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Time dependence of the Skyrme soliton
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Small oscillations of the static Skyrme soliton are considered. It is found that the Skyrme soliton is
stable against small oscillations and there is no bound state. The meson-soliton scattering phase shifts are
calculated. A resonance is found at —250-300. MeV above the nucleon, which is only halfway from the
Roper resonance N (1440). Small oscillations are also considered for spinning Skyrme solitons. The
results are similar. Some implications and difficulties associated with spinning solitons are discussed.

It is believed" that in the large-N, limit, the low-energy
properties of QCD can be reproduced effectively by a weak-
ly coupled field theory of mesons, in which the baryons
emerge as the topological solitons. Many years ago,
Skyrme pointed out that the nonlinear a- model admits soli-
ton solutions characterized by an integer-valued topological
charge, which he suggested identifying as the baryon
number. Later investigations~~ have confirmed this defini-
tion of baryon number as well as the fermion nature of the
soliton.

The phenomenological aspects of the Skyrme soliton have
been explored. The static properties of the nucleons have
been computed. s 9 The results are within about 30'/o of the
experimental values. The adiabatic nucleon-nucleon poten-
tial has been calculated. ' " The results are quite successful
in comparison with realistic potentials and can be under-
stood in terms of the exchange of m, p, and co between the
solitons.

In this Rapid Communication, we shall address some
dynamical aspects of the Skyrme soliton through its time
dependence, in particular, the vibrations of the static as well
as the spinning Skyrme soliton. Other time dependences,
such as the zero-frequency translational mode and the boost
mode, will not be discussed here. The breathing mode of
the static Skyrme soliton has been studied recently by com-
puting the compression modulus, ' by scaling, ' and in the
strong-coupling approximation. ' We shall consider vi-
bration in terms of small oscillations around Skyrme's
hedgehog solution. This approach differs from the scaling
approach in that the small oscillations are not restricted to a
shape related to the original soliton solution as in the case
of the scaling approach. On the other hand, they are limited
to a small amplitude, whereas in the scaling approximation
the amplitude can be large in general. The phase shifts of
the static Skyrme soliton with the small-oscillation approxi-
mation have also been studied by other authors. ' ' Be-
sides the phase shifts, we would like to study the stability of

!

the Skyrme soliton against small oscillations and spinning
Skyrme solitons with projected spins and isospins.

The Skyrme Lagrangian for the SU(2) && SU(2) chiral
theory is

I.= Tr(B„UB„U) +
2 Tr[(B„U)U, (B„U)U ]'

328

+ Tm 2F 2(Tr U —2)

The quartic term in U was introduced by Skyrme to stabi-
lize the soliton solution, and the explicit symmetry-breaking
term was introduced by Adkins and Nappi9 to account for a
massive-pion theory. We shall first consider small oscilla-
tions around the static Skyrme soliton for this Lagrangian
with both the massless- and the massive-pion cases. Con-
sider the hedgehog ansatz of the form

&~V re(r, ~) (2)

the Euler-Lagrange equation is then reduced to a time-
dependent equation of motion for the spherical chiral angle
8(r, r),

'2
(~r +2sin 8) 8"— 8 + TrH'+sin28 8' ——

e2F 2 ~2F 2

—~P r sinH —sin28 —+ = 01 sin H

4 -2r
(3)

where, following Refs. 8 and 9, r =F„erand P= m /eF
are defined as dimensionless variables. The static solution
Hp(r) with the boundary conditions Hp(r) = vr at r = 0 and
Hp(r) 0 as r ~ has been obtained previously. s 'P

For small oscillations, let 8(r, t) = Hp(r) +58(r)e
where 5H (( 80. Upon keeping only terms linear in SH, Eq.
(3) leads to an eigenvalue equation for 58,

r

(7r + 2 sin28p)58" + (Ir + 2(sin28p)Hp]58'+ 2(sin28p) Hp'+ 2(cos28p) Hp —~ cos28p ——(sin228p+ 2 sin28p cos28p)
r

Defining

~2/ e2F 2

' 1/2

+ sin200 58
8

—~P r cosHp 58+ (~r2+ 2 sin Hp) 58 =0 . (4)
p2F 2
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Eq. (4) reduces to a Schrodinger equation

d u"+ [E V(-r ) }u=0,
df

where the dimensionless potential V(r) is

V(r) = —sin48p+ 4 sin28p (2 —3sin28p)
(r /8+sin g ) r

-2
+ cos20p+ ~&P r cost)p . (7)
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This potential for the cases of m =0 and m„=138MeV
with F and e from Refs. 8 and 9, respectively, is plotted in
Fig 1. Since it includes the centrifugal potential I(I+1)/r,
it goes like 2/r2 at r 0 for a pion in the P wave and it ap-
proaches m 2/e2F„2 asymptotically. Having solved Eq. (7)
subject to the boundary conditions that u = 0 at r = 0 and ~
so that the winding number of the soliton is not changed,
we first notice that there is no solution for co & 0, which
means that the soliton is stable against small oscillations.
Otherwise, it would introduce an exponentially growing term
in 8(r, t). Furthermore, there is no bound-state solution for
co ) 0 either. This can be checked by the Bohr-Som-
merfeld quantization rule; i.e.,

p3d3r ~ h3 (8)
3 ~ a

holds for having at least one bound state below a chosen
energy with a and b being the classical turning points for
this energy. To check whether there is any bound state at
all, we consider the integral for the maximum allowable
bound-state energy m„2/e2F„2. In this case, the rule be-
comes

5= I [ —V(r)] i r err~ 1
pb

(9)
37T

The integrals S for both the m =0 and m„=138MeV
cases are tabulated in Table I. They are much smaller than
one, which confirms that the potentials are not deep enough
to hold any bound states.

The phase shifts for the scattering states are also calculat-
ed. The boundary conditions for the scattering are u —r' at
r 0 and u —r[a(k)ji(kr) +b(k)ni(kr)] asymptotically
with k=(pi2 —m„2)'2/eF„. The results of the phase shifts
are plotted in Fig. 2. They rise fairly rapidly, giving rise to a
resonance which is reminiscent of the initial rise in the mN
phase shift P11. But they fall off after -300 MeV and do

FIG. 1. The potential defined in Eq. (7) for m =0 and m =138
Mev.

not yield a second resonance as does the experimental data.
The resonance energies are determined by locating the S-
matrix poles at pi= piit —iT/2 The .results of the resonance
energies co~ and the widths I are tabulated in Table I.
Since there are no bound states, we interpret these reso-
nance energies as radial excitation energies above the N and
6 assuming rigid-body rotation and no coupling between
vibration and rotation. Comparing with the Roper reso-
nance N'(1440), which is —500 MeV above the nucleon,
and 5'(1600), which is -370 MeV above 5, we see that
the calculated piit at 313 MeV (for m„=0) and 241 MeV
(for m„=138MeV) are lower than the experimental excita-
tion energies by -200 MeV. This is contrary to the
quark-model calculations' ' of the Roper resonance which
are higher than the experimental value by —100-200 MeV.
It would be interesting to sort out the difference between
these two approaches. The calculated widths (Table I) are
smaller than the experimental width of N'(1440), which is—200 MeV, and that of 5'(1600), which is -250 MeV.
This is all right in the sense that since the resonance ener-
gies are lower than the experimental values, the widths are
expected to be narrower due to a smaller phase space.
Furthermore, the total width of N"(1440) includes -40%
of other decay modes (e.g. , Nn m) which are not present in
this calculation.

It has been argued by Witten ' that in the large-N, limit,
baryon masses are proportional to N, . Hence, the vibration-
al energy co, which is proportional to eF, is of the order 1

TABLE I. Masses and radii of 6 and N for the Skyrrne soliton with rigid-body and self-consistent rotations
are listed. The resonance energies and widths for the radial excitations of N and b are tabulated. The
numbers in parentheses are for the cases of h. S is defined in Eq. (9).

m (MeV)
Rigid-body rotation

0 138
Self-consistent rotation

138
Experiment

138

F~ (MeV)
e
Ma (MeV)
m~ (MeV)
(r2) 'Qp (fm)
(r ) I)i i (fm)
~„(MeV)
I' (MeV)
S

129
5.45
1255
942
0.59

t

313
172
0.14

108
4.84
1230
938
0.68
1.04
241
94

0.18

105.3
4.32
1165
1008
0.81
1.27

223 (206)
60 (113)

. 0.16 (0.11)

186

1232
939
0.72
0.88

500 (370)
200 (250)
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pion scattering.
Now, consider the spinning hedgehog solution

U I ~ ~ r 8(r, t).
f (10)
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FIG. 2. Phase shifts 5 vs pion energy co for m~=0 and m„=138
MeV cases.

and the rotational energy, being proportional to 1/F ~, is of
the order 1/N, . Therefore, in the semiclassical approxima-
tion, one would in general consider the soliton field energy,
the vibrational energy, and the rotational energy, in that or-
der. However, we just learned that there is no bound state
in small oscillations which leaves rotation as the most col-
lective low-frequency mode. In this case, it makes sense to
consider the rotational degree of freedom first before the

I

E =M +J(J +1)/2 Z . (13)

This has been derived by Adkins, Nappi, and Witten by
projecting out the spins and isospins of the N and 5 through
adiabatic rotation.

The Euler-Lagrange equation with the quantized angular
momentum is then

~here r"' is the unit vector in the rotating frame. The
Lagrangian takes the form

L =Lp+L4+L„+~A/' (11)

where L2 and I.4 are due to the quadratic and the quartic
terms and I.

„

is the mass term. A, is the moment of inertia
1 *

fO 2

and P is the angular velocity.
Defining the canonical momentum J=dL/'d@=h. P, and

upon quantization, we obtain the energy for a spinning soli-
ton

(~r'+2sin'8) 8"— g2+ ~f0 + Sln2~ 0
e2F 2 e2p 2

—sin28 —+1 sin 8
4 r

—~P~r ~ sinH

3J J+1 e4 r

+ r~sin28(1 —48'~) —8r~sin~H 8"+ +8sin~H sin28 =0, (14)
(4m )'A'

6J(J+ 1)e" ~ ]
(4~)'A' (16)

where A = (6e3F„/47r)A..
It has recently been pointed out by Braaten and Ralston

that, for massless pion, there is no finite static solution for
Eq. (14). This can be seen from the asymptotic behavior of
the differential equation. Asymptotically, it is like

4] r28 + ]
rH

] 8 ] p2-28+ 6J(J+ l)e z8=0 . (15)
(4m )~A~

For m„=0 (i.e., p=0), the last term in Eq. (15) intro-
duces a negative constant potential at infinity for positive J.
Therefore, there is no bound solution for 0. This is analo-
gous to the classical treatment of the hydrogen atom. When
one considers that the electron is coupled to the electromag-
netic field classically and is forced to orbit with a definite
angular momentum, there is no stationary solution and the
space will eventually be filled up with radiation. For the
massless-pion case, this is what happens, namely, the soli-
ton disperses to infinity with emitted pions. This instability
can be avoided to a certain extent with the massive pion.
One notices from Eq. (15) that there will be a finite-energy
stationary soliton solution as long as

Mg —M~~ 1.31m„=181 MeV

which is less than the observed mass difference.
While solving the integrodifferential equation (14) self-

consistently, we find that, within the range of the parameter
space we are searching, the left-hand side of Eq. (16) in-
creases monotonically with J so that the bound in Eq. (16)
is always saturated at a certain finite J value. Beyond this
critical value of J=I, there is no finite-energy solution.
The parameters I' and e are so chosen that self-consistent
solutions of Eq. (14) with the bound in Eq. (16) satisfied
for J=~ are obtained which yield a maximum 5-N mass
difference of 157 MeV. These parameters and the radii for
Narc listed in Table I.

Now we consider small oscillations around these spinning
Skyrme solitons. Following the previous procedure, we ob-
tain again a Schrodinger equation. In this case, u is defined
as

(17)

]]= [r /8+ sin 8 (1 —gf /2) ] ~&88 (18)
where q=24J(J+l)e4/(4m)~A~. The potential in this case
Is

I

so that the spinning soliton is stable against pion emission.
With this stability condition, an upper bound for the 5 and
N mass difference is derived, 20

2

V(r) = sin Hp(2 —3sin Hp)(1 —qr )(1—~qr ) + (2 —3sin Hp
—2qsin Hp)

1 1 . 4 Sln 80 2

[F /8+sin 8 (1 —qr /2)]~ r 4
-2

+ cos2go 1 —12' sin 80 —q — +2q r sin 80 —~q r sin 28032, 2

-2 -2
+ 7'r p'r 4cosHp — qr~ sin'Hp —+sin~Hp 1 vf16 8 2
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FIG. 3. The potential (at E=O) in the N and b channels as de-
fined in Eq. (19).

FIG. 4. Phase shifts 8 vs pion energy co in the N and 5 channels
with the self-consistent approach to rotation.

Notice that since the moment of inertia is time indepen-
dent, the potential becomes E dependent through the
transformation in Eq. (18).

1Again, there are no co & 0 solutions for J=
2 and J= Y,

which implies that they are stable against small oscillations.
The integrals S are listed in Table I. They are not large
enough to generate bound states. The potentials at E=O
are plotted in Fig. 3. It is worthwhile to note that the po-

3tential for J=
2 is different from that of J=~. Despite

the fact that the nonlinear cr model is not renormalizable
(we do not know how to do quantum corrections properly),
it would still be tempting to conjecture that part of the ob-
served 6-N mass difference is due to rotation, whereas
another part may be due to the quantum-oscillation correc-
tions. The large width of 6 ( —115 MeV) itself is sugges-
tive that a 6 mass shift of comparable magnitude is conceiv-
able. The phase shifts in the J= ~ and J= ~ channels are1 =3
computed and plotted in Fig. 4. They are similar to the
cases for solitons with rigid-body rotation. The resonance
energies and widths are reported in Table I. The resonance
energies are again about halfway to the Roper resonance
N'(1440) and b '(1600).

Another point worth mentioning is that since we used the
equal condition for J= T in Eq. (16) to attain the max-

imum 5-N mass difference, the rotational band is cut off
after I= J= ~. This is in conformity with the fact that no

I=J=
2 baryon has been observed experimentally. Furth-

ermore, in the quark-model language, a baryon with
I=J=T will require at least four quarks and one anti-

quark as the valence quarks. Even if such a resonance ex-
ists, it is not obvious why it should belong to the rotational
band of Nand A.

In conclusion, we find from the study of the small oscilla-
tions around the Skyrme solitons with either rigid-body or
self-consistent rotations that they are stable against small
oscillations, that there are no bound oscillations, and that
the phase-shift analysis indicates resonances at —200-300
MeV excitation, which are much lower than the Roper reso-
nance N'(1440) and 6'(1600). It is learned from the self-
consistent variation for the spinning Skyrme soliton with
projected spin and isospin that there is no finite soliton
solution for m =0. With m =138 MeV, it yields a max-
imum of 157 MeV for the 6-N mass difference. In this

=3
, case, the rotational band terminates after I=J= ~.
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