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The generation structure of quarks and leptons is incorporated with the electroweak theory in an

Spt (6) xUy(1) model. III this model, the first-generation fermions are naturally light because their

masses are generated only as two-loop corrections. Also the inequality m„& m~ is related to m, & mb.

In two previous reports, '2 wc proposed an extended elec-
troweak model based on the gauge group SUI. (2) x SUS (3).
Here SUS(3) not only is a part of the electroweak group,

'

but also plays the role of a horizontal symmetry group. 3 It
was shown that the model results in small masses of the
first-generation fermions, as wc will summarize briefIy in
the following. 4 There, right-handed quarks and leptons are
assigned to triplets of SUS(3), and left-handed ones to
singlcts. Fof Instance, (us, cn, l)n) and (dn, sn, tn) form ~3

and ~3, respectively. If we further assume that there is one
Higgs multiplet it, transforming as (2I„~3 ), then the
Higgs-Yukawa couplings of quarks, for instance, become

X (fiunqt. 4+ gtdnqL4 ) +H c.

SU(4) x Spi, (6)x Spit (6), (2)

under which the left-handed and the right-handed fermions
transform as [4, 6, 11 and [4, 1,6], respectively. s The sym-
metry group (2) contains the SUI. (2) x SU+ (3), the
SUL(2) x SU+(2), and thus the standard SUL(2) x U&(l)
groups as its subgroups, with the feature that, except for thc
right-handed neutrinos (I(IJ(), the model contains no new,
unobserved fermions. It is in this sense that (2) is the
maximal symmetry group unifying the generation structure
with the electrowcak symmetry.

In spite of these features, however, the SUL(2) x SUn(3)

where QL arc left-handed doublets with thc gcnclatlon Index
I= 1, 2, 3, and where un (ds) represents the right-handed
3 (3), generically. In (1) we can always make fi = gi = 0 by
redefining qL, and hence qLl, or the first generation, stays
massless naturally after the SUI, (2) breakdown. It was then
noticed2 that this family can subsequently become massive
via two-loop corrections when a set of scalar fields is intro-
duced. As a bonus, the inequality m„& mq is tied in natur-
ally with m& & mb. It was also realized that the symmetry

, group including SU, (3) can be extended even further to

+ g,( )y,' "e)lL(]+H.c. , (4)

model gives one unacceptable result. Since qL1, i.e., both ul.
and dL, , cannot mix with the other generation at the tree
level, the resulting Cabibbo angle Hc, induced simultane-
ously with mi, can be no larger than mi/m2, where mi is a
typical value of the ith-family mass. This difficulty made us
investigate other subgroups of (2), among which the group

SU, (3)x Sp, (6) x U &(I)

turned out to resolve the Hc problem while reproducing the
previous features.

We now wish to describe the model [Eq. (3)] in detail.
The fermion assignments under (3) are obtained, by decom-
position, from those under the group (2). They are there-
fore qL([3, 6;+ ~], If[1,6; —.T], uti[3, 1;+7], dnt[3, 1;
—T], and est[1, 1;—11, where i =1, . . . , 6 is the spinor

index of Spt, (6) (Refs. 4,5) and I = 1, 2, 3 is the generation
index. A summary of particle assignments is given in Table
I. Notice that N~ need not be introduced. It is now evident
that our model requires merely a minimal extension of the
standard model. Upon the breakdown Spt, (6) SUL, (2),
qt, (li) decomposes to three doublets qLs' (lz~'), where

p = 1,2 is the SUL (2) spinor index, a = 1, 2, 3 corresponds
to the generation, and i = a+ 3 (p —1) (Refs. 4,6).

The breakdowns Spi, (6)~ [SUI, (2)] SUL(2) can be
induced by two [1,14;0] Higgs fields H, ix = 1, 2 (Rcf. 7).
Since Spt, (6) contains direct flavor-changing neutral-current
(FCNC) interactions, the scale of the first breaking is re-
stricted to be & 100 TCV. The second scale may be as low
as —1 TCV, s although wc will assume, for simplicity, that
thc two breaking scales arc ldcntlcal. Thc standard Higgs
multiplet is embedded into [1,6;+ T]. We actually intro-

duce two of them it ( )', n = 1„2, so that the Higgs-Yukawa
couplings arc

X X [f(a)~ (~)tdi qi +f '(n)+ d, (cl)iu iqj

TABLE I. The particle assignments under the gauge group SU, (3)x Spt, (6) x Ur(1): here qL( (lz) are left-handed quarks (leptons), and
(u&)=(utt, ct(, tn), for example, are right-handed quarks. The scalar fields 0( ), $( ), and X (X') carry Spt, (6) spiuor indices
ij =1, . . . , 6. The generation index 1=1,2, 3 is not a group index, nor is a=1,2.

SU, (3)

SpL(6)

U y(1)
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where g({ is the metric of the SpL, (6) spinor. 45 Since we
can always redefine the right-handed fermions dz, etc., such
that,

f (a) f '(a) g (n) (5)

(4) naturally results in one massless generation of fermions.
Under the breakdown SpL, (6) SUL(2), P( )' decompose
similarly to 4)( )&'. When SUI. (2) XUr(1) is subsequently
broken by (Q( )2') (—= u«( )), the fermion mass terms are
induced to be

—X X [)(IiM )(«~)xg+ H.c.], )(, = u, d, e
I a

(6)

where M ~"~ is of the form

000

This structure shows clearly that there exists one generation
of massless fermions. Notice that )(.„' (A, =u, d, or e), in-
stead of XL as in (1), are decoupled from M("). The Ca-
bibbo angle Hc is consequently nonvanishing even at the
tree level, and thus free from the difficulty of the previous
model. "

We will make one technical remark concerning (7). At
first sight ra~ ~, a=1,2, seem to have the most general
structure except that uI', for example, can be chosen to be
real. Nevertheless, since they behave as 3 of the SUL(3)
subgl'ollp of SpL, (6), we can apply SUt, (3) I'otatloils to v«
so that they may have simpler forms. Such transforma-
tions, ho~ever, are restricted by the condition

(~"))=(o"«) (~(2))=( ' ") (10)

which does not change (7). Were it not for the restriction
(8), we could reduce v ( ) further. It is well known that an
SU(2) doublet (vi, v2) can be transformed to (v, 0),
i)=real, by an SU(2) rotation. Since this applies to each
SU(2) subgroup of SUL(3), v«( ) could be reduced, by an
SUL, (3) rotation R, from (10) to

(v(")= (0, 0, ), (~|")= (0, ',"),
yielding

000
MP)=0« ' (7')

0

instead of (7). It is (8), therefore, that made Hc nonvanish-
ing, because without (8) we would have concluded from
(7') that Hc=0. The transformation R, though not applica-
ble, is nevertheless useful for studying the diagonalization
of (7). It actuaBy shows the finiteness of radiatively in-
duced masses, as will be explained later.

To induce the first-generation masses radiatively, it is
necessary to introduce more fields which couple with fer™
mions, since otherwise an unbroken discrete chiral sym-
metry, under which u~ —u~, etc. , ~ould emerge and
prohibit the mass terms. Here we follow the simplest pro-
cedure proposed in Ref. 2, by introducing scalar fields. The
quantum numbers of them can be determined from those of
the qL2 and (u~, dz) channels to be [3, 1;—T). We can
then. write the Yukawa couplings,

GL'
q{)qL'( —C ') q,'+ g G,"-d,"( C ') u,' x+ H.c—. , -(12)

where TL, are the SUI. (2) generators. To study this re-
striction, let us write down TL, and the SUI. (3) generators
explicitly,

Tg=o. S 13, Ai=

~here 13 is the 3X 3 unit matrix. Among the A' s, only A2,
A', and A~ commute with TL„and hence can be used to
reduce v«( without conflicting with (8). Notice that rota-
tions generated by them are all real rotations. %e may first
make vj') =real by a A~ rotation, and then vj') =0 by a A2

rotation. No subsequent rotations by A, A5, or A7 can
reduce v ~ ~ any further. Hence, v ~ ~ can be reduced at best

~here X is the scalar field in question and C is the charge-
conjugation matrix. In (12) the Levi-Civita tensor of
SU, (3) i's not written down explicitly. The same quantum
number allows actually another set of lepton-quark Yukawa
couplings,

FLv) „1,"( C ') qL+ X F~—e„"-(—C-') u)J( X'+ II.c. , (13)
1

where X' is also [3, 1;—T]. Here we will avoid the proton-

decay problem by demanding that the baryon number be a
good global symmetry and that X and X carry —T and

+ T, respectively. It is straightforward to rewrite (12} and

(13) as'

g [G,''dP(- C-').- J+ G„'Jd,'r(- C-') ~g]x+ XFIJI,"(-C ')a.' F,.-,'(-, C '-) dr+ -X F„"V(-C--i) a J x'+H.
X,J I,J- I,J '

(14)

in terms of the tree mass eigenstates dL, etc. In (14) GL,
etc. , are products of GL, etc. , with the unitary matrices di-
agonalizing (7). A less trivial fact is that

Gp= Gf '=FL)I=EL(=0 for I=2, 3

This is a direct consequence of the fact that X (X ) is an
Spl. (6) singlet, and can be proved explicitly by the use of
the rotation 8 and (7'), mentioned previously. " The finite-
ness of induced masses also guarantees (15) because the

I

one-loop correction shown in Fig. 1(a) would otherwise
yield divergent first-generation masses in conflict with the
theorem. 'o Actually the one-loop correction vanishes identi-
cally due to (15). We thus have to study two-loop correc-
tions given in Fig. 1(b). The relation (15) proves their fin-
iteness again, while the included SpL (6) gauge interactions

VA X ) I p( TA)), (t)A (J))( 'J (16)

where {X,X'j runs over all pairs of {u,dj or {v,ej, make
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them nonvanishing. Explicit evaluation yields finally that mq, m„, and m, are the absolute values of

2 M2
(TA) tJi.tnGKJ(TA)d(K)d(1)+ (TA)d(Jiu(1)GJIC(TA)u(K)d(1)]+R L

2 M2gl ~ 2G lie~]I[ ( TA)dt Jidtl) G JE( TA) u(E)u(i) + ( TA) u(Jiu(l) G EJ(TA)d(E)u(i)]@
128 L L

PPl
1

+ Flie~y[ ( TA)e(JIe(I)PIE( TA)u(K)u(1)+ ( TA)v(JIe(l) p ( TA)d(Jju(1) ]qp
r

2 2'
~ 3Pllelrty[ ( TA)utJ)u(I)PEJ( TA)e(K)e(1) + ( TA)d(Jiu(1) p ( TA)v(Jie(1) ]qgR ~ L I.

ffI
1

(17a)

(17c)

respectively. In '(l7), m]', etc. , for I=2, 3, denote the tree
IYlasscs of thc Ith faIY111y, whllc Mg, Nlg, and Nl I arc thc
masses of V„", X, and X . The approximation
mj', mj', mf((M~, mx, m„i is used to reach (17), and the
function W(z) is defined by"

+ ~ ln'z —lnz+ (1r2/6) (z —z '), (l8)

where l(x) =x+ xz/4+ is the Spence function 'z The
relative factors 1, 2, and 3 in (17) are due to the color
structures 8&5&=BI, ~ ~qi»~=25&, and 5I'5&=3.

In conclusion, the present model reproduces thc qualita-

x

/
/
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x

d

Qc 1]JC

l gi I

FIG. 1. Diagrams to induce the first-generation masses radiative-
ly. The broken and wavy lines correspond, respectively, to the X

(X ) field arid to tllc Spl, (6) gallgc field V. Tllc Q ($ ) f1cids afc
the tree mass eigenstates of either. quarks or leptons with appropri-
ate chiralities, and P', for instance, denotes CQ ~ The symbol
on the fermion lines sho~s that, in the numerator of the propaga-
tor, only the mass term contributes. The one-loop correction (a)
vanishes identically, while the two-loop correction (b) remains fin-
ite, for the first generation.

t

tive features of Refs. 1 and 2: The masses of the first gen-
eration (mi) vanish at the tree level naturally. Then the
two-loop co1rcct1oIls 1nducc N/1 from those of thc th1rd
(m3) as in (17), and hence mi/m3 contains at least
O(gl, '/128vr4) —10 4. Moreover, the inequality Irt„( md is
related naturally with m, ) mb when the sums of (17) are
saturated by t and b quarks. The advantage of the present
model over the previous one2 is that it yields these prefer-
able consequences without entailing a small Cabibbo angle
( ( mi/m2). On the other hand, the use of two Higgs mul-
tiplets gt I' is somewhat arbitrary.

Scvcral comments aI'c 1n oI'dcI".

First of all, the exhaustive study of (2) and 1ts subgfoups
is now finished. Among them the present model is thc least
extension of the standard model, and yet yields the specific
results on the first generation without any apparent difficul-
ties. Among the new Spl. (6) gauge fields, certain combina-
tions of [SU(2)]l.' ones may be observed in the supercol-
lider experiments because their masses can possibly be & 1

TeV.
Secondly, to the best of our knowledge, there is no simple

gauge group which can unify this model without destroying
the results on the masses. Fortunately, ho~ever, because
of the embeddings SUI. (2) C [SUI (2) ]31:SpL(6), the
SpL (6) gauge coupling ( = 3u2) becomes as large as a„and
hence does not necessarily require a unification. %C can
therefore unify the remainder through SU, (3) && Ur(I)
1:SU(4)&SUE(2) 1:SU(6) to explain the ratio n/n„while
reproducing thc present model as a low-energy effective
theory. The group theory and the renormalization-group
analysis will be given in Ref. 4, showing that the SU(6)
scale is —4& 10'4 GCV. This unification also sets re-
strictions on the Yukawa couplings (4), (12), and (13), but
their implications on masses, as well as on proton decays,
are yet to be studied.

Thirdly, a single $ Higgs field would keep even the
second-gcncl at1on massless as w'as noted. HowcvcI', Ilo
mechanism is found yet to produce their reasonably large
masses through radiative corrections.

To generalize the present models for an arbitrary number
of generations WG, all one has to do are to replace Sp(6) by
Sp(2%0) and to make corresponding changes elsewhere.

Finally we ~ould like to point out that the symplectic
group Sp(2N) is a very interesting candidate for the hor-
izontal symmetry. Since Sp(2Ã) has no complex represen-
tations, its gauge theories are always anomaly free. The
group Spl. (2N) can contam N generations naturally accord-
ing to the breakdown SpL, (2N) ~ [SUL(2)] SUL, (2).
Last, but not least, unlike the SU(N) or So(4%+10)
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groups, no superfluous fermions ever need to be intro-
duced, in models such as (2) or its subgroups. These
features, in addition to the occurrence of naturally light
families, suggest that the symplectic group deserves more
attention than it is usually given. ' It is our belief that the

symplectic group plays an important role in the attempt to
understand the generation structure.
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