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A PCAC-like picture from a generalized MIT bag model
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The MIT bag action is generalized through a new surface term. As a consequence two nonhnear
boundary conditions are obtained. The new model shows how a PCAC-like picture can be realized
on the basis of confined fermion fields. An interesting symmetry-breaking phenomenon is seen.

I. INTRODUCTION

In this paper we show how a picture very close to the
Nambu chiral-symmetry realization' can be derived from
a model based on confined fermion fields. To this picture,
however, we are led through a different symmetry-
breaking phenomenon. The phenomenon, shared by the
model given here, can be summarized as follows: in some
circumstances, a small perturbation which breaks a sym-
metry realized in the Wigner-Weyl fashion gives rise to a
physical situation very close to that described by a
Nambu-Goldstone' realization.

Our considerations are based on a generalization of the
MIT bag model. Here we are concerned with the in-
teresting intrinsic theoretical properties of this model.
Phenomenological applications are out of the scope of this
work. Furthermore, confined vector fields are not con-
sidered.

The simplest idealized version of the model given in
this paper starts from the MIT bag action for a confined
fermion field. We introduce in this action a new surface
term, which, among other things, gives some physical
reality to the surface of a bag. As a consequence of the
new term, instead of one, we have two nonlinear boundary
conditions related to the relativistic invariance. In order
to satisfy both the conditions we need another fermion
field, with the benefit that a charge-conjugation invari-
ance is realized too.

Our model with two fermion fields is formulated in
Sec. II. In Sec. III we analyze its spectral properties by
considering static spherical bags at rest. As will be clear,
besides the relativistic invariance, quantum theory, in the
form given in Ref. 5, will have an important role. In Sec.
IV we show how a PCAC-like picture can be realized in
our model. As is known, in the usual MIT bag model,
chiral symmetry is badly broken even if we consider zero-
mass fermion fields. Several attempts to improve chiral
symmetry have been discussed in the literature. In
the hybrid chiral bags, ' chiral invariance can be re-
stored, but at the cost of the introduction of fundamental
pseudoscalar fields. On the other hand, in our model we
have two fermion fields. From this and the results of Sec.
III, we expect some differences in the meson excited states
compared with the standard bag model. In our model
there will be more excited levels coming from a quark and
antiquark both in the same excited state. However, due to

other nonlinear boundary conditions, levels where the
quark and the antiquark are in different states (for exam-
ple, one excited and the other not) will be absent.

In Sec. V we analyze the symmetry properties of our
model with regard to the above-mentioned phenomenon
and the notion of spontaneous symmetry breaking. '

II. THE NIT MODEL AND ITS GENERALIZATION

Let us fix our attention on a massless fermion field
g(x) of spin —, confined to a bounded and connected spa-
tial region V. I.et Q be the space-time hypertube swept
out by V. The boundary S of V sweeps out, in space-time,
the boundary X of Q. In the MIT bag model the equa-
tions for P(x) are

iy"a„/=0 (inside 0),
(1+in„y")/=0 (on X),
n "a„(gP) 2B =0 (o—n X),

(2.1)

(2.2a)

(2.2b)

where n" is the interior unit normal to X (n"n = —1;p
our metric is g = —g"=+1), while B is the usual con-
stant positive-energy density. The breaking of chiral sym-
metry comes from the boundary condition (2.2a), since we
have

n&gy y"P=iPy g (on X), (2.3)

0

L,(x)= '[@y~a„0 (a„0)—y"Wlj, —
2

(2.5)

then, by requiring A to be stationary with respect to arbi-
trary variations of P inside Q and on X, we obtain (2.1)
and (2.2a). Moreover, the independent variations of X
give the constraint (2.2b).

Now we generalize the action (2.4). First, we add a
coupling between the spin and some kinematical variables
of X. Furthermore, as a consequence of this coupling, we

and the right-hand term is in general different from zero.
Inside Q the axial-vector current gy y"g is locally con-
served.

The equations (2.1) and (2.2) can be deduced from an
action principle. If we consider the action

AM ——f d x[LO(x) B]—2 f dcr1PP—, (2.4)

where
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introduce two massless spin- —,
' fields P&(x) and $2(x) and

write

P/(x}
P(x) = (2.6)

Therefore,

(l, g(a~, a2,'t))

(1 g 2)l/2

namely, t" is the four-velocity vector of the points of S.
Now we consider the action

(2-&)

~=f d"x [Lp(x) —&]

——,f do[a//+ ,
' Pt/io""r—3(t„n„t,nz)]—, (2.9)

where Lp(x) has the same form as in Eq. (2.S), P is given
by (2.6), and

1 0

Besides the spacelike normal n", we consider the unit
timelike tangent t" to X. If g are the coordinates of the
points of S, then S can be described by a parametric equa-
tion of the type

(2.7)

In Eq. (2.9), a and 13 are two dimensionless parameters,
which, as will be shown, cannot be independent.

Arbitrary variations of f give the Dirac equation inside

n&f;y"P/=0 (on X) (i =1,2),

/A[a+ , Po" (—tqn„t„n~—)]g; =0

(2.11)

(on X} (+, i =1; —,i =2) . (2.12)

Now we consider an arbitrary infinitesimal variation of
the region Q

Q~Q' .

If the points of 0' have coordinates x'", we can write

x'"=x"+(5x")(x)—=x"+5x" . (2.13)

Under the variation (2.13), we have the following varia-
tion of the action /I:

i@"/3„/=0,

and the boundary condition,

[in&)/" +a+ , Po—""(t'&n t —n&)r3]/=0 (on X) . {2.10)

From (2.10) it follows that

5A =f do[Lp(x) 8]nq5x"——,
' f (5do—)[aug+ ,'Pgo/'"r3$—(tqn„t,n„)]-

——,
' f dcr[aB/(PP)+ ,'P(t„n„t„n„—)/3/Po&"r—3$]5x ,'Pf d—of—o/' r3$5(tqn, t nq) . — (2.14)

We see that the variation 5dcr is ineffective due to the
boundary equation {2.12). Furthermore, we observe that

5{t&n„)=tz(x')n'„(x') t„(x)n„(x) {x—&X)

(with t&t'p=+1, n„'n'"= —1, t&n'"=0) can be written
in the form

5(t"n")= [g"/'co" (x)+g "~cp/'/'(x)]t&n„,

P(t„n„t n„)P[o—/', o" ]r3$=0 (x&X) . (2.17)

Equation (2.16), as in the usual MIT bag model, is related
to the energy-momentum conservation. If T"" is the
energy-momentum tensor of our model

ad'pg+ ,
' 13(t„n„t.n, )B—'po/' r,g—+2n'a =0

(x E X), (2.16)

where ~tp/"(x)
~

&&1 and tp/'"(x)= —p/'"(x). In other
words, 5(t„n„) can be related to an infinitesimal local ro-
tation in the space-time. Under this local rotation the
quantity

ger/"r3$(tpn„t„nq )— then

and

T/lx [Py/lgkg (QAg)y/lg] ~gg/lA,

/3&T" =0 (inside 0)

is invariant. Therefore,

Po "r3$5(t&n„t„n„)—
( t„n„t„n„)go"—"r3$—

(t„n„t n„)p/~ {x)P—[o~,o""—]r3$ . (2.15)

n„T" =0 (on X)

as a consequence of (2.10) and (2.16). On the other hand,
due to (2.17), we have angular momentum conservation:

B„J"/' =0 (in 0),
n„J/'/' =0 (on X),

where
Then, from 5A =0, we obtain the two boundary condi-
tions Z/'/' =x&T/' xT/'~+ ,' P(y"o"+—o' y")0 .—
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We conclude this section by showing that the parame-
ters a and P cannot be arbitrary. Let us write Eq. (2.10)
in the form

(i) (i) z)
Xn k nk

( I+I3tr3)e'p=iag .

Then,

(1+Pfr 3)rr(1+Ptr3)y'P= —a g .

From (2.18) we have

(2.18)

(2.19)

(3.6)

(3.7)

The allowed values of x„'k are determined from Eq. (3.2),
which gives, for i = 1,

X'"
(1) Xn, —1

tanXn 1: (1)
& —SXn, —1

X'"
Xn, 1

tanXn, 1

1+ Xn 1
(1)

We make a conventional choice on the sign of u and P:
both are assumed non-negative. Therefore, 0 & a & 1,
0 &P & 1. In our model we have a free parameter, for ex-
ample, a with P=+(1—a )'

where

1+(1—a )

III. STATIC SPHERICAL BAG AT REST

In order to analyze the spectral properties of our model,
we seek solutions such that the surface of the bag is a
sphere of fixed radius 8, at rest. In this case,

The function g(a) is a monotonic increasing function of
a, with g(0)=0 and g(1)=1. For g =1, Eqs. (3.6) and
(3.7) are the eigenvalue conditions of the usual MIT bag
model.

The allowed values of x„' k are determined through the
substitution P~ —P or g —+ I/g. We have

t'=+1, t'=0, n~=(0, n), —

where n is the outer normal to S.
The linear boundary condition (2.10) becomes

(3.1) (2)tanXn

(2)
Xn, —1

1 ——Xn
(2)

(3.8)

(1+PAL'r3)n Pf=t~f (3.2)
(2) n, 1

&+gXn 1

(3.9)

We fix first our attention on the Dirac equation and on
Eq. (3.2). We limit ourselves to solutions of the Dirac
equation with angular momentum j= —,

' (Ref. 5). These
are given by

We see that the following relation holds:

(1) (2)
Xn, —1=—X —n, +1 ~

(1) (2)Xn1= —X —n —1 ~

(3.10)

(t, r) =N(co'„' 1)
ijo(co„" 1r)U

j,(co„" (r)cr.nU—
—l CtP if

(t')
n, —

(3.3)

We assume that the positive (negative) n label the positive
(negative) roots of Eqs. (3.6), . . . , (3.9). Due to Eq. (3.10),
it is sufficient to consider the positive roots of the above
equations.

The positive roots of Eqs. (3.6) and (3.7) are monotonic
increasing functions of g. For g =1, we have the MIT
values

'~n i~e "' (r (R)

(3.4)

(S) 4

X (~„'k)= '( „")'— (3 5)

where i (i =1,2) is the index of the two spinor fields
$1(x) and $2(x), n labels the eigenfrequencies determined
by Eq. (3.2), U~ is a two-component Pauli spinor, and
N(co„"~) (k =+1) is a normalization constant. The solu-
tions (3.3) have a positive state parity (index —1), while
the solutions (3.4) have a negative state parity.

If the states (3.3) and (3.4) are normalized to a single
fermion in the bag, we have

x,'",(g) =4.5+g+
xI'I lg) =m+g+. . ., xz'I lg) =2m+g + .

(3.11)

For the positive roots of Eqs. (3.8) and (3.9), which are
decreasing functions of g, we have

[xI I(1)=2.04],
[xq ' 1(1)=5.4],

[xI I (I)=3.8] .

x1 1(g)=fr g+ ' '—
x2 1(g) =27r g+—(2)

xI I (g) =4.5 —g+
(3.12)

x1 1(l)=2.04, x2 1(1)=5.4, . . . ,

x1'1(1)=3.8, x2'1( 1)=7.0, . . . .

It is interesting to consider small values of g. In this
case the x„"k(g) can be developed in powers of g. We
have

x1,—1(g)=3g —
Y5g + ' ' '
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It is interesting to note that in the limit g~0, the roots
x„'1' and x„' '

1 (n &0) give the same eigenfrequencies of
the nonrelativistic quark model. Furthermore, when

g —+0, we have degenerate parity doublets. As we see, the
first level (positive or negative) can be as small as we
want, by choosing g appropriately.

Moreover, a charge-conjugation relation links the states
and pz „k . From Eq. (3.10) we have

&iygkm =~i/km n )0

g =d~
lnkm = 2—gg —k —m ~

Q 2nkm =d1 —n —k —m

with the well-known anticommutation relations

I binkm ~binkm I = Idinkm «dinkm I + 1

(3.19)

Joz, —,—k, —

where 2) is an arbitrary phase factor and

(t, r)=rtClti,"„„(t,r) (C=iy y ) .

(3.13)

Now we consider the nonlinear boundary conditions
(2.16) and (2.17), assuming 0& g & 1. Equation (2.16) be-
comes

g, (t, r)= g a,„„ Jli(~„ k)y, „, (t, r) (i = 1,2)
n, k, m

(3.15)

where a;„k are the amplitudes for each mode in the bag.
However, the time independence of Eq. (3.14) requires
that only one eigenfrequency can be present for each field.
Therefore, we can write

gi(t, r)=&(~",k)[&i.k zi'i,.k, (t r)

ad'ltilti+iPn d'1ti+yrsg+2n'B =0 (i =1,2, 3) (3.14)

at r =R. Owing to Eq. (2.12), we have no condition for
A, =0.

In order to satisfy Eq. (3.14) we should consider the
general solution of the previous linear equations,

and all other anticommutators zero.
In Eq. (3.19) we have taken into account the relations

(3.10) and (3.13).
The left-hand side of Eq. (3.18) is assumed normal or-

dered: therefore, positive terms like

(i) g. f
+n, k binkm binkm

(2)
I Xn, k I

dl n —k——md 1 n ——k —m ~

(&)
I Xn, k I dz —n —k —mdZ n k——m—

will appear.
Now we consider the other nonlinear condition. Equa-

tion (2.17) is equivalent to

(3.21)

n„J"~~=0 (on X),
where J" is normal ordered. Then, in the case of a static
spherical bag, we have the constraints

Plysfl+Pzys@2=0 (r =R), (3.20)

n, ~,.(q', r'y, +yz'r'yz) =0 (r =R),

++ 1 nk mflnk——m ,( t, ~ r, ) ]

Pz(t r) =&(~",'k )[&2 'k' ' 4, ', k',

(3.16)

where gl and gz are given by (3.16) and (3.19), and

0-' 0
i (/=1, 2, 3) .

0 o.

1Ti(a+iPy y nrs)Q=B (r =R) .1 d . o ~
2

Finally, from (3.16) and (3.17), we obtain

+[X ka lnnkm it 1nkm + 'X, n' kZniZ'k'miZzn'k'm ]=4~R B

(3.17)

as in the usual MIT model.
In Eq. (3.18) the x„'k and x„' 'k can be positive or nega-

tive. In order to have the left-handed side of Eq. (3.18)
positive definite, we treat the amplitudes a;„k as fer-
mionic operators. We set

+i22 k 42, —

It can be seen that for the g;(t, r) given by (3.16), Eq.
(3.14) is equivalent to

However, Eq. (3.20) is already satisfied for each field
separately, since we have

(t, r)ysp;„k (t, r)=D (i =1,2) . (3.22)

Concerning Eq. (3.21), we need the following remark:
%e have replaced a classical boundary condition with an
operator equation; then, a proper correspondence with the
classical case leads us to consider the constraint for the
operator n&J"' ~ as classical equation for its eigenvalues.
So we need a representation in which n&J"' ~ is diagonal.

Since the other nonlinear constraint has already been
diagonalized [Eq. (3.18)], in order to have n&J"' ~ diago-
nal in the same representation we assume that of the two
modes a;„k and a;„k only one can be excited.

Then, Eq. (3.21) becomes

&'(~",
,k)[jo'(x,",k) Jl (x,k)]U ir U itl k izi k '++ (~ ', k')[JO (x ', k') Jl (x ', k')]U 'ir U "i22 'k' 'itz 'k'

(3.23)

This equation cannot be satisfied by each field separately (except the case g = 1). Both fields pl and 1}iz must be present

in the bag at the same time, with the constraint

&'(~.",k )[(Jo'(x»", k ) —J1'(x",k )]=+&'(~.",'k )[Jo'(x.",'k ) —J1'(x.",'k )1 (3.24)
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From our linear boundary condition and the spectral
properties (3.10), it follows that Eq. (3.24) can be satisfied
only if we take the sign + and x„"$= —x„' 'k that is if

(3.25)

Then, by making use of Eq. (3.15), we can write Eq. (3.23)
in the two forms

Up/ CT U 61nk 61 k
—

Upped 0 Up/ d1nk

U~o. U d2„k d2„k ~ —U~o. U~b2„k~b2„k ~ ——0.
We conclude that the physical states of our model are
such that

servation of the axial-vector current (PCAC) when g is
small.

We consider the bags which, in their rest frame, are
described by the solutions of the previous section. The
bags can have an arbitrary fixed total momentum. How-
ever, the explicit construction of these boosted states is
not necessary (before the boosting, quantum corrections
associated to the center-of-mass fluctuations would be re-
quired. ' Each bag sweeps out a space-time hypertube 0,
with boundary X. Inside 0, as we have seen, both g~ and
f2 are present at the same time. Let us call A&'(x) the
axial-vector current inside the bag

~

ii;M(R„"k ) ) with rest
mass M(R„'k).

We consider the only relevant matrix elements of
A„"(x)

I ~ Inkm ~ 1nkvd d 1nk —m d 1nk —m (ii;M(R„'k)
~

Aq'(x)
~
0), (4.1)

b 2nkppg b Pnkygg d 2nk pyg d2nk —gpss
(3.26)

where I =+—,'.
Owing to Eq. (3.26), every state is built up only through

a particle and its antiparticle with opposite polarization
and the same eigenfrequency. We have then pseudoscalar
mesons or vector mesons with zero-spin components
along the z axis. The properties of the vector mesons will
be investigated elsewhere. In the following we will fix our
attention on the pseudoscalar mesons.

The radius of these mesons is given by Eq. (3.18). We
limit ourselves to the interesting case of small g and call
R„'k (n & 0) the radius of the bag with the field energy
2'„"~ (n & 0). We have the sequence

1/4 ' 1/4

where hatt, (gq) contains only positive (negative) frequen-
cies. The current (4.2) is locally conserved,

I3"A„"'(x)=0 (inside 0) . (4.3)

However, the conservation of a current in a confined
model would require, besides Eq. (4.3), the further condi-
tion,

where by
~
0) we denote the vacuum. Owing to the struc-

ture of our solutions, we see that an axial-vector current
term of the type 17;Y y"g; gives no contribution to the
matrix element (4.1). Let us fix our attention on the
axial-vector current A& '(x). The proper candidate for
A&" (x), with nonvanishing matrix element (4.1), is

(4.2)

g()R1
K—g
2mB

(3.27)

n"A&" (x)=0 (on X) .

Now. , from Eq. (2.10), we have the boundary condition

(1) 5 +g
2mB

R(2)
1,1—

=—', (4rrB)' (2X„'k)

The rest mass of our bags is given by

2x")
M(R"' ) = "'"- " (R"' )'

(3.28)

(i n&Y~+a ptzn„o""—)p2 0(on X)——.

From this, it follows that

in~/, Y Y"$2+a/(Y rt2 pt„n g,o"—"V $2=0 (on X) .
On the other hand, we have the boundary condition for
the field P~,

if,n„y~ aP, =Pt„n—„g,rrl'" (on X) .

Then, we conclude that
with

M(R', " &)=—', (4rtB)'~ (6g), etc,

We see that, in our model, the ground state can have a
rest mass and a radius as small as we want by taking g ap-
propriately. Near the limit g —+0, this ground state can be
described, in a complete relativistic treatment, through a
nearly local massless pseudoscalar field.

n "A„"'(x)=a/)iy p2

5p)iY g2 (on X) .
7+g

Similar results are obtained for A&
' ——r}'july Y„p&,

8"A„' '(x)=0 (in 0),

(4.4)

(4.5)

IV. PARTIAL CONSERVATION
OF THE AXIAL-VECTOR CURRENT

As we can see in Eq. (2.3), the conservation of the
axial-vector current is broken badly in the usual MIT bag
model. On the contrary, our model allows a partial con-

n"A&'(x)= $2iy g& (on X) .
7 +g2

As we see, in the limit g —+0+, the axial-vector currents
A&'(x) are conserved. For small g, we interpret Eqs. (4.4)
and (4.5) as versions of PCAC in a confined model. This
point of view is supported by Eq. (3.28), which shows that



A PCAC-LIKE PICTURE FROM A GENERALIZED MIT BAG MODEL

the amount of violation of the axial-current conservation
is related to the lowest rest mass of our bags.

[«1)f~z: 0 e ' &zX'0

t«1))~i: 0
(5.1)

where A, and P are arbitrary real constants. The associated
conserved currents are

i 5„=A' 1'i &i4 J 5i
=A' ri &A'(1) — s -(2) — s

which are linear combinations of A "' and A ' '.
Lct us see what happens in our model, ~here g =0.

The positive roots x„"I,(0) are given by Eqs. (3.11) and
(3.12), for g =0. The root x'i" i(0)=0 is a spurious one,
since the corresponding state is meaningless. The lowest
eigenfrequency is associated with x,', (0)=xP' i(0) =m.(I)

Besides Eq. (3.10), we now have a further relation

x„",'(0)=x„'",(0)
( i) (0) (2)(0) (5.2)

f

Of course, the above relations are a consequence of the

V. CONCLUSIONS

As can be expected, the conservation of A& and A&
(&) (2)

when g =0 comes from a symmetry property of our
model. In fact, when a=0, the action (2.9) is invariant
under the following global symmetry groups:

symmetry properties given before.
Now, owing to Eq. (5.2), our nonlinear boundary condi-

tions allow a new set of solutions, besides the massive
pseudoscalar mesons given in Sec. III for g =0.

It can be seen that in the new set of solutions there are
scalar mesons which are built up through the fields 1(, and
1(2, both with positive or negative frequencies.

Then, to a given rest mass of our bags, we have associ-
ated states with opposite parity. &e can say that, when
g =0, the symmetry of our model is manifested in the
signer-%'eyl mode. Now, when g is different from zero,
but as small as wc want, thc situatioIl changes iI1 some
respects drastically. The scalar mesons disappear and a
pseudoscalar meson appears with radius and rest mass fi-
nite, but both as small as we want. Such a feature is very
close to the Nambu-Goldstone realization of a symmetry.
VA'th respect to the spontaneous-symmetry-breaking
scheme, there is a difference: the vacuum of our model is
not degenerate. This, of course, is related to the property
that we have a finite (even in arbitrarily small) lowest rest
mass ln our spectrum.

The above results lead us to speak of stable or unstable
%igner-Weyl modes. Furthermore, the following sugges-
tion emerges: spontaneous symmetry breaking can be con-
sidered as a limiting case of physical situations in which a
perturbation breaks an unstable VA'gner-Wcyl realization.

In the idealized model given in this paper, we have only
mesons. Further aspects and generalizations of our
model, including fermions, will be given in a future work.
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