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A method for solving Salpeter s relativistic bound-state equation is presented. The interaction can
be given in either momentum space or configuration space and may have various Lorentz-Dirac
properties. The operators of the equation are represented as matrices in a basis of nonrelativistic
harmonic-oscillator states. The resulting non-Hermitian matrix is diagonalized for various values of
the oscillator frequency, a variational parameter. To reduce the size of the matrices a two-particle
Foldy-Wouthuysen transformation is applied. As an example, the charmonium and b-quarkonium

mass spectra are calculated using a linear confining potential plus one-gluon exchange. The effects
of the coupling between the positive- and negative-energy components are examined and found to be
important for the light mesons.

I. INTRODUCTION

A common model of a meson is a relativistic bound
state of two fermions. It is therefore important to have a
method for solving relativistic bound-state equations. Nu-
merical solutions of the Schrodinger equation have given
satisfactory fits to the meson mass spectrum and other
measured meson properties, but the spin-dependent effects
have to be obtained by fitting several parameters to the
data or by the use of perturbation expansions. A more
satisfying approach is to solve Salpeter's instantaneous ap-
proximation to the covariant Bethe-Salpeter equation and
thereby include spin-dependent effects without introduc-
ing extra parameters. In this treatment, the coupling be-
tween positive- and negative-energy components is fully
taken into account. Until now, no exact method of solu-
tion of Salpeter's equation with a general potential and
unequal masses was known. ' A method of solution is
given here in sufficient detail to allow someone who is
familiar with numerical solutions of Schrodinger s equa-
tion to proceed with a minimum amount of difficulty.
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E,(p ) =+(m, '+ p ')' ', (3a)

In these equations, E is the total rest energy of the bound
composite, p is the relative momentum, P(p) is the am-
plitude (referred to henceforth as the wave function), and
G represents the interaction between particles a and b.
The A+-symbols are projection operators that project free
particle states of positive or negative energy. They are de-
fined by

II. THE EQUATION

Eb(p) =+(trtb'+ p ')' ' . (3b)

Salpeter derives his equation by starting from the co-
variant Bethe-Salpeter equation and assuming that the in-
teraction kernel is independent of the zeroth component
of the four-momentum transfer. This kernel, and hence
the equation, is no longer covariant, but the equation is
soluble and contains some of the relativistic effects of the
covariant equation. We start from Salpeter's equation
written as four coupled equations in the center-of-
momentum frame:

[E—E,(p) —Eb(p)]A+(p)Ab+(p)P(p)

=+A,+(p)Ab(p) f d k G(k)p(p+k), (la)

[E+E (p)+Eb(p)]A, (p)Ab (p)y(p)

A, (p)Ab—(p) I d k G(k)p(p+k), (lb)

III. A MATRIX REPRESENTATION
OF THE TWO-PARTICLE DIRAC MATRICES

and

+a+a ++a+a

CXy CXb +CXb CXy
——2P'

aI,'ab —aha", =0 .

This can be achieved by the following choices:

Salpeter's equations involve two sets of Dirac matrices,
one for each particle. Each set must have the anticommu-
tation properties of the Dirac matrices, but each member
of one set must commute with each member of the other
set. Using the notation a, =P, we require
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and

0 o~ 0 0

0 ob 0 0

ob 0 0 0

0 0 0

IV. THE BASIS STATES

A convenient set of basis states can be chosen from the
solutions of the Schrodinger equation for a spherical har-
monic oscillator. Oscillator states have the welcome prop-
erty that the set of discrete states is complete, that is,
there is no continuum as there is in the Coulomb spec-
trum. Furthermore, since the oscillator potential is con-
fining, its solutions are appropriate for confined quarks.
The transformation of oscillator states between momen-
tum and configuration space is very simple. We can find
the oscillator matrix elements of an operator which is
given in either space with equal ease. For example, we
calculate the matrix elements of E,(p)=(m, +p )'
between oscillator states in momentum space while we
calculate the matrix elements of the phenomenological
confining potential V(r) =c

~

r
~

between oscillator states
in configuration space.

It is convenient to write the interaction in configuration
space where it is local. It is necessary to calculate the in-
teraction in configuration space when it does not have a

I

0 0 ob 0

The above 4&4 supermatrices really represent 16)&16
matrices because each position acts in the 4&&4 space of
the two-particle Pauli matrices.

well-behaved momentum-space representation, as in the
potential above. A general method for solving equations
containing operators in both momentum and configura-
tion space has been given by Stanley and Robson and
methods for solving equations containing the operators

(m +p )'~ + V(r)

have been given by Nickisch, Durand, and Durand.
We include the Pauli spin of two particles by including

the total spin quantum number S and the total angular
momentum quantum number J. The basis states are then
described by the quantum numbers n, S,I,J,M, where n is
the principal oscillator quantum number, I is the orbital
angular momentum, and M is the magnetic quantum
number. We expect the interaction to conserve total an-
gular momentum and parity. When this is the case, the
equation can be solved separately for each different total
angular momentum and parity.

When the interaction has spherical symmetry, its opera-
tors are of rank zero in angular momentum space. In this
common case, the Wigner-Eckart theorem tells us that the
matrix elements are equal to the reduced matrix elements
and the dependence on M gives simply a (2J+ 1)-fold de-
generacy. Thus we need to calculate only reduced matrix
elements, and our basis states are described by n, S, and 1

for a given J.
We begin by changing the variable of integration in Eq.

(1) to p'=p+k and writing the interaction as a more gen-
eral nonlocal interaction,

G(k)=G(p'-p)=G(p, p') .

Then the integral in Eqs. (la) and (lb) becomes

f d'k G(k)P(p+ k) = f d'p'G(p, p ')P(p ') .

V. THE FOLDY-WOUTHUYSEN
TRANSFORMATION

Equations (lc) and (ld) can be used to eliminate half of
the basis by transforming to the Foldy-Wouthuysen repre-
sentation. This reduces the number of matrix elements by
a factor of four.

Noting that

&,+(P)&b (P)+&,+(P)&b (P)

+&, (p)&b+(p)+&, (p)&b(p)=I
and using (lc) and (ld), Eq. (la) becomes

[&—E.(P)—Eb(P) l&.+(P)&b (P)4'(P) =+&.+(P)&b (P) f d'p'G(P P ')[&.+(P ')&b (P ')+&. (P ')&b (P ') 14(P ')

The transformation is implemented by the operator

U(P)=[&,(P)+&,(P)P, ~, P][&b(P)—&b(P)Pb~b P],
where p=p/~ p (;



A, (p)= E,(p)+m,
2E, (p)

' 1/2

, 8,(p)= E~(p) —m~

ZE, (p)

' 1/2

, etc.

This operator satisfies

U(p) U'(p) = U'(p) U(p) =1,

U{p)A+(p)&+(p)U (p)= —,(I+P, ) (1+—Pb)=

U(y)A, (y)A (y) Ut(y) = —,'(1—P, )—,(1—u&) =

The projection operators 8++ and 8 are independent of p. We then multiply Eq. (6) by U(p) from the left and in-

sert U (p)U(p)=1 as required to obtain

[E—E,(p) —Es(p)]8++ U(y)p(p) =8++U(p) f d'p'G(y, p ') U (p ')[8+++8 ]U(p ')p(p ') . (7)

To get Eq. (7) we used the fact that U{p) commutes with both E,(p) and Eb(p). Defining X(y)=8++U{y)p(y) and

Z(p) =8 U(y)p(p), and using 8++8++=8++ and 8 8 =8, Salpeter's equations are reduced to a set of
two coupled equations:

8++[E—E,(p) —Eb(p))8++X(p)=8++U(p) f d~p'6(p, p ')U (p ')[8++X(p ')+8 Z(p ')]

d

[E+E,(p)+Eb(p)]8 Z(p)= —8 U(p) f d'p'G(y, p')U (p')[8++X(p')+8 Z(p')] .

(Sa)

(Sb)

Since the operators of Eqs. (8) are sandwiched between
8++ and 8, we need only one fourth of the number
of matrix elements needed in Eqs. (1). This is illustrated
below, where the positions marked & denote the matrix
elements which are needed:

~ ~

x ' x

VI. MATRIX REPRESENTATION
IN GSCILLATOR STATES

Equations (8) are put into a form suitable for diagonali-
zation by first expanding in an infinite, complete set of
basis states and then truncating to a finite set that will fit
into a real computer. The accuracy of this method is lim-

I

8++[E—E,(p) —E (p)]8++X(p)

ited only by the amount of computer power available.
The ground-state energy and wave function are the most
accurate, the second lowest state is less accurate, etc., with
the states of highest excitation incorrect. It is necessary
to include the higher excitation states because they mix
with the lower states. This situation is the same for a
solution of the Schrodinger equation by expansion in os-
cillator states followed by diagonalization of the resulting
matrix.

The accuracy of a computational result can be estimat-
ed by changing the truncation point and therefore the size
of the basis. An accurate result changes very little when
the size is increased.

We next show how to write Eq. (Sa) as a matrix equa-
tion in oscillator states. The development of Eq. (Sb) is
similar. First, the momentum dependence of each of the
factors on the right-hand side is isolated by introducing
Dirac 5 functions and integrating. Equation (Sa) is writ-
ten

=8++U(p) f d'q 5(p q) f d'p—'G(q, p') f d'q S(p ' —q )U'(q )[8++X(q )+8--Z(q ')] .
(9)
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Next, the wave functions are expanded in orthonormal basis states, f ( p), as

X(p )=X+~(p },
where the greek subscript is a collective label for a particular combination of the quantum numbers n,s, l,J,M, and

X~= f d p f'(p)X(p)

is a coefficient. A sum over repeated subscripts is implied throughout this paper.
The 5 functions are expressed as

5(p-q)=f (p)f'(q) .

Making these substitutions and multiplying Eq. (9) by f' ( p ) and integrating, over p, we obtain

8'+ f d'pf'. (p)[E E.(p—} Eb(p—})fp(p}8"Xp
g++ 3 g -+

X f d'q fp(p)fp(q) f d'p'G(q, p') f d'q'fr(p')f'„(q')Ut(q')fs(q')[8++Xs+8 Zs] . (10)

Using the orthonormality of the basis functions

aP PP = aP~

we obtain the matrix equation

8++[E5 P (E, +Eb—) 13)B++X13

=8++U~pGpy Urs(8++Xs+8 Zs),
where

VII. RANDOM-PHASE-APPROXIMATION
DIAGONALIZATION

Under conditions Eqs. (16) and (17), and with phases
chosen so that the matrix elements are real, Eqs. (11) and
(1S} take the form of equations encountered in the
random-phase approximation (RPA) in nuclear physics.

Defining two real square symmetric matrices R and r
by

(R )~P=(E, +Eb )~P+ W~P
(E, +Eb) p= f d p f'(p)[E, (p)+Eb(p)]f~(p), (12)

Up —— p *pUp pp (13)

and

( T)~p W~p, ——

Gpr= f d'pd'p'fp(p)G(p, p')fr(p') .

Using the same procedure, we reduce Eq, (8b} to

8 [E5~P+(E,+Eb }~P]8 ZP

(14)

8++U~pGpr UrsB++ 8 U~pGpr UrsB W

(16)

8++ U~pGpr UrsB 8 U~pGpr Urs8++ —W~s

(17)

with 8 ~~ and 8'~~ Hermitian matrices.

BU @Ger—Urs(8++Xs+8 Zs) . (15)

Equations (11) and (15) form a set of coupled equations in
X~ and Z~.

These equations can be solved by diagonalization, but
since the matrix to be diagonalized is not Hermitian, com-
plex eigenvalues are expected. This will be the case when
the interaction contains a part which gives the states a fi-
nite lifetime, such as an annihilation term.

In many cases of interest, the interaction G is Hermi-
tian and has the property that it is unchanged when the
signs of all energies are changed. In this case,

Salpeter's equations are written in supermatrix form as

R T
—T —R (18)

This nonsymmetric matrix is diagonalized using the
method given by Ullah and Rowe in which the difference
R —T is first diagonalized and the resulting unitary
transformation is applied to the sum R+ T which is then
diagonalized. Since the sum and difference matrices are
symmetric, standard methods can be used to diagonalize
them.

The eigenvalues of this RPA. matrix are either real or
pure imaginary, and occur in pairs with one member of
the pair having the opposite sign of the other. For real
eigenvalues, this situation is acceptable, since we expect
each positive energy solution to have its negative-energy
counterpart. We have no interpretation of the solutions
which have imaginary eigenvalues, so we discard them.
Experience shows that iq.teractions whose characteristic
energy is small compared to the rest masses of the constit-
uent particles give only real eigenvalues.

VIII. CALCULATION OF THE INTERACTION
MATRICES

Using the method given here, we can solve Salpeter's
equations with many different kinds of interactions. The
interaction can be given in momentum space or configura-
tion space. It can be phenomenological or derivable from
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TABLE I. Matrices that determine the Lorentz-Dirac properties of the interaction. Zeros are im-

plied in the blank positions.

Scalar:

Vector:

Tensor: Oa'Ob

Axial vector: +&a b

Pseudoscalar:

fundamentals. It can have various Lorentz-Dirac proper-
ties. We can even use a combination of the interactions
mentioned above.

The interaction is specified by a functional form in ei-
ther momentum or configuration space, and a Lorentz-
Dirac property which specifies the Dirac matrices that
multiply the functional form. The matrices which deter-
mine the Lorentz-Dirac properties are given in Table I.
In this method, the Dirac matrices are separated into two
parts which operate in separate spaces, the space of two-
particle Pauli spin and the two-particle energy-sign space.
The Pauli spin part is treated by the familiar methods of
angular momentum coupling in which the two Pauli
spin- —, particles are coupled to a total spin S, and then S
is coupled to the orbital angular momentum l to form the
total angular momentum J. Each basis state has a defin-
ite J, S, and I, and matrix elements of operators contain-

ing the Pauli matrices o., and a~ are computed according
to the formulas of angular momentum theory.

The energy-sign part is treated by multiplying out the
operators UGU~ and picking out the parts that contribute
to R and T. The process of picking out the parts is facili-
tated by a schematic calculation that identifies operators
that connect states of the same energy sign as even (e) and
operators that connect states of the opposite energy sign

I

as odd (o ). Thus the unit Dirac matrix 1 and p are indi-
cated e, while u and y are indicated cr. When even and
odd Dirac matrices are multiplied, the product is even or
odd like the products of symmetric and antisymmetric
wave functions:

EXE'=E'
7

cr Qo.=e,
cr)C e=o,

The properties of the two-particle Dirac matrices are indi-
cated by ee, eo., etc., where the left-hand symbol refers to
particle a. Because of the 8++ and 8 projection
operators in Eqs. (16) and (17), W' contains only ee and
W contains only ocr. An example of the schematic cal-
culation is given in Appendix A.

IX. PARITY-CHANGING OPERATORS

In order to calculate n, -p and a~ p, we use reduced
matrix elements of o, p and o.~-p. They are given in
terms of Clebsch-Gordan and Wigner coefficients as

(S/J~ ~o., p~ ~S'1'J') =%=5(JJ')(—1) +' [6(2S+1)(2l+l)(2S'+1)]'~ W(SS'll', 1J)W(SS' —,
'

—,';1—,
' )(l100

~

1'0)

and
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using the conventions of Brink and Satchler. This for-
mula is obtained by writing P in terms of l =1 spherical
harmonics. Then (SlJ

I
Io, p I

IS'l'J & is written as a func-
tion of &Slla. I

IS'& an«l IIPIIl'& These operators con-
nect states whose l values differ by 1, that is, they connect
states of different parity. This introduces a complication
that is not encountered in calculations of the Schrodinger
equation. Even when the interaction does not connect
states of different parity, matrix elements of the interac-
tion between states of both parities are used in the calcula-
tion. As a concrete example, suppose we wish to calculate
states of J=3 and even l parity and our potential does not
connect opposite parities. We include only l =2 and 4 in
our expansion of the wave functions, but because of the
presence of parity-changing operators in U, we need ma-
trix elements of 6 between states of odd as well as even l.
In order to ensure that the matrix o, .p multiplied by it-
self approximately equals the unit matrix, care must be
taken to include all 1 values that can be coupled according
to the rules of angular momentum. Thus we need matrix
elements of the interaction between states of l=2, 3,
and 4.

X. CALCULATION OF
THE FREE-PARTICLE ENERGIES

The only matrix elements that have not been discussed
are those of E, +Eb. They a.re spherically symmetric and
are easily calculated by numerical integration with oscilla-
tor radial functions R„i(p)in momentum space.

( nSlJI IE, +Eh I
In'S'l'J &

=&ss&u J p'dp &,*i(p)& ((p)

X [(m, '+p')'i'+(m, '+p')'r'] .
XI. EXAMPLE OF THE METHOD

As an example, a calculation of the charmonium and
b-quarkonium mass spectra is included. The interaction
is specified by a local, spherically symmetric potential in
configuration space. It contains a linear scalar confining
potential plus a Coulomb I.orentz vector potential that is
meant to represent the one-gluon-exchange interaction.
The spacelike as well as timelike parts of the vector poten-
tial are included. The potential is flavor independent: it
is the same for charmonium and b-quarkonium. It de-
pends on two strength parameters that are adjusted to fit
the data. With the charmed-quark mass m, and the
bottom-quark mass mb as additional parameters, the cal-
culation uses four parameters to fit 21 measured meson
masses.

The potential is written

V(r)=Cirl3, Pb+C, r '(1 —a, .ab) .

Matrix elements of this potential are substituted for Gpz
in Eqs. (16) and (17). Matrix elements of r and r ' are
calculated by integrating with oscillator radial functions
in configuration space. For example,

n'S'l'J
& =ass'&ip f r «&~i(r)r '&n t(r)

where R„~(r) are solutions of the radial part of the
Schrodinger equation for the isotropic harmonic oscilla-
tor. '

TABLE II. Results of a calculation of the charmonium and b-quarkonium spectra. Masses are in
MeV.

Meson

QC

J/f
Xo
X$

X2
I

gC

0
1
0+
1+
2+
0
1

1

1

1

1

M(expt)

2981
3097
3415
3510
3556
3594
3686
3770
4029
4159
4415

M(cale)

2966
3095
3434
3475
3447
3622
3682
3735
4085
4119
4405

M(calc)
—M(expt)

—15
—2

+19
—35

—109
+28

4
—35
+56
—40
—10

Y
1 Pp
1 Pi
1 P2
Y

2 Pp
2 P
2 P2

Y
Y

1

0+
1+
2+
1
0+
1+
2+
1

1

9460
9873
9895
9915

10023
10233
10254
10271
10356
10 573

9471
9822
9837
9843
9997

10225
10237
10244
10376
10693

+11
—51
—58
—72
—26
—8

—17
—27
+20

+ 120
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Since the interaction of this example is even under pari-
ty and conserves total angular momentum, we solve
separately for each J~ and need to consider only reduced
matrix elements. Therefore our basis states are described

by n, S, and I only.
The results for charmonium and b-quarkonium are

presented in Table II. The average of the absolute differ-
ences between these results and experiment is 36 MeV.
The values of the potential strength parameters that were
used are CI ——0.29 GeV and C, = —0.25, and the masses
were m, =1.25 GeV and mb ——4.58 GeV. No attempt
was made to optimize the fit by attaching a minimizer

. search routine.

feet in the light mesons due to the small energy denomi-
nator.

We are currently attempting to solve the full Bethe-
Salpeter equation with a general covariant interaction.
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APPENDIX A

XII. EFFECT OF THE ODD-ODD COUPI. INGS

In order to assess the importance of the odd-odd cou-
plings, the J~=O part of the charmonium spectrum was
recalculated with the matrix 8' set to zero. The result
was that the masses of the states increased by 5—10 MeV.
This result can be understood in terms of second-order
perturbation theory, where the energy shift due to the
odd-odd terms is a level-level attracts'on between the
positive-energy and negative-energy states, and the energy
denominator is two times the energy. This effect is small
for the charmonium system and negligible for the &-

quarkonium system. Since this effect should be important
for light mesons, it was investigated as a function of the
quark mass. Using the same potential that fitted the
heavy mesons, the ground state of the J~=O meson was
calculated with the full equation and recalculated with the
odd-odd coupling turned off. The results are presented in
Fig. 1. The effect on the ~ was about 400 MeV, but we
interpret this result with caution because it is precisely
this low-mass region where Salpeter's instantaneous ap-
proximation is most suspect. It is amusing that this cou-
pling between positive- and negative-energy components
produces the effect of a running coupling constant when
the coupling constant is held fixed. In this calculation,
the vector-to-pseudoscalar mass difference is mostly due
to the r u, ab term i.n the potential and it is a large ef-

In this appendix we give an example of the schematic
calculation for picking out the terms that contribute to
the interaction part of the matrices. W' and 8' .

The schematic calculation can be illustrated by consid-
ering an interaction with vector Lorentz-Dirac properties:

V(1 —a, .ab)= V"+V ~ee+oo .

Here V represents a function of p or r, but does not con-
tain Dirac matrices. Multiplying out the operator U(p)
we get

U= A~Ah A~BbP—b(7b'P+B AbP Pg 'P

B,BbP~C7—~'PPb ab P
and Ut is almost the same, but has the signs in front of
the second and third terms changed.

Studying the ee part first, we write

I

~ (&&+ 6CJ'+ (TE+(TO ) E'E (E'E' + 6' + 0 E'+ CTO )
I I

I i

where the connecting lines above the product show the
four terms that contribute to 8", and the connecting lines
below show the four terms that contribute to W . The
other eight terms do not contribute and need not be calcu-
lated.

Similarly, for the ao. part,

1.2—

1.0—

O.S—

I

I I I

UV u -(«+ &~.~&.~~)~~(«+.~+ ~.+ ~~)
I i

0.2—

0.2 0.3 0.4

A typical term contributing to 8, ee&o.cr&&crcr, is the
matrix product

B +(A, Ab )( —Va, ab )( B,Bbp, a, .
JP pb—o b p)B++

rn
q (GeV)

FIG. 1. The effects of the odd-odd coupling in Salpeter's

equation. The rest energy of the lightest pseudoscalar meson is

plotted as a function of the quark mass calculated with the full

equation and compared to the results calcu1ated with the cou-

pling turned off. For each eigenvalue plotted here, there is

another with opposite sign.

We also use

=(A, Ab)( —Vcr, ob)( B,Bbo', .po'b—p) .

for S=O or 1 .
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APPENDIX B

This appendix gives the relationship between
momentum-space and configuration-space matrix ele-
ments as we11 as practical suggestions to save computer
time and job size.

It is convenient to use A=c =1 and dimensionless vari-
ables for r and p, choosing the length scale so that the os-
cillator parameter mk=l, where m and k are the mass
and spring constant in the Schrodinger equation for the
spherical harmonic oscillator. Then the length scale be-
comes the variational parameter and the oscillator radial

functions in configuration space are related to those in
momentum space by simply a phase. We calculate
configuration-space matrix elements exactly as if they
were the analogous matrix elements in momentum space,
and then multiply by the appropriate power of the length
scale and the phase

~ ~ ~(2n + I )—(2n'+ I')

In most cases of interest, the potential is even under parity
inversion, so that its nonzero matrix elements have l —l'
even. In these cases, we can choose our phases so that all
matrix elements are real.
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