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Reanalyzing a recent paper on the two-step potential model, we have arrived at the conclusion that the
related nonrelativistic equation cannot be solved analytically. However, a description of quarkonium com-

parable with descriptions of other potential models may be obtained with standard numerical methods.

In a recent paper, Kulshreshtha and Kaushal' applied the
so-called two-step potential to an analysis of the S states in
the b-quarkonium family. They claimed that (i) an analytic
solution of the appropriate. Schrodinger equation might be
found by using a two-step potential and (ii) the parameters
given in the paper successfully described the Y spectra. We
disagree with both of these statements. In our opinion, the
parameters given by Eq. (13) in Ref. 1 cannot be used for a
reasonable description of b-quarkonium, and the analytic
solutions proposed are not solutions of the related nonrela-
tivistic problem. In the following we identify the incorrect
assumption used in Ref. 1, outline a method for solving the
problems, and give a set of new parameters which, even
with the two-step potential, enable one to obtain results
comparable with the results predicted by other successful
potentials.

The potential investigated in Ref. 1 had the form

—p/r, r ~8
—Vo+Kr, r & B

When the continuity of the potential and of its derivative
are used to eliminate the parameters Vo and K, the
Schrodinger equation takes the form

r — +mp t(I+1) R (r) = mBR (r), r ~ 8
I' dT'2 r f2

(2a)
'I

r+ —2+ —+1 d2 mP r l (I+ 1) R (r ) = mBR ( r ),
r dI2 B p2

r&B . (2b)

There exist several methods for solving the radial equation
(2). The authors of Ref. 1 followed a method which looked
for general solutions in each of the two regions (0,8) and
(8, ~). It is well known that eigensolutions are determined
by the condition of regularity at the origin and at infinity
and the condition of continuity of these functions and of
their logarithmic derivatives at r = B.

After a straightforward transformation, the solution of
Eq. (2a) can be written in terms of a confluent hyper-
geometric (infinite) series whose coefficients depend on the

energy parameter E. However, in Ref, 1, Laguerre polyno-
mials were given as solutions of this equation, which is in-
correct. Laguerre polynomials emerge as solutions of an
equation with the Coulomb potential only when the regular-
ity at infinity is required, which is not the case in our prob-
lem. As already said, to find a general solution in the re-
gion r ~ B, the only condition is the regularity at the origin,
while the behavior at infinity may be arbitrary. Similarly,
the solution of Eq. (2b) can be expressed as an infinite
series in r. As noted in Ref. 1, this series is related to Airy
functions for I =O. However, the conclusion' that the zeros
of Airy functions thus determine some of the l = 0 eigen-
values of Eq. (2) is not correct. In no way can one learn
eigenvalues of this equation by considering the solution only
in one region of space. The correct procedure would be the
following: (a) Express general solutions in both regions in
terms of appropriate infinite series,

R(r ~8) = XAk(E)r"

and

R (r & 8) =XB„(E)r" .

(b) Determine the values of E for which the functions
R (r ~ 8) and R (r & 8) and their derivatives at r =8 are
equal. It is clear that step (b) can be performed only nu-
merically even for I=0 and that analytic solutions of the
problems cannot be found.

We have described the above method just to locate the
source of the mistake in Ref. 1. In practical calculations,
more efficient and simpler numerical analyses can be used
for any particular form of potential. The method is based
on the diagonalization of a matrix related to the Schrodinger
equation. (For a simple algorithm, see, e.g., Ref. 4.) In
Table I we give excitation energies calculated by this
method with the parameters from Ref. 1 (mb=5. 09 GeV,
p=0.765, and 8=2.690 GeV '). The values obtained
poorly match experimental data. In particular, the P level is
too close to the S level.

Still, this does not mean that one should abandon the
two-step potential as a tool for the investigation of quar-
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TABLE I. Excitation energies (in GeV) for some lowest-lying
levels of b-quarkonium, calculated with the parameters of Ref. 1.
(The incorrect values as quoted in Ref. 1 are given in parentheses. )
Measured values are also included.

Theory Experiment

(is)
(2S)
(3S)
(4S)
(IP)

0
0.574
0.792
0.972
0.565

(0)
(0.559)'
(0.764)
(0.992)
( )

(i 3s, )
(23st)
(33@ )
(4'S, )
(13P)

0
0.559
0.889
1.112
0.46b

~Input quantity. See Ref. 5.

P=0.728, B=1.707 GeV (3)

With the parameters (3), the two-step potential leads to
results similar to those obtained with other commonly used
potentials, 7 and should therefore be included in a list of

konium. As shown in Ref. 6, the properties of both char-
monium and the b-quarkonium can be described with
another, flavor-independent set of parameters, namely,

m, =1.83 GeV, mq=4. 35 GeV

"successful" potentials. We present set (3) just for a
reader's orientation. One may expect some changes in
these parameters once the relativistic corrections are includ-
ed in the analyses. The model-independent relations

s„.„...= T [(ts,) + 3(3s, ) ].„„,
4

P„,„„,= T'f [('Pc) + 3('Pt) + 5('Pz) + 3('Pt) ],„,
which are valid under the assumption that the relativistic
spin-independent forces are negligible, may help to fix
parameters (3) more precisely once the lowest 'Pt b
quarkonium level is found.

In conclusion, we have reanalyzed the two-step potential
proposed in Ref. 1. It was claimed' that this potential has
an attractive feature: the possibility of analytic solutions in
I =0 sector. %e exclude this possibility. However, even
without that bonus, the two-step potential seems to be as
good a candidate for the description of quarkonium as any
other potential currently used in literature.
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