N+DE*]A,, E=ErS,, (2.36)

(LAd)=E+NEDA,+AVA+A, AL, 237

,3. (It is also possible to regard M as’

_=y%X)and B
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=[E+(N—1)E+Adp+Ap*4,

This is a nondecomposable, faithful representation of the
local algebra. The invariant subspaces are A +=0(y%4,
=0).and A+—A =0(Ag=pX).

If (A%,Bg) are a world vector field and a one-form
field, then

(ZLAd)p (2.38)

v v

(JAA —[§+(N—1)§+]A+ g A+ (2.39)
(LAAWP=(E+NET)AH—EL AW, (2.40)
(ZLaB) =[E+(N+DEFIB, (2.41)
(ZL7B),=(E+NED)B,+EB, +ELB ., (2.42)

where E ¢, =0E%/dx®. These are two nondecomposable
representatlons of the local algebra, faithful only on the
Weyl group. The invariant subspaces are A4#=0 (4%
=0 (y*B,=0).

G. Metric and action functional

It is easy to construct scalar fields in terms of R aﬁ”s
but a little more difficult to find a gauge-invariant densi-
ty. Consider the world tensor with components

ab=()\’.y)—2N8aBeaaeﬁb , (2.43)

where N is the degree of ¢. The action §,=.7, of the
local algebra is indicated by (2.39) and (2.40) and in par-
ticular

(BpgW¥=(E+2NE +)g’“’—5fj,g‘"’——§,‘;,g“” .

This is a representation of the local algebra, faithful on
the Weyl algebra. (We ignore the 4+ components, which
amounts to passing to a quotient by an invariant sub-
space).

If |g|=det(g""), then in the physically interesting
case d =5 (u=0,...,3),

Balg | =(E+8NE*T—287 ) |g | .
If H is any scalar field, then

(2.44)

I=[d*(—|g|)~"?H (2.45)

is invariant under diffeomorphisms. It is invariant under
the Weyl algebra, and thus fully invariant under the local
algebra, if the degree of H is 4N. This suggests that the
action of the theory is obtained by taking for H an alge-
braic expression of the second order in R "%

The covariant metric tensor is also of interest. We shall
give a definition that will turn out to be relevant later, but
that cannot be motivated at this point. Suppose that
¢=A+¢, as in Eq. (2.18), and that A has the particular.
form (2.29), with the vector field (a%) subject to the fol-
lowing restrictions:

a%,=0, a%,=1. (2.46)
In this case
eaﬁE¢aa Yo =8aﬂ_yaaﬁ+aaﬁi éV(IBE&‘(‘IYB.V}' . -(2.47)

Recall that (e,?) is a V-valued (lower index) vector field
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(upper index). Now let (84") be a V-valued (upper index)
one-form field (lower index). The quantities

(e0)" =eP0g"

are then the components of an internal tensor.

As explained in Sec. ITF, all vector fields are tangential,
in particular eaﬂy3=0, so (e,?) cannot be invertible.
Similarly, one-forms are always defined modulo their
components along (y,). Now define (64"), modulo such
components, by

eoPOg =8,Y —yqa” . (2.48)
The solution of this equation is

05" =8g5" —ypa? —0g" , (2.49)

o=~(1+o)"le. (2.50)

Here 6 and @ stand for the matrices (557) and (€,%), and

~ means equality up to the inherent ambiguity of one- .

forms that we have just explained.
Finally, define (6,7) and (g,,) by

OgtdyP=6,"dx" ,
(2.51)
gvab :()Vy)—ZeaaebBSaB .

Compare with Eq. (2.43); in the case at hand N =—1. If
we expand (2.50), then we obtain (with y,dy®=0,
dxB=0)

§abdx“dxb=(k-y)—2(5aﬁ_gaﬁ_gﬁa+ cen )dy"dyﬂ

=gqpdy°dy® . (2.52)

Notice that g??=0 and ¢, , =0, so that (g,,) is the in-
verse of (g#¥). Also 6,%,=0 and 6,%=y“.

III. CONNECTION TO THE LINEAR THEORY
A. Formulation of the problem

The general framework of conformal gauge theory does
not contain a prescription for choosing the correct action
functional. Gauge invariance is a strong condition, but it
is by no means strong enough. An additional input is
needed, and this leaves room for hoping that unitarity can
be incorporated. Actually, the theory is characterized by
an action and a constraint, and it is the latter that is most
directly responsible for unitarity. The determination of
the constraint will be our main concern, the answer will be
obtained at the end of Sec. IV.

By unitarity of a quantum field theory is meant, rough-
ly speaking, the absence of interacting, propagating
ghosts. When unitarity is provable, then it is proved in
perturbation theory. Strong requirements need to be satis-
fied already at the lowest level of perturbation theory;
there are requirements on the free propagators, the con-
straints, and the currents. Under conditions that tend to
prevail in gauge theories, these may turn out to be suffi-
cient to ensure that unitarity can be extended to all orders
of perturbation theory. Here we do not study unitarity
beyond the lowest level of perturbation theory; at this lev-
el, quantization is determined by the propagator and the

CHRISTIAN FRONSDAL 30

constraints. Our program is to choose the action and the
constraints so as to be consistent with the unitarity of the
quantized field theory at the lowest level.

Since unitarity is not a property of classical field
theories, it can be discussed only in connection with
quantization, and therefore only in perturbation theory.
It follows that the classical field theory must be developed
as a perturbation theory, before any sensible discussion of
unitarity can be made. We are thus forced to introduce
perturbation expansions, and to study the properties of
our field theory in the linear approximation. Suppose,
then, that

¢aﬁr=naﬁr+haﬁr , (3.1)
where 7 is a fixed “background” field. Our first problem
is to make a sensible choice of this fixed field.

Equation (3.1) has an analog in the expansion of the
metric field g,,=mu,+A,,, in Weyl’s conformal theory
of gravitation.? Here 7 is a fixed, background metric. If
it is flat, then it is conformally invariant; that is, it is a
fixed point, with respect to conformal transformations, in
the space of metric fields. This has the very satisfactory
consequence of making the classical theory conformally
invariant to each order of the perturbation expansion.
Our case is different. The only fixed point in the space of
tensor fields of the type of ¢ is given by 7,77 (y)=y?8,"
—y78,P, and this is unsuitable. First, the degree of homo-
geneity is -+ 1, instead of the preferred value — 1; see Sec.
IIE and below. Second, the vector fields e, would reduce
to yaﬁ , and this would trivialize the first-order curvature,
as will be seen below. We must conclude, therefore, that
7 cannot be a fixed point, and that our theory is probably
not conformally invariant to each order of perturbation
theory.

At this point one may be tempted to give up, but in fact
there are several reasons to think that this would be
premature. First, the fact that % cannot be conformally
invariant in our theory simply means that it is closer to
gauge theories cum Higgs-Kibble mechanism than to
Weyl gravity. Second, manifest covariance in the sense of
Dirac’s six-cone formalism seems to be a stronger condi-
tion than conformal covariance per se, as is seen when one
tries to write Maxwell’s theory in Dirac’s notation.

Our choice for 7 is given by

1) =(A-y)NABSY —AY8,P) , (3.2)
where A is the constant, isotropic vector field introduced
in Sec. IIF, and N will be taken equal to —1. The ap-
pearance of a fixed direction in six-space cannot be avoid-
ed; the fact that this direction is determined by A is ex-
pected to minimize the damage. After all, any imbedding
of Minkowski space into the projective cone involves a
fixed direction; in fact, A-y =0 is the equation that deter-
mines the points of M — M, that is, the points at infinity
(Sec. II F).

Once is has been decided to make use of A to manufac-
ture 7, then (3.2) is not the only possibility. Lengthy cal-
culations have been carried out with the most general ex-
pression that relates n covariantly to A, that is, expres-
sions that are invariant under the stabilizer of A in so(4.2)
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(the global Weyl algebra). The result is that every modifi-
cation of (3.2) is detrimental; in particular, only (3.2) leads
to vanishing zeroth-order curvature and torsion, the im-
portance of which will be discussed in detail below.

We now expand, using (3.1):

eazoea+leaa caﬂy= 2 "caﬁy ’
(3.3)
Raﬂ?’a: EnRaBys ,

where the summation is over n =0,1,..., and the nth
term is homogeneous of order » in the field 4. To zeroth
order in A we find, using (3.2) and (2.9), (2.16), and (2.31),

Oea"_‘DaEaa_j’\a}\"a, J/"\aEya/x'y ) (3.4)
O,5" =0, °Rqp"°=0. (3.5)
Here we have set N =—1, otherwise the torsion would

not vanish; this choice will be adhered to from now on.
As was pointed out in Sec. I E, consideration of minimal
coupling also points to N =—1. [Strictly, °caB7’ is de-
fined by (2.16) only up to expressions of the form g,gA".]

If, as is expected, the action will turn out to be a bilin-
ear functional of the curvature and the torsion, then the
disappearance of °R and of % are welcome. In this case
the action will contain no term linear in A, so that ¢=7
will be an extremum of the action and a solution of the
field equation, as required for the internal consistency of
the perturbation theory. In addition, it means that 2R and
2¢ will be irrelevant for the linear approximation. The
quantities to be studied in the linear approximation are
therefore 'R and !c. Inspection of these quantities will
suggest our approach to the problem of unitarity. Note
also that the vanishing of °R and °c are necessary and suf-
ficient conditions for 'R and !c to be gauge invariant.

To begin with,

1e,,,:ht,,’ya,,, ha'yshaﬁyyﬁ , (3.6)
IcaﬂyzDahB'y——(a,B) . (3.7)

Notation: A dot replacing an index will always have the
same meaning as in (3.6). The second term in (3.7) is
equal to the first term, except that a and B are to be inter-
changed, and is to be subtracted. Below will appear co-
variant components h,g, of h; indices are raised and
lowered by means of the pseudo-orthogonal six-
dimensional metric, without changing their order.

The expression obtained for 'R can be arranged as fol-
lows:

A-y'R s =DoX gys +Nap’X oys +Nay X pos
+71a56XBya_(a’B) ’ (3.8)
Xopy =AVhagy —Aghay —Ayhep. , (3.9)

where D, is the differential operator defined by (3.4). [If
we had expanded around the fixed point y%8," —y?8.°,
inst,c\:ad of (3.2), then D, would have been replaced by
yoN, and the first-order curvature would have been a
purely algebraic expression containing no derivatives.]
The linear, conformal theory bears a certain resem-
blance to the theory developed here. This linear theory
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contains a ghost that can be controlled by means of a con-
straint. The basic field is a third-rank Dirac six-tensor.
The important constraint, that effectively eliminates the
ghost from the physical sector, looks very much like
IR apys +(aB,y8)=0. It is reasonable to suppose that this
linear theory is closely related to the first-order approxi-
mation of our nonlinear gauge theory. Our strategy will
be to try to find an intertwining between the two theories,
and to profit from our understanding of the former, to
identify and eliminate the ghost from the latter. To dis-
cover the intertwining map we shall compare the gauge
groups. This will be done in this section; then, in the next
section, we shall use this mapping to discover the con-
straints that must be imposed on the full, nonlinear gauge
theory. »

Since 7 is fixed, the local algebra acts on 4 according to

(BAR)LPY=(840) .

Only the affine term is relevant in the first approxima-
tion. (Compare linearized Einstein theory.) It is found by
replacing ¢ by 1 in the expression (2.8) for 6,¢. The re-
sult is

(aAh)ﬂ:(x-y)—2[(A-yAﬂ°—ABA‘“)A;SaY—(ﬁ,y)]
—DyAPY . (3.10

This formula will be used to find the intertwining map.

B. Review of the linear theory

The field of the linear theory is a third rank six-tensor
of mixed symmetry,

\I/;,ﬂ,,—i—\llf,,,,ﬁzﬂ, \I’:ZB‘V+\I’IB‘Y‘1+ \II;/aB=0 . (3.11)

(The field component. W,g, was denoted Wg,, in Ref. 7.)
The free field satisfies a wave equation and several con-
straints. Most important is the constraint that eliminates
the ghost. This constraint is gauge invariant, and its non-
linear analog is therefore expected to have an intrinsic,
geometric meaning, unlike the remaining constraints that
are of the usual gauge-fixing type. Only this gauge-
invariant, ghost-eliminating constraint will be discussed
here.

Let

grad,=y,3*— (2N +4)3,, N=y-3, (3.12)

and let d’ be the operator (denoted d in Ref. 7) that acts
on antisymmetric tensor fields of rank 2 and degree + 1,
and on tensor fields of rank 3 and mixed symmetry of de-
gree 0, according to

(d"A)gpy = 2gradaxﬁy — grgdﬁxya — grad,,xaﬂ , (3.13)

(d"V')apys = grad,¥p,s— (a,8) +(afB,v8) . (3.14)

The constraint that exorcises the ghost is ,
d'vV'=0. (3.15)

The operator d’ is a coboundary operator, d'od’=0.
The physical, massless modes, with helicities *+2, are in
the cohomology space Kerd'/Imd’. That d’od’'=0,
means that d’'V’ is invariant under the “gauge transfor-
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mations” defined by

SV'=d’'A . (3.16)
The tensor d'¥’ looks much like a symmetrized curvature
tensor, and our intertwining map will relate d'¥’ of the
linear theory to the first-order curvature of the nonlinear
theory.

A number of obstructions prevent a direct confronta-
tion between the two theories. (i) The degree and the sym-
metry type of W' are different from those of k. (ii) The
gauge transformations are quite different, involving first-
order differential operators in one case and the second-
order operator grad in the other. (iii) Finally, the degrees
of the gauge parameters are different: this is perhaps the
most fundamental difficulty. We shall solve these prob-
lems, one at a time.

C. Reformulation of the linear theory

We shall deal with the problem of symmetry first. Let
¥ be a tensor field of degree 0, antisymmetric in the last
two indices:

Yopy+Ways=0 .
Then W is the sum of two fields with definite symmetry:

3Wop,=Vopy +Yapy » (3.17)

‘I’:tﬁy = 2‘I’aﬂr - \I’Bra —Yyap »
(3.18)
Wt;'By = \Paﬂr + \I'Bra + Wraﬁ ’

¥’ being of mixed symmetry, satisfying (3.11), and ¥"' be-
ing totally antisymmetric. The new field W has the same
symmetry as h. We must now reformulate the linear
theory in terms of W.

Define a new coboundary operator d by

(dA).p,=grad,Ag, , (3.19)

(d¥)qpys=grad,¥g,s—(a,B)+(aB,vd) , (3.20)
and impose the constraint

d¥=0. (3.21)

Since dod =0, dW¥ is gauge invariant under the general-
ized gauge transformation

SW=dA . (3.22)

Like ¥, dV¥ is a mixture of two symmetry types, one part
has box symmetry and the other is completely antisym-
_metric. The first part depends only on ¥', therefore (3.21)
implies (3.15) and eliminates the ghost from ¥'. As for
the skew part W", it is trivialized by (3.21). This will be
discussed in more detail later on. For now, let us suppose,
for simplicity, that ¥ satisfies the gauge-fixing conditions
y*W,p,=0 and grad®¥,g,=0. Then contraction of (3.21)
with y* tells us that ¥"'=0. Equations (3.19)—(3.22) are
therefore no more than a reformulation of the linear
theory.

D. The intertwining map

We next confront the gauge transformation (3.22) of the
reformulated linear theory with the gauge transformation
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(3.10) of the first approximation to the nonlinear theory.
The most dramatic difference is that the operator grad,, in
(3.19) is a second-order differential operator, while D, in
(3.10) is first order. In view of this situation we cannot
hope to find a simple intertwining between the two gauge
groups without accepting some restrictions. It will be suf-
ficient to intertwine (large) subgroups. Henceforth, we re-
strict the gauge group of the linear theory by the condi-
tion

A%grad,A g, =0 (3.23)

on the gauge parameter A.
In this case we have

grad,Ag,= —4D,Ag, .

[D, was defined in Eq. (3.4) and grad, in (3.12)]. The
gauge transformation (3.22) can therefore be replaced by

(8%)apy=DaAgy - (3.24)

| Since A has degree + 1 and A has degree 0, we now map

the restricted gauge group determined by (3.23) into the
group (3.10) by :

Apy=AyAg, . (3.25)

The image is the subgroup determined by (3%)?Ag,=0.
Now it is easy to intertwine (3.24) with (3.10). Define
E and f by [see notation defined in (3.6)]

Efr=(Ap)" 1P,
(3.26)
— -1 .
FB=(hy)~UA-pEPY —APEV)A, ,

then (3.24) gives 8E = A, and it is easy to see that the map
WA defined by

hPY=(Ap) NP8 —fY8, P+ A EPT —W,FPr) (3.27)

transforms the action (3.24) to the action (3.10). This is
not the most general possibility, for any gauge-invariant
quantity (for example, such as can be constructed from
AW A7 which is gauge invariant) can be added on the
right. But (3.27) is the simplest intertwining map, and at-
tempts at adding complications have not been encourag-
ing.

Equation (3.27) intertwines the action of the gauge
groups, but it does not intertwine the global conformal
transformations. Indeed, the conformal Lie algebra is just
the subalgebra of the local algebra that is obtained by re-
stricting the functions A®? to be constant over the mani-
fold. The action on A includes the affine part given by

.the first term on the right-hand side of (3.10); this term

arises from the fact that the background field 7 is not
conformally invariant. In the linear theory, on the other
hand, the conformal algebra acts linearly on ¥, and has

. nothing directly to do with gauge transformations. Sup-

pose we ignore the affine part of 8,4, and retain only the
linear part, so that A transforms like a Dirac tensor of de-
gree — 1. Even then, Eq. (3.27) fails to intertwine this ac-
tion with that of the linear theory. This is inevitable,
since the degrees of 4 and W are not the same.

- This situation is much the same as in Higgs-Kibble
theory. There, the starting point is a theory of massless
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fields, conformally invariant except perhaps for the
Higgs-Kibble potential.! The shift of the origin in field
space, u(x)—const+u'(x), does not destroy conformal
invariance but the action of the conformal algebra on u’
includes an affine term, and invariance is therefore not sa-
tisfied to each order of perturbation theory. Nevertheless,
in spite of the noninvariance of the background 7, there is
a sense in which the constraints of the first-order gauge
theory are invariant. The conformal action on ¥ defines,
through Eq. (3.27), a new conformal action on h. The
first-order constraints are a covariant set of equations
with respect to this action of the conformal algebra on 4.
We shall return to this point at the end of Sec. IV.

IV. GHOST-ELIMINATING CONSTRAINT

A. Formulation of the problem

The map (3.27), that relates the field A of the nonlinear
theory to the field ¥ of the linear theory, is gauge invari-
ant in the sense that the gauge transformation (3.24) in-
duces the affine gauge transformation (3.10). It follows
that any gauge-invariant constraint on ¥ induces a
gauge-invariant constraint on 4. Our task will be to find
the gauge-invariant constraint on 4 that is induced by the
map (3.27) from the gauge-invariant, ghost-eliminating
constraint d¥=0. We are here concerned only with the
first-order approximation to the nonlinear theory, but
later we must generalize this constraint on A to a con-
straint on ¢ that is gauge invariant in the sense of the full,
nonlinear gauge theory, and there lurks an obstruction
that we had better take into account at this stage.

There is a strong presumption that the constraint
dW¥V =0 corresponds to a constraint on the curvature. The
curvature, as well as the torsion, are manufactured from ¢
and its first derivatives, while d¥ contains second-order
derivatives of W. It is clear that the intertwining map
(3.27) cannot relate a second-order differential operator to
a first-order differential operator. We shall therefore re-
place the constraint d¥=0 by an equivalent condition
that contains only first-order derivatives. (The new condi-
tion will actually be weaker; it is equivalent to d¥=0
only in the sense that it is equally effective in separating
the ghost from the physical modes.)

B. Elimination of higher derivatives
Consider Eq. (3.21), namely,
(dW)apys=(y0°—23,)¥g,5— (a,B)+(aB,y8)
=0. | 4.1)
It is evidently equivalent to the pair

3Ygys—(a,B)+(aB,y8) =y Xgs—(a,B)
+(aB,yd), 4.2)
2Xg,5=03"Wp,s . 4.3)

Equation (4.2), taken by itself, and understood in the sense
that “there exists a field X such that (4.2) holds,” is al-

ready a very strong condition on W.

Since Eq. (4.1) incorporates the wave equation, one
might think that (4.2) contains only the constraints and
that the second-order equation (4.3) is the wave equation.
Instead, as will be shown in Sec. IV E, Einstein’s linear-
ized field equation actually follows from (4.2). The addi-
tional information that may be contained in Eq. (4.3) is
therefore practically negligible, and we shall henceforth
consider (4.2) instead of (4.1). In this way we avoid con-
straints that contain second-order derivatives.

Finally, let us note that Eq. (4.2) can be written

(DY) opys=Dy¥Yg5—(a,B)+(aB,78) =0, (4.4)

by which is meant that the quantity on the left is equal to
an expression of the form

(YX)apys=yoXpys—(a,B)+(aB,yd) . 4.5)

The differential operator D, was defined by (3.4). It
turns out to be convenient for our subsequent analysis to
break up (4.4) into several parts.

If B is any tensor field (in the linear or linearized
theory), let ‘B denote its transverse part, defined by

By... =(8,°—Ae$) - - (- )B,... ,
$o=po /Ay . (4.6)

A tensor field is determined by its transverse part and by

one or more contractions of the form y®B,.... In the
case of (4.4) it is equivalent to the pair
t(D\y)aﬁyazO, ya(D\I’)aﬁyszO . (47)

We shall refer to the first (second) equation as the princi-
pal (secondary) part of the constraint (4.4).
Applying y? to (4.7) one gets

\pﬂs.+\l’sﬁ.zDBBs+D5Bﬂ, BﬂE\I/.B. ’ (4.8)

where a dot in the place of an index stands for contraction
with y¢, as in Eq. (3.6). We substitute this back into (4.7),
and separate the two symmetry types, to obtain the two
equations

3Wg,s~ > Dg¥lys, (4.9

cycl
2DgP,5—D,Psg—DsPg, ~0,
(4.10)
PB‘V = \I’fﬁ.', +DﬂB7' ——-D?’Bﬂ B

The projections ¥’ and ¥ were defined in Eq. (3.18).
The set (4.8)—(4.10) is equivalent to the second equation
in (4.7).

Close examination of (4.10) shows that the space of har-
monic solutions of this equation for P is finite dimension-
al. It carries the finite-dimensional representation that
appears in the nondecomposable field representation of
the linear theory. To simplify our task of translating the
constraints into equations for A, we shall eliminate this
finite space of unphysical modes. We do this by replacing

(4.10) by the slightly stronger condition
Pg,=0. (4.11)

Equations (4.9)—(4.11) are gauge-invariant restrictions on
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Wspy and on Wig,. They cannot be strengthened further
without blocking the gauge.

C. The first-order constraints

To express the constraints in terms of 4 we must use
(3.27). Let us write that equation as follows:

haﬂ?’=(}\'.y)—l(fﬂsa‘y_f‘yaaﬂ)'l'i;aﬁy ’
}Taﬁr = _(A'y)_l(waﬁr_kaﬁawoﬁr) :

All the constraints can be expressed simply in terms of 4.
The simplest constraint on 4 follows directly from
(4.12):
h~.57 Ey"f{aﬁy =0.
Equation (4.13) is equivalent to the statement that there
exists a field E, such that ¥ has the representation

(4.12)
(4.13)

(4.14)

(4.15)
I

‘I’aﬂ‘y= '—(}"'y)i;aﬁy +)\'aEﬁ1/ s

(Do Wgys)=—(A-y)(Dghgys) ,
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with & satisfying (4.14). We insert this representation into
the constraint equations and eliminate E.
We begin with (4.11); this gives the means to eliminate
E B‘V:
2E31, =h7,ﬁ. _hBY‘ +D1,Eﬁ. —DﬁEy. .

Equation (4.9) takes the form

> (hgys—Dghys.) =0 (4.16)
alt

and (4.8) becomes
hgs. +hsp.+DgEs. +DsEg ~0 . (4.17)

The secondary part of the constraint is given by (4.14),
(4.16), and 4.17). In (4.17) E p- cannot be eliminated and
stands for an arbltrary vector field of degree zero, satisfy-
ing y EB =0.

Turning to the prmcnpal part of the constraint, we have

“Dahgs)=Dg'hgs+(Ay )" Aa'h gys + (A p) T 8 — P AN Mg s+ Ay Higps + Aoy

t(Daﬁdg,,s)—(a,B)z IR:zﬁyﬁ ’

with the definitions (correct to lowest order)

'Rugys =Dahgys—(0,B)— 10N oys » (4.18)

;;ByEcaBY"’EaBY_i{BaY . (4.19)

The principal constraint is the expression (4.18), sym-
metrized with respect to exchange of the pairs (af3,78):

IR,',,B,,S—HaB,yS)zO (4.20)

It should be emphasized that the linear approximation
(3.8) of R cannot be used in place of 'R’ in Eq. (4.21). We
have made a thorough investigation of this possibility,
and we have found that the physical modes would in this
case be eliminated along with the ghost.

D. Nonlinear gauge-invariant constraints

Returning to the nonlinear gauge theory, let us write
the expansion (3.1) as follows:

¢aﬁy=AaﬂY+$aﬁy7 aaﬂyzi;aﬁy ’
ALY =aPsr —a?8,P, aP=(Ay) AP+ fP).

(4.21)
(4.22)

Here (af) is an internal vector field and (4,7") is an
internal tensor field. The expansion point is given by
¢=f=0. Note that the formulas are exact, though the
constraints that the fields must satisfy are so far known
only to lowest order in ¢ and f.

The expression (3.26) for f? shows that fPyg=0, so
that

abyg=1. (4.23)
Also fPrg=0, so that to first order,
aPag=0. (4.24)

r
We shall take both of these equations to be exact. This

does not amount to a loss of generality; it only restricts
the decomposition in (4.21). For e, we now have

4.25)
(4.26)

e,=0 —yw-&-}—eﬁ, ,
=4.""y5d, .

The simplest part of the constraint, Eq. (4.14), has a
very simple generalization, namely,

ya?p' Pr—=o. 4.27)

This is gauge invariant, for the affine term in §,¢ is
—ea AP, and

Y%, APY =N AP =0

when (4.27) holds.
Equation (4.16) also generalizes easily, for it is the first
approximation to

2, Lapy ~0

cycl

(4.28)

This is evidently gauge invariant, since (f,g,) is an inter-
nal tensor. In (4.28) we may indifferently write taﬁ},, de-
fined by (2.23), instead of 2,,, defined by (2.15).

Equation (4.17) also has a straightforward generaliza-
tion. If we define the covariant metric (g,,) as in Sec.
II G, then (4.17) is the first-order expression for the fol-
lowing condition:

(guv) is conformally flat . (4.29)

This is seen by éomparing (4.17) with (2.52).
Finally, (4.20) evidently is the linear approximation to

Rgys+(aB,yd) =0 (4.30)
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where R g, is the quantity that was expressed in two dif-
ferent ways in (2.30), the simplest being

Ripys=Rapys—tap”Aoys - 4.31)

To summarize, Eqgs. (4.27)—(4.30) is a set of nonlinear
constraints, gauge invariant in the sense of the full, con-
formal gauge theory, that reduces to the linear constraints
(4.14), (4.16), (4.17), and (4.20) in the first-order approxi-
mation around the fixed point f*=0=4¢,?".

It should be stressed, however, that (4.30) is not the .

only possible generalization of (4.20). One may add any
internal tensor, with the right symmetry and degree, that
vanishes in the zeroth and in the first orders. Such a ten-
sor is, for example,

taptys’
Later, we shall make good use of this freedom to improve
(4.30).

E. Global conformal invariance

It was pointed out, in Sec. III D, that (global) conformal
invariance is probably lost in perturbation theory. Yet,
something close to full conformal invariance is recovered
in the first order. The nonlinear constraints (4.27)—(4.30)
of the full gauge theory reduce to Eqgs. (4.14)—(4.20) in the
first order. Now, if new transformation properties are as-
signed to h, determined by the map (3.27) and the
transformation properties of W in the linear theory, then
this set of constraints is conformally invariant. This is
satisfying, but on reflection it seems to be not quite sure
whether it is essential. We would like to stress that the
central point of our derivation has been to make use of the
fact that the linear theory is ghost free; its conformal co-
variance is almost coincidental. The resolution of this
paradox must be sought in the circumstance that the
first-order constraints that were derived from the linear
theory all turned out to have natural generalizations to
fully gauge-invariant nonlinear constraints.

V. FIRST-ORDER CONSTRAINTS
AND WAVE EQUATION

A. Constraints in Minkowski notation

One of the important conclusions that must be drawn
from the linear theory is that ghost-free conformal gauge
theory cannot be based merely on an action principle.
Rather, its formulation includes an action principle to-
gether with a gauge-invariant constraint. Furthermore,
the constraints are likely to be stronger than the Euler-
Lagrange equations, which leads us to believe that the
choice of the action is essentially fixed by the constraints.
This is not to discount the role that is to be played by the
action principle, nor to claim that the determination of
the action is entirely straightforward, but only to suggest
that the constraints may reveal some of the essential
features of the theory. In this section we shall study the
constraints, their consequences, and their completeness.
We show that they contain Einstein’s linearized field
equation and discover the relationship of our theory to

(4.32) -

Weyl’s conformal metric theory.

The nonlinear, gauge-invariant constraints were given
by Eqgs. (4.27)—(4.30). The geometric interpretation of all
these equations is not yet understood, but they do at least
have the virtue of being invariant under the infinitesimal
transformations of the local conformal algebra (gauge in-
variance). The main criterion for choosing the constraints
does not, however, come from geometry, but from the re-
quirement of unitarity. This is a criterion that we know
how to apply only in perturbation theory; let us therefore
return to the linearized constraints given in Sec. IVC,
Eqs. (4.14), (4.16), (4.17), and (4.20).

The meaning of (4.14)—(4.20) will become clearer when
these equations are expressed in more familiar notation.
The translation from Dirac to Minkowski notation was
explained in Sec. IIF. We shall omit the caret and use the
same letter 4 for the Dirac complex (4, ay By
=0,...,5 and for the Minkowski complex (hg,),a,b,c
=+,0,...,3,B. Since only the latter appears below
there will be no ambiguity. Indices p,v,A,p take the
values O, . . ., 3.

Equatlon (4 14) tells us that 4, =0 for all values of b
and c, and (4.16) means that all the components R pva Of
the antlsymmetrlc projection k" of h can be expressed in
terms of 7 +—hm,+ hv,H_ Next, Eq. (4.17) is an ex-
pression for the symmetric part of 4, interms of E,, |
and Ep,. Here is all this information collected:

Ryap=0,a,b=+,0,...,3,B, (5.1)
hp.vl._ 2 2 9 (hvl+ hhv+) (5.2)
cycl
Ryyy +hyyy =3,E,+03,E,+8,,Ep , (5.3)
with E,=—E,,,a=0,...,3,B.
Finally,
R;szauﬁvM+8phﬁva+8;L;j;v7»3_(:u“av) ’ (5.4)
and the principal constraint (4.20) reduces to
Guvip Ea,ﬁw, + 8k — (1,v) + (v, Ap)
=0, (5.5)
hyy= ~,wv+hv3y (5.6)

This tells us that (~,wx) is determined up to a gauge
transformation by (%, ); but it also places a restriction on
(hy,y). Integrability of (5.5) implies that (h,,) satisfies
Einstein’s linearized field equation.

B. Einstein’s linearized field equation

_ Equation (5.5), seen as a differential equation for (%, pvp)s
is integrable if and only if

eMem™o78,.9, 0,13, =0 .

This is precisely Einstein’s linearized field equation:
R(h)pr— 38, R (h)ye=0,

R(h)p,= alhm —0,05h 47 —08,05h5p+08,0:h 04 -

It was obtained from the principal constraint (4.20),

(5.7
(5.8)
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without any help from the other constraints. It is very
satisfying to find that this field equation is the condition
of integrability of the constraint.

C. The wrong constraint, Weyl theory

In the linearized theory, all constraints can be interpret-
ed as a means of cutting down the space of modes of the
field. The smallest space that can be defined this way will
include the physical modes and some longitudinal or
“gauge” modes that can be gotten rid of only by passing
to a quotient space. By definition, it does not contain any
ghost. True ghosts, as opposed to ‘“‘scalar” or gauge
modes, can be eliminated by gauge-invariant constraints,
while gauge fixing will take care of the scalar modes.

It is evident, however, that the constraints imposed so
far are incomplete, in the sense that the remaining redun-
dant field components cannot be removed by gauge fixing,
for the theory contains gauge-invariant quantities such as
t that have not yet been constrained. We shall now exam-
ine the consequences of setting ¢ =~O0.

According to (4.12) and (3.7), to first order, in Dirac
notation,

apgay, Faﬁsﬂaagy“ ,
and the definition (4.19) gives

caB’y zaa'e"ﬂ,, _

A;ﬁyzilvaﬂy +aa?&y —(a,B) .

The sign ~ means, here as always, equality up to y,
terms. The equation taﬂy ~0 can be solved for 7, aBy> and
one obtalns

2ha3¥~_aﬁgay_aaaﬂy_(ﬁa'}’) . (5.9)

The quantity g,g was defined by (2.52); here the contri-
buting terms are —€,g—€p,.
In Minkowski notation it reads

Zi;p,vk = _avgp,l _apgvk +28pV€AB —(n,A) .
When this is used to eliminate 7, wa from (5.5) one gets

lexp= —apaAng+8u;‘(hvp-—~afpg—ap’€vvg)
—(u,v)+(uv,Ap)
=0.

The traceless part of this is the first-order conformal cur-
vature tensor of (g,,), so this metric is conformally flat,
in agreement with one of the secondary constraints. The
trace is

G;l.vp.p = azgvp - atﬂagup - apaagav + avapgaa
+2(hvp~aﬁpB—apEvB)+6vp(hpy fZaoéqu)
=0. (5.10)
When this is solved for 4 wv» and the solution is inserted
into Einstein’s equation (5.7), then one finds that the field
€ cancels out and the equation obtained for g is the linear-
ized wave equation of Weyl’s theory.

In this way some contact with Weyl’s theory is made,
but it is highly spurious. First of all, the constraint
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Z,m,zo was not suggested by our study of ghost-free
linear theory. Second, a secondary constraint requires
that (g,,) be conformally flat. Not only that; if ¢,4, ~0,
then the principal constraint also requires that (g,,) be
conformally flat. Therefore, to preserve the dynamical
content of Weyl’s theory, we must discard most of our
ghost-eliminating constraints. No wonder, therefore, that
Weyl’s theory has ghosts.

If t,p, =0, then our principal constraint tells us, in Eq.
(5.10), that (h,,) is flat, and the theory loses its main
dynamical content.

D. The theory of Kaku et al.

The theory Kaku et al.’ can be obtained by assuming
factorization, as in Eq. (2.11). In the conformal case,

Q.=e,"(9, +; YSEY b —eZFaB” .
Now set

D,=3,++T5Sy, ,

[@a:@b]= %Qabyss'yb ’
then

D b
Raﬂ7'8=e';epﬂab"5 .

The restriction of Q to the group of translations and dila-
tations is Q,a,,ya y3. The constraint introduced by Kaku
et al. is Qabya}’ ~0, which says that the restriction of Q
to the translations is zero. This is the same as 1=0. Us-
ing this constraint, they reduced their theory to Weyl’s
theory.

We can give a tentative geometrical interpretation of
our principal constraint. The restriction of Q to the
Lorentz group is Qg ., In the first approximation, the
principal constraint means that 3,4 Q3,,,=0.

E. Additional constraints and gauge fixing

Taking into account all constraints imposed so far, we
notice that the “B-components” hp,, are not involved.
The role that is played by the field (a,) also remains mys-
terious. These quantities are irrelevant to lowest order
and do not describe the physical modes. They can be con-
strained in a fully gauge-invariant manner, for example,
by postulating that

(5.11)
(5.12)

aa¢aﬁy=0 ,
Qaa,g—~Qﬁaa=O .

The remaining free components of / are & hpvy +ffm+
(zero up to a gauge transformation), h, vt —Roupgs
hy,vB+hvp,B (meaningful up to a gauge transformation),
hWB—hmB, h,,+B, and & uwa (fixed up to a gauge
transformation). First-order gauge transformations af-
fects these quantities in the following way:

SA(huv+ +hvlt+ u§v+av§u+28pv§3 >
SA(hyv+ _hvu+ )= pgv_amgu_ZAyv
SA(Epoiﬁva)zayA—BviavABp )
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SAi{[l«-i-B =AAuB _ay,gB ’
N ['I,VA. = a,,AM‘ +8AA#V— 28“AVA
+38,,Axp — 38,2 Asp -

We also have
8Af = AyB ’

so that, if we fix the gauge by setting f,, =0, then we loose
the option of choosing 9d,h,,=0. We may transform
huv+ to zero, but then we are no longer free to impose
conditions on h,,,. The analysis cannot be carried fur-
ther than this until the couplings between field com-
ponents have been clarified by a study of the higher or-
ders.

VI. INTEGRABILITY

A. Integrability in perturbation theory

The first-order constraints were determined by unitari-
ty, and the nonlinear extrapolation given in Sec. IVD is
fully gauge invariant with respect to the local, conformal
gauge algebra. Nevertheless, there is some ambiguity left,
for there exist tensor fields of the right type that vanish in
the two lowest orders of the perturbation expansion
(zeroth and first order). In particular, we may modify the
principal constraint (4.30) as follows:

Rogys+cltyoatoss—(a,B)]+(aB,y8) =0, (6.1)

¢ being any constant, this having no effect in zeroth or
first order.

To resolve this ambiguity we examined the integrability
of (6.1) in the sense of the perturbation expansion. (Exact
solutions that cannot be expanded in a perturbation series
have no interest in quantum field theory.) In the simplest
case, when the metric g is flat and the vector field d van-
ishes, terms appear in the second order that make it seem
very unlikely that any solution of (6.1) exist to this order,
unless ¢ = —1. The final choice of principal constraint is
thus

‘G opys =0, (6.2)
G apys = €abpys+ Bayobpos—tyoatosp)
—(,B)—Cap®Poys+(aB¥8) , (6.3)
where ‘G means transverse part of G and ~ is equality up
to y terms.
B. Simpiifications

Now it turns out that this modification of the principal
constraint solves the integrability problem to all orders.
In fact, when the secondary constraint (4.28) (vanishing of
the antisymmetric part of the torsion) is taken into ac-
count, it is readily verified that

Gaﬂyﬁ = ea$ﬂ‘y& + Vaﬁaaayﬁ + Vayaaﬁas + YasaaBya
—(a,B)+(aB,y8)
+[Vay 785" — (@, B)+(aB,y8)] . (6.4)
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Here y is determined by e,:

Vapy=—3(Capy +Crag—Cpya) - 6.5)

There are no longer any terms of higher order in a
_ Next, by means of a gauge transformation, we convert
¢ to a tensor. The action of the local algebra on ¥ is

(8p¥ )aﬁy=(jAY )aﬁy—'eaABy ’ (6.6)
so that the quantity 7 defined by
Tapy = aaﬁy —%YaBy 6.7)

is a tensor field. It is antisymmetric in (B3,7) and has
mixed symmetry in (aBy)._
Using (6.7) to eliminate ¢ from (6.4) we get

Gapys = 4aTpys— (@, B)+(aB,vd)
+[rapys+(aByd)] , (6.8)
where the small covariant derivative q is
da=eat+72"Spy » (6.9)
the small torsion vanishes identically and r is the small
curvature,
TaBys =€a¥ Bys+Vay ¥ Bos—(Q:B)—CagVoys -  (6.10)

C. The small curvature

We suspect that the small curvature (6.10) vanishes, in
view of the secondary constraint (4.29) (g,, conformally
flat). Only the transverse part contributes to the con-
straint, but it would be very convenient to have the whole
tensor vanish, since this would make ¢q, commutative and
greatly facilitate the investigation of integrability. This
turns out to be essentially a matter of choosing among the
solutions of

[easep] =caBye~y ’
the defining equation for the quantity (c,g"). Since

ea=8a—aaﬁ—e~a, y%,=0, NA=y"6a,
(6.11)
(eﬂ"—cSB"—c.,g“)ea7’=0 .

Recall that a dot in the place of an index indicates a con-
traction against y©.
Now consider

Yrapys= (g —8g"—c.g") ays
—(egVys+7p, V08 + V85 Voyo) -

In view of (6.11) it is very natural to ensure the vanishing
of the first term by assuming factorization of y:

(6.12)

Yo ?=€,"7,"%, (6.13)

especially since this also gets rid of the second term, for

(6.13) gives
¥y =0. (6.14)

It follows that 7 is transverse in the first index and that
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(ep®—8p"—vp@eq? =0 . (6.15)

Next
Y aprs=ea¥Yps—ea Voys+ V8" Vasy—(.B)—Cap’Vos -
(6.16)

To make this vanish we need some specialization of yg.s.
Equation (6.15) strongly suggests that

(6.17)
(6.18)

')/B.a=e3a—83a+yﬁaa=e?ﬁa ,
a%,=0.

Equation (6.17) is anyhow very desirable, since it is
equivalent to 7,., =0, so that

(7qpy) is completely transverse . (6.19)

In view of (6.18), (c,g") is determined up to gqpa” (qqg
arbitrary), and this freedom can be exploited to enforce
(6.13) and (6.17). The essential assumption and new con-
straint is Eq. (6.18). It is consistent with the perturbation
expansion.

We need one more constraint to make (6.16) vanish,
namely,

da0p+agapg=0. (6.20)

(This makes y'7,g,6=0, not just ~0.) Now the complete
small curvature factorizes:

7 apys =€a"e"[3aVbys+Vay Voos—(a,b)] . (6.21)

For this to vanish, (7,,,) must be an ordinary flat, con-
formal connection. This is consistent with our secondary
constraint. From now on the small curvature is taken to
vanish, so that the small covariant derivative is commuta-
tive.

D. Derivation of the wave equation

We shall now find the condition for the integrability of
Eq. (6.2). The tensor G was reduced to (6.8). With »=0
the transverse part is

tGaB‘ySZ(qa +aa)7rﬁ7'8—(a:ﬁ)+(aﬁ’7/8) .

The operator g, is commutative, and because of (6.20) so
is gq+a,. Instead of ‘G ~0, we can write

(9o +ao)Tgys—YaXpys—(a,B)+(aB,¥8)=0, (6.22)

with X arbitrary. Our first task is to express X in terms of
.
To simplify the calculations we shall now introduce yet
another constraint, though this seems to be not at all
relevant to the final results. We suppose that

(6.23)

aa‘lTaﬁ?,:O .

In the first order this becomes /gy, =0; the need for this

was seen already. Now we easily obtain
Xgys=~(qy+2a,)ms,pa®—(y,8) . (6.24)

The condition of integrability of (6.22) is

> 3 (getaclgy+a,)yaXgys+YyXsap) =<0 .
eapBnyd

Each sum is an alternating sum over the permutations of
the indices written underneath. We insert our result (6.24)
for X and get after some calculation

S S 8enl@a+2a,)(q, +2a,)hgs =0, (6.25)
eafnyd
' hay=aB(Tap, +Tyga), Bap=00p—Yalp—auyp .  (6.26)

The transverse part vanishes and the y terms are undeter-
mined, so this is just a condition on the vector com-
ponents. We now convert to Minkowski notation.

E. Minkowski notation

It is convenient to make a slight change in our conven-
tions. Recall that, with a,b=%B,

eaaeaﬁZSaB_yaaB’ e,"0,*=8," (a,b+#B) .
Now define
e’=y4 0p°=a®, (6.27)

to make 0 the precise inverse of e. (But e,=e,%d,, a#B,
as before.) We collect some identities, and a definition:

eaaoaﬁ:SaB’ eaaeba=8ab ’ (6.28)
yaeaa=8+ay aaeaa=83a ) (6.29)
Oaaya=8aB’ 6aaaazdla . (6.30)

If (A,...# ") is any internal tensor we define the associ-
ated Minkowski complex by

Ag..b =02 -egb--4,. . P (6.31)

Most of our Dirac tensors are transverse, and it is con-
venient to define the small covariant derivative as a map
between transverse tensors. If A is any transverse tensor
field let

'q4,A = transverse part of g, A4 . (6.32)
For example,

‘qahpy=(qa+2a,)hg, +aghe, +a,hg, . (6.33)
Now define, for A transverse,

Vodg...=6,20,F g, Ag... . (6.34)

If A has no B components, then this is exactly the same
as Dirac’s co-covariant derivative.'°
In this notation (6.25) takes the form

2 2 gupvvvahl‘r =0.
uvA por

(6.35)

We have left off the caret on 4. The co-covariant deriva-
tives commute and the co-covariant derivative of g is
zero. Proceeding as in the linear case we find that this is
the same as

R(g,h)uy—58uvR(g,h)=0, (6.36)
R(2,h)uy=8" (V) hpy—V,Vahy,
— V.Vl + YV, k) . (6.37)
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This is the equation for gravitational waves in empty
space.

The derivation of (6.36) from an action principal will be
taken up in Sec. VII, together with the problem of matter
coupling and symmetry breaking.

VII. ACTION PRINCIPLE
AND MATTER COUPLING

A. Matter fields

The final wave equation (6.37) involves only the metric
g (with the vector field @) and the symmetric tensor field
h. The main “connection field” 7 has disappeared. It is
important to understand whether this nonappearance of 7
is permanent. We now investigate the extent to which =
reappears in the coupling of gravity to matter fields. We
make no assumptions about flatness of g.

Consider first a scalar field u of degree —1. The sug-
gestion of minimal coupling is that the action density be
proportional to (Q,u)(Qq.u). But Q,u=e,u so in this
case 7T decouples. The action is

f ‘/——g b(9,4 )3l )

4
X v v .
=3 ‘/___:g_g"(a“+a#)u(av+av)u.

The last formula was obtained from the following in-
termediary result:

ghay =g"a,+gh*=0, g*+=ata,

If we modify the minimal coupling by adding —%*Rd 2
to the action density, then the dependence on a, cancels
out leaving the familiar

where R is the ordinary curvature of g.
The next case of interest is electromagnetism, but this
requires that we develop an exterior calculus. If u,A4,F

are internal tensors of ranks 0,1,2 with F antisymmetric,
define an operator d by

(du)g=Qqu ,
(dA )aﬂ——‘QaAﬂ—QgA —taﬂyA,y ,

(dF)apy= E(QaFﬂr_taB Foy) .
cycl

+Ri?Y), (7.1)

(g’“'aﬂu 0,4 —

The terms that involve the torsion are completely deter-
mined by the requirement that dod =0. The verification
makes use of the Jacobi identity

2 [Qa,[Qﬁ’Qy]]Z:O ’

cycl

which is equivalent to the following two equations (identi-
ties):

2’1(Q"tﬂra+tﬂrrtara_Raﬁya)=0 ’ (7.2)
cycl
> (QaRpy*+15,Rar™)=0. (7.3)
cycl

But now it is seen that 7 cancels out; the exterior deriva-
tive is just the antisymmetric small covariant derivative.

The conclusion is that 7 decouples as long as no spinor
fields appear in the matter Lagrangian. This is quite
analogous to the absence of torsion in ordinary gravity
without spinors. Setting aside the problem of spinors, we
conclude that matter moves in the fields g,a and in some
cases at least, independently of a along the geodesics of g.
It is quite clear, therefore, that the conformal flatness of g
will have to be replaced by something else.

B. Action principle

In applications without spinors the “connection” 7
decouples and it is natural to ask whether a self-contained
theory can be formulated entirely in terms of g,a and A,
and matter fields. Consider, therefore, the action

d*x v ‘
[ ‘/:gh R,,(8,0)+1, . (7.4)

Here I,, stands for the matter action, and *R vJ(g,a) is
the contracted curvature tensor of Weyl? and Dirac.1°
Variation with respect to A**, g/, and a* yields, respec-
tively,

*R,.(g,a)=0, (7.5)
R(gah ),‘LV— ;_gpvR (grh )=T;4v s (7.6)
87UV o+ Vo + V) =0 | (7.7)

The first equation is a weakened form of the constraint on
g,a. In the second equation, the left-side is just (6.37) and

_the right-hand side comes from the variation of I,, with

respect to g#*. The last equation is valid if I, is indepen-
dent of the field a; it is our reward for tolerating this oth-
erwise dubious field. Note that the action and all the field
equations are invariant with respect to the local conformal
algebra, and in particular, that Eq. (7.6) is scale invariant.

If the action (7.4) is adopted, then it is seen that the
field g is canonically conjugate to A. Evidently, therefore,
both fields must be quantlzed This is in accord with the
insight of the linear theory,” where the constraints must
be imposed as initial conditions on the states, and not on
the field operators.

The next urgent problem is symmetry breaking.
Einstein’s theory can be obtained by setting ¢ =0 and
g=h in the action, but such a procedure is of course not
soft enough. Certainly, g and A are not to remain totally
independent of each other, but their respective roles are
nevertheless worthy of notice. Thus A describes the (heli-
city *2, massless) radiated quanta, while g provides the
geodesics for matter to move on. This separation of
waves and background could turn out to be an important
feature of the description of gravitational waves. It may
turn out that the field g is (in its action on the states)
essentially classical; in this case the conflict between
causal propagation and a quantized metric would become
less perplexing.
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