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A decay mode such as PP, YY, K +X, or D +D can be used to distinguish between a neu-

tral spin-0 technipion and a neutral spin-0 Higgs particle. By this generalization of PP parity test,
the CP eigenvalue ycP can be determined for an Xparticle of any spin Jwhich decays CP invariant-

ly into VV, or VV, where each vector meson either decays into two spin-0 bosons, or is co. The ab-

sence in a VV, or VV, decay channel of sin2$ and sing terms in the azimuthal distribution is due to
CP invariance and/or P invariance. For a Vl V2 decay channel without a V&~V& exchange proper-
ty, and in a mode like K*+K*,such terms would imply that P is violated. For a Vl V& mode such
as /to where each vector meson is its own antiparticle, such terms would imply that both P and CP
are violated; when CP invariance holds, the ycP( —) eigenvalue of X can be determined provided
certain amplitudes do not accidentally vanish.

I. INTRODUCTION

As a generalization of the PP parity test, ' we have
found that the VV or VV decay mode can be used to dis-

tinguish between a neutral spin-0 technipion and a neu-

tral spin-0 elementary Higgs particle. This is also true for
modes where V~ and V2 are each their own antiparticle.
This type of test requires a measurement of the depen-
dence of the decay correlation function on the azimuthal
angle P between the two V, or V and V decay planes.
Each of these vector mesons either decays into two spin-0
bosons, or is co. For spin 0, it is possible to use instead a
heavy-quark VV mode, such as the two-J/g channel or
the YY channel, where each heavy-quark V decays into
ee. The YY channel or the two —1 —t-quarkonium
channel, for. instance, would be favored if Higgs particles
or technipions are sufficiently massive and couple more
strongly to heavy quarks.

In Sec. II, we first discuss how the CP eigenvalue yet
can be determined for an X particle of any spin J which
decays via a CP-invariant coupling into VV or VV, or
with certain exceptions how yet ( —) can be determined
from a Vi V2 mode where each vector meson is its own
antiparticle. Then in Sec. III we discuss how it is possible
to use the VV decay mode to test for unexpected viola-
tions of CP The absenc.e of sin2$ and sing terms in the
azimuthal distribution, for example, is due to CP invari-
ance and/or P invariance. That is, either CP or P invari-
ance'is sufficient for their absence. Such terms, of course,
might also occur because of background effects; however,
since such situations will vary from one experiment to
another, we omit any treatment of background effects in
this paper.

In Sec. IV we discuss the general decay correlation
function I(8i,82,$) which follows when no invariance
principles are used to relate the decay helicity amplitudes
describing X—+ViV2. Besides the azimuthal angle P,
I(8i,8z, g) depends on the two polar angles 8& and 82 used
to define the spin-0-boson three-momenta directions,
respectively, in the Vi and Vz rest frames. Then in Sec..

V we list two simple tests for CP violation by the VV de-
cay mode. The E +E (or D*+D* ) type mode can
similarly be used to test for a violation of P, and also for a
violation of the combined usage of C and isospin invari-
ance. In a V~ V2 decay mode without a V~~V2 exchange
property, and in a mode like X'+K*, sin2$ and/or sing
terms would imply that P is violated. For a V~ V2 mode
like /co, where each vector meson is its own antiparticle,
such terms would imply that both P and CP are violated.

Finally, in Sec. VI, we discuss the stronger results
which can be used for CP determination when X is spin 0
or 1.

The reader should note that this paper has been organ-
ized so that the results for a particular X~Vi V2 decay
mode can be easily located.

II. CP DETERMINATION

When V~ and V2 are identical particles, or a particle-
antipapicle pair, then by CP invariance the nonvanishing
helicity amplitudes describing the decay X~V~ V2 are
related by

XCp&X2Z&

where ycp CP eigenvalue ——of X. In Table I we show ex-
plicitly the relations among these decay helicity ampli-
tudes when ycp =+1.

A. VV decay mode

When Vq and V2 are identical neutral particles, the de-
cay helicity amplitudes are also related by

(2)

Since from Eqs. (I) and (3)

(3)

it is only necessary to substitute yet for ri in order to con-
vert to a CP test the already existing treatments in the
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TABLE I. Relations among the helicity amplitudes describ-
ing the decay X~V~ Vz which follow from invariance under CP
where ycI ——CP eigenvalue of X. Such modes are two identical
vector bosons, VV, and a particle-antiparticle pair of vector bo-
sons, VV.

Nonvanishing amplitudes

a+p ———ap

ap+ =—a-p
a++ ———a

CP eigenvalue

yes = —&

a+p ——ap

ap+ =a p

a++ ——a
a+, a +, app

yc~=+ &

literature on the PP, or another identical-particle pair, de-

cay mode as a parity test (zl =parity of X in the case of a
parity test). This also means that except in certain cir-
cumstances the signature of X can be determined if it is

I

( —) =+1. [For ( —) = —1 signature, analysis of only
VV modes will yield an inconclusive result. ]

B. VP decay mode

When V& and Vz are a particle-antiparticle pair, Eq. (1)
is valid. Such modes include E +X*,E' E', p+p
D*+D*, and D' D' . This implies that the decay
correlation function depending on the azimuthal angle P
and the two polar angles 8& and 8z (defined, respectively,
in the Vand Vrest frames) is

I(8»8z, p) =C(8»8z)+2 (8(,8z)cosg+8(8), 8z)cos2$ .

(4)

The angles are defined as in Ref. 3 and in Fig. 1 of paper
I (Ref. 4).

The coefficients in Eq. (4) depend on the X decay heli-
city amplitudes. Using Table I, we find

and

g(8„8z)=yc~ —,
'

la++ I
sin 8~sin 8z,

2 (8„8z)= —,
' [2Re(a++ a co) —yc~( I a+0 I

+
I ap+ I:)]sin28&sin28z,

C(81,82)= —,(2
I a++ I

+
I a+ —

I
+

I
a —+ I

)sin 8t»n'8z+
I aoo I

'cos'8icos'8z

+ —,
'

(
I a+0 I

'+
I ao+ I

z)(sinz8~cosz8z+cos 8~sin 8z) .

It is useful to further integrate I(8„8z,g). If the entire 8&,8z acceptance is integrated over,
1 1

F(P)= f d(cos8&) f d(cos8z)I(8»8z, g)=4C(1+Pcos2$),

where

21'c~
I a++ I'

2
I a++ I

'+2
I a+0 I

'+ 2
I

a 0+ I
'+

I a+
I

'+
I
a + I

'+
I aoo I

'

If, instead, the quadrants are separately integrated over

F,s($) =C(1+a cosP+Pcos2$), (10)

By taking into account the sign change in Eq. (10), a can be determined from all the available data if enough is known
about possible background effects.

If the azimuthal angle P and one of the polar angles is integrated over, the distribution in the other polar angle is
j. 21r

G(8z) = f d(cos8~) f dPI(8»8z, g) =4m C[1+gTPz(cos8z)], (12)

where the coefficient of the second Legendre polynomial is

2
I aoo I

'—2
I a++ I

'—
I a+ I

'—
I
a -+ I

'+
I a+o I

'+
I ao+ I

'
2

I a++ I
'+2

I a+0 I

'+2
I ao+ I

'+
I
a+- I

'+
I a-+ I'+

I aoo I

' (13)

where the upper sign gives F» or 0 & 8& z & ~/2 and Fzz for ~/2 & 8& z & m.; and the lower sign gives F&z for 0 & 8& & m/2,
m/2&8z&a. and Fz~ for 0&8z&a/2, m. /2&8& &m. The reason for treating separately these four quadrants is that the
sign of the cosP term in Eq. (10) is quadrant dependent. If there are reasons to expect the background to also be qua-
drant dependent, due to this sign variation sufficient care must be used in employing Eq. (10) to evaluate the a parameter
by data from more than one quadrant. Note that Eq. (8) shows that this cosP term cancels out when the entire 8&,8z ac-
ceptance is integrated over. This additional important parameter for X~VV is

2Re(a++aoo) 'Yc~(
I a+0 I

—+ I ao+ Ia=
2 2 2 2 2 2

(11)
2la++ I +2la+OI +2lao+ I +a+ —

I
+ Ia —+ I + Iaoo I
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~
I am I

'+(2~+}'c~}(
I a+0 I

'+
I aQ+ I

')

+.~(la+ I'+ Ia + I')=O. (15)

This a constraint, however, is yc~ dependent which
means that for y&i ——+ 1, and, then separately for
yci ———1, a two-parameter fit must be made to C(gi, gz).

In summary, when the VVor VVdecay modes are due
to strong interactions such that the decay of X is invariant
under C and P separately, the decay correlation function
I(gi, gz, g) provides enough information to determine the

I

In some cases, see Sec. III of paper I and Sec. III below, it
is important to note which polar angle has been integrated
over in Eq. (12}. For X~VV the same g'r should be
found when either polar angle is integrated over. As a
cross check, the empirical value of gr from the above in-

tegrated distribution, Eq. (12), can be compared with an
evaluation of this expression, Eq. (13), using the empirical
coefficients from the C(8i,82) distribution, Eq. (7). For
the case when X has a spin of J=O or 1 the value of gz
can be used in the determination of the CP eigenvalue of
X, see Sec. VI. For any J, from Eq. (13}we see gr & —,

'

imphes
I a00 I

&0 aild 7'op=+ 1. If only the azimuthal
angle P is integrated over its entire range, then the
C(8i, gz) distribution, Eq. (7), is obtained

J dPI(8»82, $)=2irC(8„82) . (14)

The CP eigenvalue of X can be determined from these

p and a coefficients:
(i) When P&0, the X eigenvalue yci —sgnP.
(ii) When P=O, but a&0, then yci ———sgna.
(iii) Should both p=0 and n =0, then ycp = + 1.
A C(gi, gz) distribution results when I(8»82, $) is in-

tegrated over the full azimuthal acceptance. Although
this C(8i,gz} distribution is not needed to determine the
CP eigenvalue of X, it could be used, perhaps as a check,
to determine whether

I
a 00 I &0, which would imply

yci ——+1. As in paper I, the symmetry properties of
C(gi, gz) can be used to bm all 8»82 events mto the tri-
angular region O&8, 2&~/2, 8» g„where the

I
a~ I'

coefficient dominates the C(gi, gz) distribution near the
8i-0, gz-0 vertex. Should P=O,

I a++ I
=0 and then

the empirical value of a by Eq. (11) gives a further con-
straint on C(gi, gz),

parity 2) of the decaying X particle. In contrast, when the
VV or VV decay mode is due to weak interactions such
that invariance under C and P separately is violated but
the decay of X is still CP invariant, then I(8»gz, p) pro-
vides enough information to determine the CP eigenvalue

ye& of X. Consequently, it is not possible to use
I(8i, gz, p) for either of these modes to demonstrate that P
or C separately is violated. This is apparent for VV from
comparison of Eqs. (5)—(7) here with Eqs. (7)—(9) of pa-
per I. For VV it follows since Eqs. (1) and (2) imply (3).
However, the Presence of sin2$ and/or sing terms in
I(gi, gz, g) for a Vi Vz decay channel without a Vi~Vz
exchange property and where Vi and/or Vz is not its own
antiparticle, or for a mode like K*+EL*,does imply that
P is violated in X~Vi Vz as we discuss below in Sec. V.

C. Vi V2 dccsg Mode: V~ snd V2 th.cii 0%'n sntipRrticlcs

%'hen V1 and V2 are each their own antiparticle,

a „. ..=7'ci ( —) a... ,J

and it is again only necessary to substitute yci for g in
Sec. III of paper I in order to use this mode to determine
ye&( —) for X provided certain amplitudes do not vanish
(see paper I). When J is known, this will determine the
CP eigenvalue of X. Modes of this type are Pp, top, and
QQl.

When CP invariance is violated in the decay X~V~ Vg,
where V~ and V2 are identical vector bosons, the decay
hclicity amphtudes are related as shown by Table II and
the azimuthal distribution of the decay correlation func-
tion I(gi, gz, p) can contain sin2$ and sing contributions.
Even if such azimuthal contributions are absent, if certain
values of the decay correlation parameters are found, then
there are violations of CP invariance. Second, should CP
bc v1olatcd 1t remains possible, cxccpt 1n certain C1r-

cumstances, to use an X~VV decay mode to show that
the signature of X is ( —) = + 1.

From Table II, the decay correlation function for
X~VV is

81&82&4) CO(81&82)+~0(81~82)cosf+Ax(gi, gz)sing+80(gi, gz)cos2$+gx(gi, gz)sin2$,

where

80(gi, gz)= 2 Re(a~+a )siii gisiil 82,

&x(gi, gz) = ——,
' Im(a+ ~a' )sinzg, sinzgz,

&0(gi, gz) = —, Re(a++ a 00+aQQa* —2a+Qa Q )sill28isin282,

Ax(gi, gz) = —
4 Im(a++ a 00+aQQa* —2a+Qa 0 )sin2g, sin282,

(18)

CQ(gi gz) = 4 ( I a++ I

'+
I
a

I

'+2
I a+ I

'}sin'gi»n'82+
I aoo

I
'«s'gi«s'gz

+ 2 (
I a+0 I + I

a —0 I
')(sin'gi«s'gz+cos'gisin'82) I, (21)
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Nonvanishing amplitudes

a+o =—ao+
a o

———ao

Signature

( —) =—l

TABLE II. Relations among the helicity amplitudes for the
decay X—+V& V2 which follow when V& and Vq are identical
vector bosons.

A. Signature test

From Table II we see that Pp&0 and/or P»+0 implies
that X has the signature ( —) =+1. When both Pp and

p» vanish, the Cp(8i, 82) distribution of Eq. (20) can be
used to determine

I aop I
. If

I aoo I
&0, then ( —) = + 1

but if
I app I

=0 aiid Pp=P»=0, the signature cannot be
obtained from I(8»82, $).

a+o =ao+
a o ——ao

a+ ——a +
a++, a, aoo

( —) =+l

so the parameters in Eq. (22) are

Pp ——2 Re(a++ a' ) /D p,

P» ———2 Im(a++a* )/Dp .

(24)

(25)

When the quadrants are separately integrated over, analo-
gous to Eq. (10) of Sec. II, we obtain

F,s(f) =C(1+apcosf+cx»sing+Ppcos2$+P»sin2$)

I

where the 8i and 82 symmetry properties of C(8i, 82) al-
low the binning of all 8i, 82 events into the triangular re-
gion 0&8i 2&2r/2, 82&8i. The distinct coefficients of
Eq. (21), then, respectively dominate the empirical
C(8,,82) distribution near the three vertices of this tri-
angular region.

The associated integrated distributions are
1 1

F(P)= J d(cos8i) I d(cos82)I(8»8z, g)

=4C(1+Pocos2$+P»sin2$) (22)

when the entire 8~, 8q acceptance is integrated over. We
define

Do=
I a++ I'+

I
a I'+2

I a+o I'+
I
a-o I'

+21 a+- I'+ laoo I' (23)

B. Tests for CP violation

When P»&0 and/or a»&0, CP invariance is violated
in the decay X~VV. I Note P»&0 if and only if 8»&0,
and similarly a»&0 if and only if A»&0. ]

When it is found that both P» ——0 and a» ——0, from
comparison of Table II in this paper with Table II of pa-
per I we nevertheless find that if certain values of the pa-
rameters occur, then there must be violations of CP in-
variance. The negative-signature amplitudes in Table II
are a generalization of cases I and II of paper I, and simi-
larly the positive-signature amplitudes are a generalization
of cases III and IV. For the remainder of this section we
assuine that P» ——a» ——0 and discuss these tests. It is con-
venient to define the quantities

and

R =
I a+o I

'+
I
a-o I'

S=
I a++ I'+

I
a-- I'+21 a+- I'

(30)

(31)

which can be determined from the empirical C(8„82) dis-
tribution. We consider Po ——0 first and then Pp+0.

(i) When pp ——0 and the Cp(8i, 82) distribution indicates
that R =0, then -if

I aoo I
&0 and ap&0, CP is violated;

but if
I apo I

&0 and ao ——0, or
I apo I

&0 and S=O, CP
is not violated. Although Pp

——0 and R=O exclude CP-
invariant cases I and III, if

I aoo I
=0, there is no test for

CP violation.
(ii) When Pp=O and R&0, we first consider the case

I aoo I
=o.

When also ao ——0, then S=O implies CP is violated but
the situation is inconclusive if the latter coefficient of
Cp(8i, 82) is found not to vanish.

When up+0, then
I a+p I &0 and we can define a real

proportionality factor z by

(26) ao—=«+o (32)

ap ——Re(a++ app+appa* —2a+pap )/Dp,

a» ———Im(a++ a op+ aooa' —2a+pa p )/Dp .

(27)

(28)

with the upper signs for F»,F22 and the lower signs for
Fiz,F2, . The two additional parameters in Eq. (26) are

and

—2'
I a+o I

la++ I'+ Ia-- I'+2(1+&') Ia+o I'+2la+- I'
(33)

+
I a+o I

'+
I
a-o I

')/Do . (29)

Again, when the azimuthal angle is integrated over, the
Cp(8i, 82) distribution of Eq. (21) is obtained just as in Eq.
(14).

When one of the polar angles and the azimuthal angle is
integrated over, Eq. (12) of Sec. II is obtained but now the
parameter is

4r =(2
I aoo

I

'—
I a++ I

' —
I
a --

I

'—2
I a+ -

I

'

If S=O, then

ap ———a/(1+a ) (34)

—1/~o ——Ii+ (1+S/2
I
a ~p I

)/a. (35)

so when ape+ 21, CP is violat~ but when ao —
2i ( —Yi),

CP is not violated and case I or III (II or IV) occurs.
However, if S&0, then
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aiid we separate consideration info cases ao & 0 aiid ao) 0.
Using Eq. (35) for a = + 1, we find ao& ——, so we con-

cIudc 0 ~ o,o & ——, imphcs CP is violated, but that

ao & ——, alone is inconclusive (ao ——+ —,
' are excluded by

S&0). But, if we also use the values of R and S, we find

ao(R +S)
(36)

implies CP is violated, but that equality only implies a.= 1

which is inconclusive. Proceeding similarly for ao ~0, we
find that CP is violated for any ao ~ 0, ao&1/2.

Still considering Po ——0 and R &0, we consider the alter-
nate case

I aoo I &0 which requires ~= + 1 in Eq. (32),
and ao&0, if CP is to be good. When S=O and ao —0,
CP is violated. But when S=O and ao&0, we find

—1/ao —«+ (1+ I aoo I
'/2

I a+o I
')/& (37)

and O~ao~ ——, implies CP is violated but find that

ao & ——, alone is inconclusive. On the other hand, if

R
ao«+ I aoo I')

CI 18 violated, %'hiIc cqllalitg IQcaD8 CP 18 good aDd case
IV occurs. However, if S&0, we find CP is violated
when ao ——0 and also when

%+2
ao(R +S)

(42)

implies CP is violated but that equality respectively only
imphes &=+1 which is iiicoiiclusive. Usiiig Eq. (41), we
find

(43)

implies CP is violated. Wlieii Po=(1+R/S), then 6= 1

and
I a+ I

=0, so if R = —2ao(R+S) as we discussed
following Eq. (42), CP is good since case IV can occur.
When

Po&(1+ Iaoo I'/S) '

impiics that CI' is violated; when

0 & Po & (1+
I
a oo I

/S)

thc sltQatloD 18 iDcoDclQsivc. % hcD

Po=(1+
I aoo I

'/S) '

then e= + 1,
I a+ I

=0, and CP is good.
(iv) When Po&0, we can use Eq. (40) and (41) and so

now for R&0, we first consider the case
I aoo I

=0.
When ao ——0, CP is violated. When ao&0, we can again
define a via Eq. (32) and find

(39)

but that equality in Eq. (39) is inconclusive.
(iii) When Po&0, we know ( —) =+1 and

I
a ~+ I

+0
so we can define a convenient real proportionality factor e
b5T

Since

e~++, e=e (40)

Po ——2e
I a++ I /Do, (41)

we have sgnpo ——sgne.
%%en R=O and

I ooo I
=0, Po& —1 implies CP is

violated whereas P= —1 imphes CP is not violated and
case III occurs. For positive Po we find Po ~ 1 implies CP
is violated, but that Po ——+ 1 implies CP is not violated
and that 0 &Po & 1 is inconclusive.

Next for Po&0, R =0, and also
I aoo I &0 we find

Po&0 and

the value of e~O is not known so the situation remains
inconclusive. If

Po& —(1+R/S)

then CP is violated whereas equality implies e= —1 and

I a+ I
=0 so if R =2ao(R+S), CP-invariant case III

caD occQf.
When Po&0, R+0, and

I aoo I
&0, we find Po &0 and

Po~ 1 implies CP is violated, but that 0 &Po & 1 is incon-
clusive. (Here ao does not provide any useful constraints. )

IV. GENERAL DECAY
CORRELATION FUNCTION I{8„82,$)

When no invariance principles are used to relate the
»ne hehcity decay amplitudes describing the decay
X~ I i V2, we find the general decay correlation function
18

I(ei, 82,$)=Co(ei, 82) +3o(ei, 82)cosy+ A»(8], 82)siny+Bo(e}, 82)coszy+8»(ei, 82)sin2$ .
The Bo and 8» coefficients are the same as those in Eqs. (17) and (18). The other coefficients are

Ao(ei, 82) = 4 Re(a++aoo+aooa —a+oao —aorta' o) sin28i sii1282

A»(ei, et) = —
4 II11(a++aoo+aooa —a+oao —ao+a o) siii28i sln28g,

(45)

Co(ei 8»= —'( I a++ I

'+
I
a--

I

'+
I a+- I

'+
I a-+

I
')»n'ei»n'ex+

I aoo I
'c»'eicos'ez

+ 2 ( I a+o I

'+
I a-o I

'»in'eicos'82+ 2 ( I ao~ I

'+
I
ao I

')cos'ei»n'ez .
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and find the parameters appearing in the P distributions
are

Po ——2 Re(a++ a' )/&,
P» =—2 Im(a++a' )/u,
iso= Re(a++ a 00+ aooa

' —a+o& o- —a 0+ ii*-0 ) /&
(51)

a» ———Im(a++ aoo+aooa* —a+oao —ao+a 0)/& .

(52)

As in Eq. (12), we define gT polar angle distributions by
integrating I(8i,82,$) over P and 81, j= 1 or 2, so then
g''T', i&j, is the coefficient of Pz(cos8; ) and find

&~"—&~"=3(
I &o+ I

'—
I &+o I

'+
I
~o-

I

' —
I
&-o

I
')/~

(53)

k)~'+ 0'r" = (4
I &00 I

' —21&++ I

'
—2I&-- I' —2I&+- I' —2I&-+ I'

+
I &+o I

+
I uo+ I

+
I
u-o

I

'+
I &o-

I
')/~ . (54)

When I (8i,8q, g) is only integrated over the azimuthal an-

gle P, the Co(8&, 8z) distribution of Eq. (47) appears as in

Eq. (14).

V. TESTS BY MODES OTHER
THAN VV FOR VIOLATIONS OF INVARIANCES

We now make use of the results of the preceding section
to list some tests for violations of invariance principles.

The 8i,82 symmetry properties of this C(8i,82) allow the
binning of all 8i,82 events into the square region
0&8i z&ir/2; the distinct coefficients of Eq. (47) then
respectively dominate the empirical C(8i, 8z) distribution
near the four corners of this region.

Integrated distributions can be defined in the same way
as before in Eqs. (22), (26), and (14). We define the sum
of the squares of the magnitudes of the nine amplitudes

(4g)

CP must be violated in the decay X~VV. Comparison of
Eq. (55) with Co(8i, 82) of Eq. (47} shows that an
equivalent signature of CP violation is to find

Even if these two tests do not indicate CP violation, by
considering Table I, it may still be possible for certain
values of the decay parameters to demonstrate that there
must be CP noninvariance in the decay. We do not
develop this more detailed analysis in this section but note
that the analogous systematic analysis was carried out in
Sec. III for the X~VV mode which has more constraints
and which has less background in the case X~PP.

Should CI' be shown to be violated, the decay correla-
tion function I(8i,82,$) could be used to obtain addition-
al information on the mechanism of violation. For in-

stance, from Sec. IV of paper I we see that test (ii) re-

quires both CP violation and C violation (even though the
decay X~VV might be P invariant). In contrast, test (i)

can show CI' violation because of I' violation although
the decay X—+VV might be C invariant. [Bose-Einstein
statistics, of course, implies that Eq. (55} is symmetric
under 8&~82 exchange when V~ and V2 are identical par-
ticles. ]

B. Other decay modes

For X an electromagnetic charged state and a decay
mode such as X*+IC* or D'+D*, where Vi and V2 (the
antiparticle of V2) are members of the same isospin mul-

tiplet and I3( Vi ) =I3(V2), the above test (i) can show P is
violated. Test (ii), as discussed in paper I, can show that
there is a violation of the combined usage of C and iso-

spin invariance.
For a Vq Vz decay mode without a V~~V2 exchange

property and where either V& or V2 is not its own an-

tiparticle (see Sec. III of paper I), test (i) would show that
parity is violated. Modes useful for demonstrating P
violation are Pp+—, cop

+—
, and PE*, co%, pK*, where X'

denotes K*+,K, K', K, and the modes obtained by
replacing K* by D .

For a V~ V2 decay mode without a V&~V2 exchange
property but where V& and V2 are each its own antiparti-
cle, again from Sec. IV and from Sec. III of paper I, we

see that test (i) would show that both P and CP are violat-
ed. Modes of this type are Pp, cop, and Pcs.

A. Tests of CP violation by the VV decay mode

By comparing Eq. (44) with Eq. (4), which assumed CP
invariance, or by comparing their associated integrated
distributions, we see the following.

(i) If p»&0 and/or a»&0, CP invariance is violated in
the decay X~VV.

A second test involving different amplitudes follows by
comparing the Co(8, ,8z) distribution of Eq. (47) with the

C(8i,8z) distribution of Eq. (7}. The difference between
these expressions means the following.

(ii) If

I dP I(8i,8g, g) (55)

is found not to be symmetric under 8i~82 exchange, then

VI. CP DETERMINATION FOR J=O AND J=1

P= —1 a=O gz = —1 (56)

whereas if yci ——+ 1 as for a neutral elementary Higgs
particle, then

For J=O, ai i &0 only for A, i ——A2. By the discussion

in Sec. II about the VV mode and about modes where V~

and V2 are each its own antiparticle, we need only tran-
scribe earlier results' for parity determination. The re-
sults of Sec. II for the VVmode happen to imply the same
values and constraints: For a VV or VV decay mode or a
mode where Vi and V2 are each its own antiparticle, if
ycp ———1 as for a neutral technipion, then
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0&P& 1,
I
a

I
&[2P(I—P)]'~

kr =2 3P—.

(57)

(58)

(59)

(63)

Using the results of Sec. III, we find that for a VV mode,
if yap= —1, then

For identical vector boson modes such as YY where
each Y decays into a p+p or e+e pair, the earlier re-
sults' on parity determination can similarly be used since
for X—+VV the constraints on the decay helicity ampli-
tudes are the same, assuming Bose-Einstein statistics,
whether P or CP invariance is assumed. Consequently,
when both polar angles 8~ and 82 are integrated over the
full acceptance, the p parameter for ycp ———1 as for a
neutral technipion is

and

—1&P&0,
ct = —,

' (1+P),

gr = —,
' (1+3P),

whereas if pep ——+ 1, then

0&P&1

(65)

(66)

Po [(m ——4P )l(2—rn +4P )] (61)

with m=mass of V, and p=mass of fermion. For
7'cp = + 1 as for a neutral elementary Higgs boson,

0&P&Po ~

F«1=1,'ax, g,&0 for

IA, I
= IAi —A2I &1.

(62)

Again, for the VV mode we need only transcribe earlier re-
sults. For the VV mode

(60)

where Po= + 0.25 for massless fermions and in general

and there is a constraint on a of [C(8i,82) provides coef-
ficients in Eq. (68)]

I
~(2

I a++ I

'+
I aoo I')+(

I a+o I'+
I ao+ I')(2ct+I)

I

& 2
I a++ I I

a~
I

For J=1 and a mode where V~ and V2 are each their
own antiparticle, Eqs. (42)—(46) of paper I apply when ri
is replaced by ycp in text of paper I.
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