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Quark-bag nontopological solitons with good four-momentum.
II. Calculations of the soliton rest mass
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In the preceding paper, how to construct soliton-bag-model states with good four-momentum was

shown. Here these states are utilized in a model calculation of the soliton rest mass M. How to em-

ploy a variational procedure for evaluating the energy of the system is also demonstrated. The re-

sults are examined with respect to the parameters of the model. In a calculation of the rest mass of
the 0 baryon we include phenomenological gluonic corrections.

I. INTRODUCTION

Bag models seem now to be firmly established as tools
for the nuclear physicist as well as for the particle physi-
cist. ' While the fixed-cavity approximation to bag
models finds widespread applications, it does violate Poin-
care invariance and leads to the need for relativistic
corrections. Hence, many authors have recently devoted
their work to estimates of recoil effects or to a cure for
the violation of translational invariance. ' This aspect is
relevant even if one is only interested in static properties
such as baryon masses and magnetic moments; calcula-
tions reveal errors ranging from 10 to 30%. Translation-
al invariance undoubtedly requires careful consideration if
one examines processes involving high momentum
transfer to the baryon, say q )mc, where the bag recoils
in the final state.

In a preceding paper (subsequently referred to as I) we
have worked. out a theoretical basis for the construction of
bag-model states with good total four-momentum. We ar-
gued that the (so-called) soliton model of Friedberg and
Lee was a suitable framework to apply a relativistic ver-
sion of the Peierls-Yoccoz momentum-projection tech-
nique. As a result we now have available bag-model states
that are rigorously free from the ambiguities due to spuri-
ous center-of-mass excitations which plague the fixed-
cavity approach.

In this paper we take the first step toward applying the
formalism developed in I. We focus here on calculations
of the rest mass M of a Friedberg-Lee soliton. The com-
bined system of the quarks and the bag itself constitutes a
complicated many-body problem. To deal with it, a varia-
tional procedure directly applicable to the many-body
Hamiltonian inatrix elements with trial functions both for
the quark spinors and the cr field, i.e., the bubble (or bag),
turns out to be most feasible. This approach is not only
numerically easier than actually solving the (coupled,
one-body) equations of motion of the Friedberg-Lee
model; it is also conceptually pleasing because the varia-
tion is performed after the momentum projection.

This paper is organized as follows. In Sec. II we briefly

review some essential parts of the forinalism developed in
the previous work that is relevant to the task at hand. In
Sec. III we describe our choice for the trial functions for
the quark spinors and the vacuum bubble (cr field) and
also explain details of the variational method employed to
evaluate the soliton rest mass. Finally, Sec. IV is devoted
to the presentation and discussion of our results.

II. REVIEW OF THEORETICAL FRAMEWORK

The Friedberg-Lee soliton model is based on the La-
gfanglan

p(mq+gtT)—g+ 2 (Bo) —V(tT) .
2

Here P and mq are the quark field and its bare mass,
respectively, o. is a Lorentz-scalar field, and g is a dimen-
sionless coupling constant. The "potential" V(cr), which
is usually taken to have a quartic form, i.e.,

V(cr)=p+ —o +—o + cr
2 6 24

determines the physics described by the model. V(o ) has
two local minima at cr =0 and a =f )0 with V(0) =p )0
and V(f)=0, respectively (see Fig. 1 of I). Further cr is
assumed to contain a static background field o.„. The
latter simulates the color-dia-electric properties of the
vacuum

~

u) and essentially provides the bubble (bag) in
which the quarks reside.

The (nontopological) soliton-model state with good
four-momentum K is built on the vacuum

~

v ) in the fol-
lowing way:

~B(Z)) =X, 'II~U(W~)a'~ u)-. (3)

The Fock-space operator 8~ creates quarks, say three for
a baryon, with appropriately coupled color-flavor-spin
quantum numbers. Thus Bt

~
v) describes three quarks in

a bubble, with average momentum equal to zero (rest
frame). In I we have shown how to construct a unitary
operator U(Atc) associated with a Lorentz boost Ax, i.e.,
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P(x) = g [uk(x)bk+ug(x)dk]
k

(9)

0.5-

with time-independent spinors uk(x) and uk(x). The
latter are assumed to be normalizable in order to reflect
the localized nature of the quark distribution. The o field
is written as

o(x)=f+ g (2e„) ' P„(x)(s„+s„)+on(x). (10)
n=1

0
0 0.5 1.0 r fR]

FIG. 1. The upper and lower components of the quark spinor
employed in this work, Eq. (14a) (solid curves) compared to the
corresponding MIT bag quantities (dashed curves).

Here we encounter a subtlety. The sum over n in (10) is
the quasiclassical part in the sense explained in I. The
Pock-space operators s„are time independent and the e„
are arbitrary energies, for n (N. The time-dependent
pieces are contained in the quantum-fluctuation part
o.n(x). We use (10) to make an ansatz for the vacuum
bubble, i.e., the coherent-state approximation

(M, O) —+ (E,K),
A~

(4)

projects out the good four-momentum E. (See I for exact
expression for Ilx.) The normalization constant N~ is
given by

Nz ——(u F811 -,8 i
u) (6)

and only depends on intrinsic properties of the model soli-
ton. Using the model state (3), we derived a formula for
the soliton rest mass

Here the mass M appears on both sides of the equation.
Therefore, it is clear that we are dealing with a self-
consistency problem. The Hamiltonian H is derived from
the model defining Lagrangian (1). We choose to split H
into four parts

~DIR +HSIG +~CPL +HPOT

with

HD, R = f d x:f(x) ——y V+mq P(x): (Sb)

Hs« —f d'x:{o(x)'+[V~(x)]'j:

HcpL=g f d x:P(x)o.(x)g(x):

H», —f d'x: V(~(x)):

(Sc)

(Sd)

(Se)

These are the Dirac energy, the o.-field energy, the cou-
pling energy, and the potential energy, respectively.

The fields g and o are expanded in terms of Fock-space
operators in the Heisenberg picture, i.e.,

where M is the rest mass of the entire system. Hence
U(Ax )B

~

u ) is a state with average four-momentum E.
Finally the operator II~ with

II II =5 (E' —E)II

~u)=e x ~exp( —Xs)) ~0),

where
~

0) is the normal (translationally invariant) vacu-
um and X is a parameter. Because of this ansatz we will

only be concerned with the n = l term in the expansion
(10). Thus, in the present application, e& sets the energy
scale for the soliton system and P&(x) describes the
geometrical shape of the static vacuum bubble.

The spinors uk ( x ),uk ( x ) and the vacuum function

P„(x ) in the expansions (9) and (10), respectively, are to be
determined by the dynamics based on the Lagrangian (1).
In the present context, the solutions of the (coupled non-
linear) equations of motion, Eqs. (4) of I, for just single-
particle wave functions are of limited use. There are two
main reasons. First, because of the nonlinear nature of
the Friedberg-Lee model, solutions of a many-body prob-
lem cannot be constructed rigorously from a superposition
of one-body solutions. Second, applying a momentum-
projection operator requires analytical manipulations of
the wave functions. If these were available in numerical
form only (which is the best we can hope for, given the
complexity of the equations of motion), their practical
usefulness would be questionable. Therefore our point of
view here is tha. t for both conceptual and practical reasons
it is best to tackle the many-body problem directly. This
means in particular that we apply a variational principle
directly to the many-body matrix elements of the Hamil-
tonian in the momentum-projected basis. The wave func-
tions of the quark and vacuum modes populated in (3) are
taken to be trial functions suited to the physical situation.
They are supposed to depend on variational parameters
and they should also have a convenient analytical struc-
ture in order to make the evaluation of the matrix ele-
ments in the momentum-projected basis feasible.

In I we have derived formulas for the normalization
and the four pieces HD&R, Hs«, HcpL, HpoT of the Hamil-
tonian matrix elements in terms of contractions between
Fock-space operators. These contractions involve the trial
functions just mentioned. Thus, the results in I can be
directly used here with a particular choice of trial func-
tions as we shall see in the next section.
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III. THE VARIATIONAI. CAI.CULATIGN

Let us first discuss the parameters of the soliton model.
In the defining equations (1) and (2) we encounter the con-
stants mq, g and c,b, a,p Fu. rthermore f is the expectation
value of the o field in the normal vacuum. The potential
has the properties V(0) =p, V'(0)=0, and additionally we
require V(f) = V'(f) =0. Using the latter two conditions
we can replace c,b, a with one parameter; let us choose it
to be m, i.e., the bare mass of the o field. At the normal
vacuum o =f, we have V"(f)=I . In terms of the new
parameter, the potential (2) reads

V(o') = ViNF(o')+ VFIN(o') (12a)

ViNF(o') =
2 Ill~ (o' f) 1+— (o' f)+ —

2
(o' f)

(12b)

VF1N(rr)= — (o —f) — (o —f) .4P 3 &P

f' f' (12c)

Note that ViNF(o ) is explicitly a function of m . The
usefulness of this separation will become evident later.

The second derivative at o-=0 turns out to be
V"(0}=m —12pf; we require its positivity as an ad-
ditional constraint. S1Qcc ouf model 1s supposed to
describe a situation where quantum fiuctuations of the cr

field are practically negligible, the o mass m must be
very large as compared to a typical eneIgy scale.

In addition, the coupling term in (1) entails that quarks
which penetrate into the normal vacuum, i.e., o =f, ac-
quire an additional mass gf. In order to achieve quark
confinement this outside-quark mass gf must become
1RI'gc Rs compared to a typ1cal cncfgy scale.

Actually we would like to go to the exact limits of in-
finite o and outside-quark masses. Since f remains finite,
this means that m —+ oc and g —+ Oo. The rates at whichI and g go to infinity must however be related. From
Eqs. (Sd) and (12b) we find that the potential contains a
term plopoftlonal to Pl~ Rnd thc coupl1ng term 1s pI'0-
portional to g. We must therefore achieve: the: limit so
that g/m~ remains finite. For this purpose we define
the dimcnsionlcss pafamctcf

g
Pl~ /6i

where ei is the energy unit for our sohton system.
The sohton model describes a variety of distinct bag

models depending on the choice of the different parame-
ters. It is interesting to note, for example, that in the lim-
it m ~ oo we achieve the MIT bag condition. From Ref.
6 we learn that the quantities

n=Ag e /m

p/(~ 2f2)4/3

where c =2.04/R and 2 =3 or 2 =2, characterize a bag
of radius R. A llcccssal'y coildltlon fol' thc MIT 111111t ls

n ~ ao and A, ~O. Substituting our soliton model parame-
tcfs, wc dlscovcl that n-m~ Rnd A, -rn~ . HcQcc
the limit m~~ ao coincides precisely with the above con-
dition. It should be kept in mind howeveI' that even in the
111I11t m~ —+ ao, thc sollton n1odcl 1s still morc gcncfal than
the MIT bag because the parameters f and y provide addi-
tional freedom

B. Trial functions

The choice of the trial functions for the quark spinors
and the vacuum bubble is critical for the quality of the re-
sults. On the other hand a simple analytical structure is
also highly desirable for practical reasons. Our attitude
here is to employ a variational ground-state trial spinor
wh1ch 1s R close Rpproxlmatlon to thc exact, MIT gfouIld
state, but on the other hand involves only functions of
structure (Gaussian) X (polynomial). Our choice is

8 Og( x )=110 —) o'.T
(coo+ mq )

(14a)

3/2
np = II+

(coo+mq) bo

L

Fllithci', 1't ls obvlolis tllat 'tlm Gausslall cxp( —x /2bo )

in (14a) plays the role of jo(2.04(x (/R)8(R —
)

x ))
which appears in the MIT spinor for a bag of radius R.
In fact it is straightforward to relate bo to the MIT bag
radius; applying the MIT boundary condition to (14a)
y1clds

R =(a)0+mq)bo (15)

This relation is not Rn additional constraint because R
and bo are interchangeable parameters. We may use (14c)
and (15} to express coo and bo in terms of R. For zero
quark mass mq ——0, we obtain bo ——R/V2 and ~ =o2/R
The latter frequency is astonishingly close to 2.04/R, the
MIT result (without self-energy corrections'). In Fig. 1

we compare, foI' this situation, the upper and lower com-

where np is a normalization constant and u, a Pauli spi-
Qor. 80th 6)p Rnd 6p n1Ry bc fcgaI'dcd Rs var1at10QR1 Pa-
rameter s.

The particular choice of the lower component in (14a)
ensures that if we apply the Dirac operator, i.e.,

(i9 mq)uo,—(x)e

the lower components of this quantity are identically zero.
This statement does not depend on the specific Gaussian
structure. It is essential to understand that the frequency
cop 1s R var1atlonal cncI'gy parameter Rnd Ilot IlcccssRr1ly
the Dirac energy of the quarks. The upper component of
(iq) —mq)uo, (x)e is not identically zero; we may re-

quire however that, its
~

x
~

integral from 0 to ao be zero.
This prescription of "satisfying the Dirac equation on the
average" determines the width bo of the Gaussian,

1/2

(14c)
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TABLE I. Model and variational parameters of the soliton
model.

m —+ oo requires the constraint

EcoN(M;X, b I )
—=0 (19)

Model parameters

mq

II7~ 00

g~aO

Trial parameters

x
bI

M =E(M)

ponents of our Gaussian ansatz (14) to the corresponding
quantities of the MIT bag. The discontinuity is, of
course, not reproduced but merely approximated by the
rapid dropoff of the Gaussian.

As a trial function for the vacuum bubble we also take
a Gaussian

( ) (
2 3g2

—x /2b)

with a different width bi which is also regarded as a vari-
ational parameter.

It is of course understood that both (14) and (16) may
be viewed as first terms of series expansions. For in-
stance, substituting a sum over oscillator functions for the
Gaussians in (14a) and (16) would be a natural generaliza-
tion. Each expansion coefficient would then play the role
of a new parameter.

We summarize in Table I the parameters of our model.
One should note that there are two sets of parameters of
distinct character. The model parameters appear in the
Lagrangian and are given specific values. The trial pa-
rameters are determined as a result of the variational pro-
cedure.

E (M;b I ) =E(M;X(M, b I ),b I ) (20)

as a compact notation. On this quantity hinges the varia-
tional procedure: In terms of E(M;bi) the equation for
the soliton rest mass, (7) and (17), reads

M =E(M;bi) .

This equation may be viewed in turn as an implicit defini-
tion of the function M =M(bi) and now requires that M
be a minimum with respect to the trial parameter b&, in
particular,

rn = O.O f = O. I y = O. I p=O. OOI

M= ).675 .62

as a necessary condition for the existence of physical solu-
tions. In our actual calculations we were able to satisfy
(19) numerically thanks to the fact that EcpL and EINF
have opposite phases. Figure 2 shows two examples of
the EcoN —=0 line in the (X,bi) Plane for fixed values of
the parameter M.

Technically, Eq. (19) may be regarded as an implicit
definition of X as a function of M and bi We. can insert
X=X(M;bi) into E(M,X,b, ), i.e., the right-hand side of
(7) with the entire Hamiltonian (8a), and obtain this ener-

gy as a function of M and b I only. Let us employ

C. Details of the variational procedure

(17)

Using the results of I, we are now in a position to calcu-
late the matrix elements of the four pieces of the Hamil-
tonian (8). In the Appendix, these are listed as functions
of pip X bp aIld bi. It is important to recall from I that—1COot
because of the exponential time dependence e and the
momentum projection the matrix elements both in the
numerator and the denominator of the expression (7) for
the rest mass have factors 5(M —3p~p). Although these
drop out from (7) their effect is that cap=M/3 has to be
substituted in all matrix elements. We therefore are left
with the following parameter dependence:

(v ~BH~II -,B ~

v)
E~(M;X,b, ) =

v iBII -B iv

I 9 I
I 7I I.6 I I

2.7
l.96 I, SO

mq
= O. I 75 f = O. I y = O. I

M = i. 6&5

bl

p = O.OOI

IO

.77

ECON(M X bi ) ECPL(M X bi )+EINF(M X bi ) (18)

is proportional to m . This means that the limit

for X=DIR, SIG, CPL, POT, etc. Note that bp was
fixed by (14c), i.e., bp ——2/(M /9 —m~ ).

Let us now consider the limit of infinite o. mass,
m —+ ~, as explained in Sec. IIIA. We recall that both
Ecpi (M X,bi ) and EINF(M X,b I ), Eq. (12), became infin-
ite for m —+ ao. In particular, the quantity

b)

IO

FIG. 2. The curves satisfy the equation E „(M;g,bi)=0.
We show two examples for mq=0 and mq ——0. 175 GeV. In
both cases we fix M =1.675 GeV. The values identifying the
various points on the curve are those of the corresponding ener-

gy E(M;bl).
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If we apply this condition to (21), i.e.,

dM BE dM BE
dbi BM dbi Bbi

(22) (M/3+mq) bo +5/2
Rq —— 3/2 bo

(M /3+ mq ) bo +3/2

9M/3 —mq

7M/3+I, (M/3)2
(27)

it follows that

aE(M;b, )

ab,

Equations (21) and (24) show how to calculate b, and M.
Obviously, similar equations hold in case we are dealing
with more than one variational parameter.

In practice, we have chosen a fixed starting value for M
and, according to (24), determined numerically the
minimum of E(M;bi) with respect to bi on the
ECQN 0 line This is illustrated, again, in Fig. 2 by the
actual energies E(M,bi ) which satisfy the EcoN ——0 con-
dition. The minimum E (M; bi ), in these examples, is dif-
ferent from the starting value for M. In order to simul-
taneously satisfy (24) and (21), the minimum E(M;b& )

with respect to bi is found on the EcoN =0 hne and this
is followed by a search for M such that the self-
consistency condition M E(M) =0—is satisfied as well as
Eqs. (19) and (24).

All of our results presented in the subsequent section
have been calculated at the self-consistency point, i.e.,
satisfying Eqs. (,9), (21), and (24). In the figures this is
indicated by M =E(M).

In the Appendix we present the exphcit form of the re-
sults for the normalization (overlap) Eq. (6) and the Ham-
iltonian matrix elements Eq. (8) that enter in Eq. (17), us-
ing the ansatz Eqs. (3), (9), (10), (11), (14), and (16).

—x2/2b&2
(u ~o(x)

~

u)=f —1/2Xei(meibi ) '/2e (25)

The condition (u
~

cr(X)
~
u)=f/2 at

~

x
( =Bi, then leads

to the definition

Rb —— 2bi ln
& 2b 2)3/4 (26)

We will refer to R& as the bubble radius.
A conventional measure for the size of the quark distri-

bution ls the foot-mean"square Iadlus Rq. Using our an-
satz (14) together with the condition coo ——M/3 yields

According to the scaling property of the model, all di-
mensional quantities are given in units of an appropriate
power of ~, . We have fixed ~, =1 Gev.

A convenient measure for the characteristic size of the
vacuum bubble is the distance Rb from its center to where
the vacuum expectation value of the o. field is one half of
1ts value 111 't11e 1101111R1VRcuu111. Usillg tlie Rilsatz (16) 111

formula (24b) of I, we find

Thus the dynamical features enter into Rq via the self-
consistent soliton mass M =E(M).

As a final preliminary remark, we remind the reader
that all our results for dynamically. calculated quantities,
namely, M,g, b& and thus also bo, RI„R&, correspond to
the limit of infinite m and g, see Sec. III. Therefore we
are left with only four model parameters y, f, mq, and p,
and we display results in terms of these parameters in
Figs. 3—6.

We begin by showing in Fig. 3(a) the dependence of
M =E(M), X, bo, bi, Rb, and Rq on the parameter y for
the fixed values f=0.100 GeV, mq

——0.0, and p =0.001
GeV (~u'/ =0.178 GeV). Note that each curve is as-
signed an individual scale. The size of the quark distribu-
tion and the size of the vacuum bubble differ by a remark-
ably large amount. The ratio of bo and b~, and also R&
and R&, ls of the order —, to —,. The quarks occupy only a
relatively small portion in the vacuum bubble. This
feature is apparent in all our results. It is expected how-
ever that in the chiral version of our model, the pion field
will shrink Rb to smaller values.

According to the definition (13), a larger value of y
essentially means that (with other parameters kept fixed)
the coupling between the quarks and the o field becomes
more attractive and, as Fig. 3 shows, the radii R~ and Rb
tend to come closer together as y increases. The bubble
narrows and the quark distribution expands somewhat
within the bubble. As a consequence of the increasing
quark radius R&, the quark kinetic energy ED&R decreases.
This is the reason behind the slight reduction in the rest
mass M =E(M). The absolute values of Ecpi, and EpoT
increase, but being of opposite sign and nearly equal in
magnitude, their sum is of little consequence for the value
of E(M). In quantitative terms, however, our variational
solution behaves rather insensitively to y. The rest mass,
for instance, remains almost stable around 1.250 GeV for
the displayed range of p.

We observe very similar trends in Fig. 3(b) for a quark
mass I& ——0.175 GeV. This value m& is the strange-
quark mass resulting from the experimental nucleon-A
mass difference in the naive constituent quark model.
The radius R& of the quark distribution has now de-
creased to about 0.75 fm while the soliton mass M has in-
creased to approximately 1.6 GeV. Thus M has gained
only about 0.350 GeV whereas a mass of 3&&mq =0.525
GeV was originally added to the system. Clearly this ef-
fect ls due to the nontrlvlal dynamics ln our quark-o field
and, in particular, reflects the competition between the
different contributions to the total energy E(M).

In all subsequent calculations we have fixed y =0.1. In
order to get a feeling for this value, we note that, accord-
ing to (13), it is reproduced, e.g., by m =10 GeV and
gf =10 GeV for the cT-mass and the outside quark mass,
respectively; the coupling constant then is g = 100.
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FIG. 3. (a) The self-consistent mass M =E(M) and dynami-
cal variables P, bo, b& and the radii Ab and Rq as a function of p.
bo is found from Eq. (14c). Note that each quantity is assigned
a different scale and that mq ——0.0. (b) The same quantities as
in (a) but for mq =0.175 GeV.

1.2 I I I

0.09 O. IO 0. I I 0.12 O. 13 O. I 4 O. I 5
f [GeV]

FIG. 4. (a) The self-consistent mass M =E(M) and dynami-
cal variables and radii as a function of the asymptotic value f of
the o. field. Note that mq:0 0. (1) The same quantities as in
(a) but for mq =0.175 GeV.
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In Figs. 4(a) and 4(b) we show the dependence of M, X,
bo, b„Rb, and R» on the expectation value f of the o
field in the normal vacuum, again, for two different quark
masses m». We observe a much stronger dependence of
these variables on f except for the bubble depth parameter
X which remains substantially constant. In particular the
sensitivity of M =E(M) with regard to f is rather
dramatic. If we also allow m» to vary, we can cover the
entire mass range of physically important baryon reso-
nances, say 1.1—1.8 GeV, with a change in f by only
about 25%%uo. This effect provides us with the means for
determining the physical value at f with relatively high
precision from baryon mass fits provided m» is known.
Note that f is not very accurately known in the strange
sector; we may expect it to be somewhere in the range
0.09—0.15 GCV. As to the radii, we see in Figs. 4(a) and
4(b) that larger values of f cause a sizable decrease of
bo, bI Rnd Rb, R». As the bubble becomes narrower, the
Dirac kinetic energy increases and thus contributes to the
rapid increase of M. As usual R» remains substantially
smaller than Rb (note the different scales in Fig. 4).

We now come to a more detailed examination of the
role of the quark mass m» in the soliton system. As anti-
cipated M =E(M) increases with m», not only because
the quarks become more massive but also because their ki-
netic energy increases at the same time. In fact the net
change in E(M) is due almost entirely to that of EDIR
wh1le Esp~ RIld EcpL+Epor remain almost uIlchanged 1n

the range of III» shown in Fig. 5. The radii Rb and R»
remain also fairly constant, Rb more so than R». The
general trend revealed by Fig. 5 is that the soliton system
reacts to Ril 1nclease of the quaIk Inass by IlarrowlIlg the
quark distribution in a bubble of fairly constant width.

The last of our model parameters is the strength p of
the potential V(o.) at p =0. The quantity p has a some-
what similar interpretatio~ as the volume energy density
parameter in the MIT model. The value p =0.001 GeV
(adopted for all the rest of our calculations) corresponds
to p'~ =0.178 GCV and p =0.13 GCVfm, in cus-
tomary units. It was difficult to find solutions to Eq. (25)
beyond the range of p shown in Fig. 6. Within this inter-
val, however, we again see that the mass of the soliton and
the sizes of the bubble and quark distribution remain re-
markRbly coIlstRIlt. Tllls qualltatlvc bcllavlol" ls Ilot Rf-
fected by changing the value of m».

From the examination of Figs. 3—6 we conclude that
among all the model parameters only f and m» can effec-
tively influence the soliton characteristics. For all practi-
cal purposes we may choose y =0.1 and p =0.001 GeV"
and proceed to make contact with the phenomenology of
hadrons. It is appropriate now to estimate the errors in-
troduced into the calculation of baryon masses due to
violation of translational invariance. Figure 7 shows that
tllc DIlac cllcl'gy EDIR confrlbutIIlg to t11c self-conststcnt
mass, Eq. (7), is the dominant tenn; therefore, it suffices
as a check on the effects of our projection formalism. In
the absence of boosts and momentum projections, i.e.,
IIk U(Ak) in Eq. (3), EDIR reduces to

2.0 -- 3.3

I 8

bo

4.0 -- 7.0

3.5 -- 6.5

M X

2 0--3 3
mq = O. l 75 f = O. l

bo bI

4.0 -- 7.0

3.5 -- 6.5

3.0 -- 6.0

I.2-

I.O

- 3.0

f =O. l p = O.OOI

0.2

2.5 -- 5.5

I.2-

3 0--60

bo 2.5 -- 5.5

Rb [fm]

I.7- —I.O

I.O
0.000

Rb [fm]
I.7-

0.005 0.0 IO

Rq[fm]

I.2
0.0

f =O. l p=O. OOI y =O. l

I.3-
rnq = O. l75 f =O. I y = O. l

mq Gev

FIG. 5. The self-consistent mass M =E(M) and dynamical
variables and radii as a function of the quark mass m~ for

=0.1.
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FICx. 6. The self-consistent mass M =E(M) and dynamical
variables and radii as a function of the potential parameter p.
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FIG. 7. The four contributions EDyR, EppT, EsyG, and EcpL
to the energy E(It/I) shown as a function of b&. The self-
consistent mass M =E(M) is indicated by an arrow in the
E(M) curve. We note that E(M) is quite stable about the
minimization value of bl where M =E(M). These results do
not change for m ~&10 GeV.

complete cancellation of EcpL+Ep&T, so that the rapid
change in these latter quantities does not affect the stabili-
ty of E at the minimum. Unlike our other results, the
display of Ecpz and EpoT requires a finite choice for the
o mass. We have taken I =10 GeV which should be
large enough to encompass the correct physics of the sys-
tem. Consequently Ecpw and EIoT a«both very large
magnitude (note the different scales in Fig. 7) and the fin-
ite part of the latter, see Eqs. (12), is dominated by the
piece proportional to m . These results do not change if
we let I g~ 10 GeV.

It should be pointed out that the physical energies are
in fact energy differences between the quark-bag state and
the normal vacuum. At the present level of approxima-
tion, disregarding time-dependent quantum fluctuations,
the vacuum energy can be obtained by calculating the en-
ergy matrix element between the states

~

u ), Eqs. (11) and
(16), in the absence of quarks. It turns out that the total
energy functional calculated from (17) has an absolute
minimum at M =0. This occurs at the value 7=0 for the
bubble depth parameter. Hence the empty bag collapses
to the normal vacuum (cr) =f with zero energy. For ex-
ample, the contribution from the o field is

EsiG=X [ 2 (bi@i) ei] ~ 0 .
X~0

3 2 —mq/(coP+mq)

(cop+ mq )bp
(28) V. CONCLUSIONS

In Table II we show the percent deviation of ED&R from
ED&R' for four different values of the quark mass mq. We
note substantial discrepancies ranging from 11 to 14%.

Once the self-consistent mass M =E(M) has been
found, we can check the stability of the system with
respect to changes in the variational parameters. In Fig.
7, we show the total energy E =E(M, b ~ ), with M being
fixed at the self-consistency point, as a function of b~.
Again we consider two different quark masses mq

——0.0
and mq ——0.175 GeV. We note that in both cases the
minima are rather shallow, a feature which is similar in
the MIT model. In Fig. 7 we have also displayed the indi-
vidual contributions to the total energy E, according to
the decomposition (8). We see that Ez»R remains rather
flat whereas Es&o behaves like E itself although Esto
contributes only about 25%%u~, or less, to the total energy.
The condition imposed by Eq. (19) results in an almost

TABLE II. The Dirae energy of the quarks in the projection
formalism (E»R) and in the absence of boosts and momentum
projections (EoqR') and the % deviation between the two.
Masses and energies in GeV. ( Y=0.1, p =0.001, I = 10
GeV. )

We have found (approximate) solutions for the rest
mass and the radius of the soliton in our model within a
range that is eminently satisfactory vis-a-vis the experi-
mental results for the ground-state baryons. The freedom
furnished by the parameters f and m» can be utilized to
achieve'agreement with the data. To proceed further we
need to implement chiral symmetry and gluon radiation.
Chiral symmetry may be realized by including pion fields
m, m

—+ along with the chiral partner, the o field, in the
description of the bubble. The present framework has still
to be extended in this sense. However, we can apply our
model to the simplest of all baryons, namely, the 0
which being composed of three strange quarks would have
no interaction with the pion field, provided we incorpo-
rate the gluon-exchange energy in the calculation of
E(M;b) ).

For the present purpose it is sufficient to use the ex-
pression for the color-magnetic energy evaluated in the
MIT bag model because we are dealing with a very similar
physical situation when g, m ~ce. Thus, let us add to
E (M;b & ) the energy

8a,
E, =3(0.1769—0.0474/+0. 0038$')

3R

0

0.175

0.225

0.11
0.095
0.11
0.095
0.11
0.095

1.6g1
1.417
1.957
1.715
2.048
1.812

1.263
1.072
1.516
1.345
1.607
1.442

M =E (M) EDyR

1.441
1.215
1.767
1.502
1.798
1.600

% deviation

14.0
13.4
12.6
11.7
11.9
11.0

which is a parametric form of the MIT result for the
magnetic energy g=mqR and the coupling parameter is
o., =0.55. For R we take the rms radius Rq as given by
Eq. (27) in terms of M and mq. We have now repeated
the variational calculation precisely as explained above
but including E„again with y =0.1 and p =0.001 GeV .
The results are shown in Fig. 8. The figure displays fami-
lies of curves corresponding to different values of mq.
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2.2-
TABLE III. Soliton parameters at the experimental mass of

the 0, M =1.675 GeV, for the three values of m~.

2. I-

- I.O

f (Mev)

95
87
78

m~ (MeV)

175
225
275

Rq (fm)

0.70
0.72
0.75

Rg (fm)

1.69
1.79
1.92

I.8-
- 0.9

I.7-

- 0.7

R
cj

- 0.6

I

0.08 0.09
f GeV

1

O. IO 0. I I

FIG. 8. The results of the variational calculation for
M=E(M) and Rq, including the color-magnetic energy, Eq.
(29), as a function off and for various quark masses m~. Recall
that f and m~ are the two parameters on which M =E(M) de-

pends sensitively.

the relatively high sensitivity of M to the parameters rnq
and especially f.

In conclusion, the translationally invariant soliton bag
model that we developed in I manifests a great deal of
versatility in the present calculation of the soliton rest
mass. We have demonstrated that our solutions are stable
over a reasonably wide range of the dynamical parameters
of the model. Our results for the rest mass span the range
of ground-state hadronic masses and those for the radius
of the quark distribution agree with results of other au-
thors employing different methodologies [(9) and (10)].
The advantage of our formalism is that it has no ambigui-
ties arising from violation of translational invariance.
This feature is a necessity in calculations of hadronic
form factors, but it is also important in calculations of
static properties as in the present case, as was demonstrat-
ed in Sec. III. The present model can be generalized to in-
clude baryons with a pion cloud when chiral properties
are incorporated; also when the gluon-exchange processes
are taken into account more rigorously than it was done in
the present exploratory calculation.

For each one, the self-consistent rest mass M and the
quark rms radius Rz are plotted as a function of f. For a
given value of f, the bubble width Rb is essentially the
same for all m~. The color-magnetic energy is of the or-
der of 60—70 MeV. At the experimental 0 mass, i.e.,
1.675 GeV, we find the radius of the quark distribution as
shown in Table III. It is encouraging to see the results
come out in so close agreement with other analyses. Of
course, we have the advantage that our results are free
from spurious center-of-mass excitations (except for c.m.
corrections to E, which should be negligible).

By using one more experimental result in addition to
the rest mass M, such as the magnetic moment of the II
we could determine the values of f, m~, and also the radii
of the quark distribution and the vacuum bubble.

A final remark is in order regarding our variational
space. We have attempted to use trial functions for the
quark spinor and the bubble function which are as good a
guess as possible. In principle, of course, each extension
of the variational space of trial functions will result in a
somewhat smaller value for the rest mass M. One might
suspect that the Cyaussian ansatz (16) should be the first
candidate for an improvement (by polynomials, say).
These questions cannot be answered without further cal-
culations. However, we have been able to perform some
numerical tests where both bp and b~ were independent
variational parameters. The results seem to indicate that
we might have to expect a decrease in M about the order
of magnitude of the color-magnetic energy. Such a small-
er value would be very easy to compensate for because of
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APPENDIX

We list here the overlap and Hamiltonian matrix ele-
ments as they occur in formula (17) with the particular
choices (14) and (16) for the trial functions.

As common abbreviations we use
' —3

A =(2m) (h ~WIh) 1+
2vp

( p 2)3/2

vp=(cop+ P2q )bp,
1 3 I

l =0, 1, . . . , oo
P 2 4b 2 4b 2

where (h
I I

h) is defined in Eq. (49b) of I. Note that the
factor 5(M —3cop) drops out from the quotient of formula
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(17). In all our calculations we have used

Xl=e ~( —X)', l=0, 1, . . . , Do

although in the formulas given below no advantage has
been taken of this particular form.

(a) Xorrnalization:

00 1 3
'2k ' '3

&=5(M —3 o)A'& —,X'g k (2k+1)!!2 "
( —)" 1+

l=0 k=p 2bo P1 2V02

3—k
—2k

vo

(b) Dirac energy:
2k 3

( u
~

BpII HDtRBp
~

u ) =5(M —3cop)A g Xl g k (2k + 1)!!2 ( —) Tk
33 "1

~
' 3

k ll ll k
(M, 0)

(A 1)

(A2)

with

1 2t —5To ——ts+, Tt —— s+ +rs+, T2 —— +2rs+, T3 ——vp r
3vp vp 3vp vo

mqbo 3 3 mqb0r =2—,s+ ——1+ 2, ~ ——
2

2 — +mqbo .
vp 2vp 2vp vo

(c) o field energy:

~u ~B011 -HsloBo
~

u~

3 oo
2k '3

=5(M —3top)A (2e1) ' g —g k (2k+1)!!2 "
( —)" 1+

2bl 1=0 ' k=p 0 1 2vp

'3—k
—2k

VO

(d) Coupling energy:

Pl+1
X 'XlXl+2+

I

. 2k+3 '2
2k +3 Pl+1

12 bi
(A3)

(u iB0II,HC 1B0 i )
ce j 3 3 Pl Pl

=5(M —3cop)A 3g g —g k (2k+1)!!2 fXl Ck
1=0 ' k=p 0 1

2k 3

+(2E'1) (&b1 ) XlXl+1Dk2 —3/4 Xl Xl

0 1

(A4)

1 1 1
2 P 2 4(b 2+2b 2)

further

Cp s+ s y C1 3 $+vo (s+ —2s ), C2 ———,vp (s —2$+ ),
2 & —2 & —4 —6C3 =vo

Dp ws+ Pp D1 3 w (s+g —2vp P)$+ ~ D2 =
3 w (vp P —2$~ vp g)~ D3 =wvo2 1 —2 ~ —4 —2 —4

—3/2
3 boS+=1+ ~ M =2 1+

2v 2b

p=l —vp 3b1 (bo ~2b1 ) ', q=vp 4b1 (bp +b1 )(bp +2b1 )

(e) Potential energy: For an arbitrary potential with Taylor expansion

oo 1V(o.)= g, V' '(f)(lr —f)
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the matrix element is

(U ~&oil(,IIpoy&o
~

»») =5(~—3(oo)& y V' '(f)(2e, ) (41TE', b, }

m 1»r +I X.
~»+»+»+(E i)—

l=O ' »=O

3 3
x g k (2k+1)l»2-"( —)' 1+

k=0 . 2vo

O'I, XI

2bo

(A5)

1 1 i (I(: i)—
(x» a p» ZZ.2= 2+ 2

.

The E sum is usually small, K = 1, . . . , 4.
The only infinite sum which occurs in the previous for-

mulas is the I sum. For, typically, X)3 only few terms
are needed.
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