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Tapered cylinder antenna for gravitational radiation: Design and tests of a prototype
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In an effort to increase the coupling between a gravitational radiation antenna and transducer the
ends of a small cylindrical prototype antenna were tapered to magnify the end motion by a factor of
20. Flexural rigidity was maintained by tapering the inside of the cylindrical antenna. The algo-
rithm used to calculate the taper is described. Experimental tests on the prototype antenna confirm
the correctness of the algorithm. Results thus obtained indicate that much larger amplification is
possible in full-scale antennas. The consequent decrease in the noise temperature is shown to be suf-
ficient to improve the sensitivity of a resonant-mass gravitational radiation detector by at least an
order of magnitude. As a result of the stronger coupling, the bandwidth is also increased.

I. INTRODUCTION

Although gravitational radiation antennas may have a
variety of shapes, the uniform cylinder resonant-mass
type is most commonly used. Advantages of simplicity
and of a high filling factor inside conventional cryostats
have made the latter the most popular choice so far.

Much has been written on the subject of coupling the
end face of cylindrical antennas to transducers. ' The ratio
of the energy transferred to the transducer to the energy
in the antenna, usually denoted by P, is a measure of the
coupling between antenna and transducer. For non-
resonant transducers, P is usually between 10 to 10
Increasing P beyond 10 does not appear to be feasible
with present nonresonant transducers because of physical
limitations such as critical fields in superconductors or
maximum possible static electric fields.

One reason why the efficiency of energy transfer from a
uniform cylinder antenna to a transducer is so small is the
large impedance mismatch at the interface. The im-
pedance mismatch can be reduced by using either a
mechanically or electrically resonant transducer resulting
in an improvement in P but possibly at the expense of de-
graded time resolution for impulse detection.

Another route towards increasing P is to introduce a ta-
pered section at the ends of a uniform cylinder. For non-
resonant transducers, this new shape offers the possibility
of values of P& 10 as well as an increase in the band-
width. In this paper we will discuss results of experi-
ments with a tapered cylinder as well as the feasibility of
translating these results to a full-size antenna.

Possible shapes for tapered cylinders have been calcu-
lated in three papers. In a brief report, Aplin has

described a variant of a dumbbell antenna with exponen-
tial horns. Gowdy has shown that a cylindrical antenna
with a Gaussian taper may be used to discriminate against
unwanted excitations because only the fundamental longi-
tudinal mode couples to gravitational waves. Bonazzola
and Chevreton's study of an approximately conical anten-
na suggests that it is four times more sensitive than a uni-
form cylinder because the end-face oscillation is amplified
by 2. The last two papers are of a theoretical nature: how
the ends of the tapered cylinders are to be coupled to
transducers or questions about the effect of noise intro-
duced by amplifiers have not been emphasized, so the con-
clusions arrived at are at best incomplete.

II. METHOD FOR OBTAINING TAPER

The basic idea is to amplify the motion of the end faces
of a cylinder (assumed to be right circular) by altering the
mass/length (linear mass density) from center to outer end
of a cylinder.

Assuming azimuthal symmetry and length » radius,
the differential equation for longitudinal displacement
amplitude of longitudina1 waves in a steadily vibrating
homogeneous cylinder of nonuniform cross section is

U"+ U' lnA (X)+f2'U =0,
dX

where X =x/L, U =u/L, and Q=2mL/A, . L is the
length of the tapered section. A, is the wavelength of long-
itudinal waves in a thin uniform cylinder, x is the coordi-
nate, u is the longitudinal displacement from equilibrium
at X, and A (X) is the ratio of the area of cross section of
the cylinder at X with respect to the area at X=O.
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U =cotQ sinQX+ cosQX
Uo

in the region —1 (X(0 and

N N
= g u„sinnX —+ g f3„cosnXvr.=o" 2 .=0"

(3)

(4)

in the region 0 &X& + 1, where a„and P„are unknown
Fourier coefficients.

We specify the conditions to be satisfied at the transi-
tion point (X =0) and at the free end (X =1). The magni-
fication M is now the sole input parameter. [Compare
this to conventional methods where A (X) is the input pa-
rameter and M is an output parameter. ]

Primes denote derivatives with respect to X. This equa-
tion neglects second-order terms as well as damping.

Given an analytic function for A (X) (such as exponen-
tial, catenoidal, conical, etc.), one can solve for U(X).
The amplitude of end motion can be obtained and com-
pared to that of a cylinder of uniform cross section.
Several examples have been reviewed. ' It is immediately
apparent that, for the limited number of analytical func-
tions available for A (X), magnification beyond about 10
is not practical because the thinnest section is virtually a
whisker. Because of poor flexural rigidity, the ability to
machine such shapes, not to speak of trying to couple a
whisker to a transducer, becomes questionable.

One is faced with the following problem: Find a curve
for A(X) that will give the maximum magnification
within practical limits with sufficient flexural rigidity. At
the same time the end face should be of a shape to allow
easy coupling to a transducer.

We proceed by rewriting Eq. (1) as

U"+Q U
(2)UI

If the normalized wave function U is expressed as a
Fourier series, then for a given set of boundary conditions
(which includes the magnification) we may obtain the
coefficients of the series. For a given magnification, there
exists a curve for A (X) which is obtained by repeatedly
integrating Eq. (2).

The integral equation method has one signal advantage:
one obtains a taper A (X) for a given magnification a re-
sult not obtainable by conventional methods.

For simplicity we choose to confine the tapered section
to —,

' of the wavelength (the cylinder length is A, /2 for the
1L mode, so A=a/4) on either end of a cylinder which is
otherwise of uniform cross section. (In general, the length
of the tapered section is a free parameter. )

For the first longitudinal mode we choose a composite
wave function which is sinusoidal with a node at the
center of the cylinder (X= —1) and an amplitude Uo at
X=O, where the cylinder cross section starts to taper.
Within the tapered section the wave function is the sum
of a Fourier series that is smoothly matched to the ampli-
tude Uo at X=0 and attains a magnified amplitude MUD
at the free end X=+1. The wave function is antisym-
metric about X= —1.

The composite wave function is

TABLE I. Boundary conditions for the wave function at
X=0 and X= 1.

X=O

U=Up
U'= UpQ cotA

U" ' = —0 UpcotQ

U =MUp
U'=0
U"= —MQ2Up
U'" =0

Thus, at X=O and X=1 we demand that the wave
function and its derivatives acquire the values shown in
Table I. These eight conditions ensure that Eq. (2) is fin-
ite everywhere. Furthermore, the gradient of the lateral
surface is made to vanish both at X=0 and X=1. This
gives the most economical taper for a given ratio of max-
imum to minimum cross-sectional areas.

Since there are eight boundary conditions we choose
X =3 which gives us eight coefficients and as many equa-
tions. With the Fourier coefficients determined by impos-
ing the boundary conditions, one gets an expression which
may be integrated numerically (or even analytically) from
a lower limit X =0 to an upper limit X incremented by
small intervals to give lnA (X) and thus A (X):

1 A(X)=l = —I dX
a(0) o U'

The required flexural rigidity obtains, if we use an in-
verse taper, where the taper is on the inside of a hollow
cylinder. For example, the inverse taper radius R (X) for
a cylinder of outer radius R p is obtained from the expres-
sion

R (X)=R o [ 1 —a (X)/a (0)j' (6)
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FIG. 1. Section of antenna showing the inverse taper in one
quadrant. Coordinate extends from center of antenna at
X= —1 to the free end at X=+1. Tapered section is between
X=0 and X=+1. Radius of inverse taper is shown as R (X).
Fourier coefficients a„and P„are also listed.

Carrying out the computation outlined above for a
cylinder of radius 1.91 cm and tapered section of length
L=5.08 cm (total length 20.32 cm), and choosing as input
parameter a magnification factor M =20, we get values of
R (X) vs X as plotted in Fig. 1. The wall thickness is 0.16
mm at the point of minimum cross section. Values of u„
and P„are listed.

We note that the lip at the end of the cylinder may be
readily coupled to a transducer. A pair of light, stiff
aluminum disks (mass=2 gram) were secured to the ends
of the cylinder by means of brass screws. The stiffness of
the disk is chosen to push its lowest resonant frequency
above the IL mode of the cylinder. The mass is kept to a
minimum to minimize loading effects. (In principle, the
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shape of the lip may be modified to accommodate the ex-
tra mass of the disk. ) Once the disks are in place, the
ends of the cylinder look like a uniform cylinder in so far
as coupling to a transducer is concerned. For example,
the disks may be made to superconduct by covering them
with a lead film to couple the cylinder to a Rochester-type
inductive noncontacting transducer. Or a light resonant
vane may be machined into a disk for a back-action-
evading transducer whose principles were described in an
earlier paper. For the latter case which uses a resonant
transducer, only one end of the cylinder needs to be ta-
pered.
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III. EXPERIMENTAL TESTS 5L v=25512 Hz ~ ~ ~ ~

TABLE II. Eigenmodes and frequencies of the tapered
cylinder. F—flexural, L—longitudinal.

1F(@3818ck 3827 Hz)
2F(~4818 ck 4832 Hz)
3F(N 11812 c% 12069 Hz)

1L(@11 300 Hz)
2L(@12550Hz)
3L(@23312 Hz)

The ends of a cylinder of aluminum alloy 5052 F
(sound velocity =5095 m/sec at room temperature' ),
20.32 cm long and 3.81 cm in diameter were machined to
the taper shown in Fig. 1. The IL mode is expected to
have a frequency of 12 537 Hz.

In order to study its eigenmodes the cylinder was
mounted on a four-point support resting on a platform
which could be moved on a horizontal plane by a pair of
micrometers. The disks were removed. The cylinder was
driven by impressing signals from a frequency synthesizer
on a small piezoelectric strain gauge glued near the center
of the cylinder.

Cylinder vibration amplitudes were measured using a
displacement sensor made from a stereo phonograph nee-
dle. With this device it is possible to measure both radial
and axial displacements (as well as the relative phases) to
an accuracy of better than 10 m

The two output channels from the stereo cartridge were
fed to a lock-in amplifier using the driving frequency as
reference. Using the pair of micrometers to position the
needle, radial and axial oscillation amplitudes were mea-
sured at several points along the length of the cylinder.

A few of the wave functions measured in this manner
are shown in Fig. 2. Important modes identified thus are
the flexural and longitudinal modes listed in Table II.

Because the incident gravitational radiation couples to
the 1L mode, we will discuss the properties of this mode
in detail. A curve is drawn through the points for the IL
mode in Fig. 2 using calculated values of a„and P„ from
Fig. 1.

There are a few noticeable deviations from the predict-
ed behavior. There is a relative shift in the abscissa of
calculated and measured wave functions. In fact, the
fractional shift in the abscissa is just equal to the 11%
reduction in the measured frequency from the predicted
value.

The measured wave function peaks at X=0.9 instead
of X=1.0 and shows a noticeable droop near the edge at
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FIG. 2. Measured eigenfunctions of tapered cylinder. Labels
L and F denote longitudinal and flexural' modes. The abscissa
common to all graphs is the normalized axial coordinate X. Or-
dinates measure axial amplitudes for longitudinal modes and
amplitudes perpendicular to the axis for flexural modes. Ordi-
nate for the 1L mode is in normalized units U/Uo, ' calculated
wave function is shown as a line through the points.

X =1.0, indicating a nonzero strain at the free end.
These discrepancies may be explained by the combined ef-
fect of a small force exerted by the sensor on the end of
the cylinder, i.e., the cylinder is not truly "free" at the
end, as well as minor deviations from the calculated taper
due to imperfect machining.

In a real antenna the end facing the transducer will not
be fr'ee either but will see an impedance corresponding to
the loading effect of the transducer and preamplifier.
This must be taken into account in designing the required
taper for real antennas. The method to be used is
described by Eisner. "
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The magnification is 19.0+0.5 as compared to the
predicted value 20. Clearly, the end motion of a tapered
cylinder under longitudinal excitation is amplified in a
manner consistent with the results of the algorithm.

We should clarify that magnification here means the
ratio of amplitudes between the ends of the tapered sec-
tion. Compared to the end motion of a uniform cylinder,
the tapered cylinder vibrates with an amplitude enhanced
by M2

IV. EXTENSION
OF RESULTS TO REAL ANTENNAS

It is possible to scale up the results we have obtained so
far for a prototype tapered cylinder antenna. From calcu-
lations of A(X) for different values of M we find that
within the linear approximation the magnification varies
inversely as the minimum wall thickness t. In Fig. 3 we
show the magnification versus minimum wall thickness
for cylinders of various radii (Ra). The straight lines fol-
low the equation

1 RpM=—
6 t

For the University of Rochester gravitational radiation
antenna which is an aluminum cylinder of radius 15.24
cm, a magnification of 32 is possible for a tapered section
with minimum wal1 thickness of t=0.8 mm. For a
cylinder of radius 50 cm and t =0.8 mm, the magnifica-
tion exceeds 100.

It is apparent that an amplifying tapered section is
identical to a step-down transformer for stepping down
the force and stepping up the velocity of displacement.

Thus, both the mass and spring constant of an equivalent
simple harmonic oscillator are reduced by M /2 leaving
the frequency of the 1L mode unchanged. The impedance
seen by the transducer at the 1I. resonance is decreased by
M /2 and hence also the degree of mismatch between
transducer and cylinder relative to a cylinder of uniform
cross section. Energy transfer is more efficient and P is
increased by M /2 and so is the optimum bandwidth by
the same factor (Ref. 12, Appendix C).

%'e note that when compared to a single mechanically
resonant diaphragm transducer, the tapered section just
described appears to be analogous to a continuum of an
infinite number of discrete diaphragms whose mass distri-
bution follows the curve for A (X). Mechanically
resonant diaphragms have associated with them a beat
period of energy transfer between the cylinder and dia-
phragm which sets a lower limit on the integration time
(causing the degraded time resolution mentioned previous-
ly) over and above that due other factors such as Browni-
an motion, back action, and amplifier noise. In the con-
tinuous case the beat period is eliminated so that the op-
timum integration time is determined solely by the last
three factors. The consequent increase in the bandwidth
is important when searching for coincidences between ex-
citations in widely separated antennas.

There are some limitations, however. If we keep reduc-
ing the fractional length of the tapered section, then at
some point the equation of motion becomes nonlinear, i.e.,
the area of cross section is no longer "smoothly varying. "
Furthermore, in order to achieve high magnification, the
ability to machine very thin wall sections is of paramount
importance.

Another requirement is a large mechanical quality fac-
tor Q at low temperatures. The parent sample of 5052
aluminum alloy had a Q =2.4&(10 at 4 K.' The 1L
mode of the tapered cylinder had a room temperature Q
of about 10 . We are studying the low-temperature prop-
erties and other aspects of the tapered cylinder. Complete
results will be reported in a future publication.

4x(p

V. MINIMUM DETECTABLE FLUX

It has been shown' that the energy flux density of the
minimum noise-equivalent impulse of gravitational radia-
tion is

E

E
C:

4x)0
1 000 100
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IO

FIG. 3. This log-log plot shows calculated values of the mag-
nification M vs minimum wall thickness t for tapered antennas
of outer radius Ro. Circled point corresponds to prototype an-
tenna.

4„=kT„/x,
where T„ is the minimum noise temperature of the anten-
na and amplifier, X is the gravitational cross section of
the antenna, and k is the Boltzmann constant. N„ im-
proves as T„ is lowered and/or 2 is increased.

If a uniform cylinder and a tapered cylinder have iden-
tical frequencies for the first 1ongitudinal mode, as is the
case here, it can be shown that the gravitational cross sec-
tion of the latter is approximately that of a uniform
cylinder whose length is the same as the length of the uni-
form section of the tapered cylinder. For the double-sided
tapered cylinder described here, the uniform section is
half the total length, hence the gravitational cross section
is reduced by ( —, ) when compared to a uniform cylinder.
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For a similar cylinder with a single-sided taper, the reduc-
tion factor is ( —,

'
) . If the tapered section is +, the total

length, then X is reduced by (
—„).

Under optimum filtering conditions and negligible elec-
trical losses the minimum noise temperature may be writ-
ten as'

1/2

T„=2T„(1+y') 1+
'y

in terms of a—:T/T~ the physical temperature to amplif-
ier noise temperature ratio and y =Z& /ZT the amplifier
noise impedance to transducer impedance ratio. Mechani-
cal losses in the antenna are represented by Q. Noise tem-
perature is minimum when both y and 2a/yPg~l.
Matching of transducer and antenna occurs when
2a/yPQ~ 1. Other parameters being fixed, T„ is in-
versely proportional to P'~ until transducer and antenna
are optimally matched.

The coupling factor P is directly proportional to the
square of the magnification factor M, so that P for the ta-
pered cylinder is (20&&2 '~

) =200 times that of a uni-
form cylinder. The bandwidth is increased by a factor of
200 also. Furthermore, in spite of the smaller X, 4&„ for
the prototype tapered cylinder is about half that of a uni-
form cylinder of the same overall length which is a net
improvement in the sensitivity.

If we reduce the length of the tapered section to (2 X —„)
of the total length (this is still in the linear regime), then
for a double-sided tapered cylinder a net improvement in

obtains when M ~ 3. For a single-sided tapered
cylinder the corresponding figure is M & 2. In the previ-
ous section we have indicated that much larger values of
M are possible.

It is clear that by tapering a cylinder in the manner

described above, antenna and transducer can be optimally
matched because 13 may be increased by 10 to 10, with a
corresponding decrease in N„by a factor of 10 to 100 in
real antenrias. These conclusions are valid as long as the
detector sensitivity is not limited by amplifier noise. We
note that the amplifier limit is reached more easily using a
tapered cylinder. On the other hand, if the detector sensi-
tivity is already amplifier limited, then a larger bandwidth
is gained by using a tapered cylinder.

Finally we note that when antenna and transducer are
optimally matched, the resonant frequency is determined
by the total impedance of antenna and transducer. ' Be-
cause of the extraordinary sensitivity of the frequency of a
tapered cylinder antenna to loading effects of the trans-
ducer, it is possible to achieve a degree of tunability by
varying the coupling fields and hence the impedance of
the transducer.
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