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We calculate the energy spectrum and the one-photon E1 and M1 decays of charmonium and b-
quarkonium including their first-order relativistic corrections, within the context of the
Buchmiiller-Tye potential. Results seem to suggest that the confining potential is predominantly
scalar since this assumption gives good agreement for spectra and for E1 decay rates of ¢ and gives
reasonable results for bb. For M1 decays discrepancies persist unless the quarks have large
anomalous moments, but the resolution of such discrepancies can probably be achieved by other
means. As an interesting by-product of our investigations we find that for the nonrelativistically in-
hibited E1 decay ’Y‘"——»X}’ +7 of the bb system, some rates are enhanced by a huge factor by first-
order relativistic effects. When more data are available these decays should provide an additional

testing ground for models of relativistic corrections.

I. INTRODUCTION

The study of electric dipole (E 1) and magnetic dipole
(M 1) one-photon transitions between the bound states of
quarkonia such as the ¢z and bb systems is useful in the
search for a phenomenological potential describing the
flavor-independent interaction between the quark and the
antiquark. Although the potential is primarily deter-
mined by comparing the calculated and the experimental
energy spectrum, it is clear that the choice of a potential
may be constrained further by the comparison of the
theoretical and experimental one-photon radiative transi-
tions of quarkonia. In recent years many authors have at-
tempted to calculate the E1 and the M1 transitions of
charmonium from several different points of view.!—!!
The common feature of the E1 calculations is that the
predicted nonrelativistic rate for the ¢'—X;+v decay is
too high by a factor of two to three, no matter what po-
tential one uses. This suggests that the relativistic correc-
tions may be extremely important in E 1 decays. In fact,
several recent calculations support this point of
view.57%10 Relativistic corrections are also crucial for
the calculation of certain M1 decays such as ¢'—>n,.+y
and 7,—1¥+7v, since these decays are forbidden in the
nonrelativistic limit. Two of us have recently carried out
calculations of the M 1 decays of the gg system, and have
concluded that some important recoil terms were neglect-
ed in previous works.® These neglected terms turned out
to be as important numerically as the terms which had al-
ready been calculated.

In this paper we present a comprehensive approach to
both the E1 and the M1 transitions of massive gg sys-
tems, including their leading relativistic corrections. We
present formulas for the decay rates in a way which large-
ly avoids commitment to a specific choice of the poten-
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tial. We find that the predicted results for the M 1 decays
depend crucially on whether or not the potential contains
a scalar part and on whether the quark has an anomalous
magnetic moment. We present numerical results for the
Buchmiiller-Tye potential'? for which the nonrelativistic
predictions on the energy spectrum of g7 systems are very
good. The confining part of the Buchmiiller-Tye (BT) po-
tential, namely, the linear potential, is assumed to be a
mixture of two terms, one of which transforms as a vector
and the other as a scalar in the covariant limit.> The part
of the BT potential derived from perturbative quantum
chromodynamics is always assumed to be the fourth com-
ponent of a four-vector. We have calculated the energy
spectrum of both the ¢z and the bb systems in two cases:
(1) when the confining linear potential is purely scalar
(yps=1) and (2) when the confining potential is also pure-
ly vector (15=0). In the second case the entire potential
can be thought of as arising from the exchange of a vector
particle. We have obtained numerical results for M 1 de-
cays in terms of the parameter 7y and a presumed quark
anomalous moment a. We have also calculated the E 1
decays of both the ¢z and the bb systems in terms of the
parameters 175 and a.

The format of the rest of the paper is as follows. In
Sec. II we derive the formulas for the E1 and the M 1 de-
cay rates. In Sec. IIl we introduce our Hamiltonian
correct to order v2/c? based on the Buchmiiller-Tye po-
tential and present numerical results for the energy spec-
trum of the c¢¢ and the bb bound states including their
fine and hyperfine structure splittings for two cases,
namely, (a) when the confining part of the Buchmiiller-
Tye potential is a Lorentz scalar and the rest of the poten-
tial is vector and (b) when the entire Buchmiiller-Tye po-
tential including the confining linear potential is vector.
In Sec. IV we present numerical results for the M 1 decay
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rates of the bb and the cZ bound states for the cases men-
tioned above. In Sec. V we give the numerical results for
the E 1 decay rates of the cZ and the bb bound states. Fi-
nally, in Sec. VI we make some concluding remarks.

II. DERIVATION OF E1 AND M1 DECAY RATES

Let H be the Hamiltonian for an isolated composite

system consisting of two particles. It is assumed that H isl

2 ie; - e —
H = — A',' ?,H S
1 j§1 2(,'[ j [_] ]]+ mje j 2 m,2
ej - - ej - - ejaj —
VsS;'B; ———a;S;'B; + B;-
+mj2c3 §9j BDj mjc R B 4mj3c3[ i
where
A=A,
B;=V,; XA, ¥)

EJ=—K(f},t) ’

and T; and P; are, respectively, the position and momen-
tum operators of the jth particlee. In Eq. (1), the
anomalous moment parameter a; of the jth particle is de-
fined by

‘where [I; is the magnetic-moment operator for the jth
particle. For a system such as quarkonium, made up of a
particle and its antiparticle, we have a; =a,=a. We shall
assume #i=1, throughout. In Eq. (1) we have included
possible anomalous moments a; for the constituent parti-
cles. The terms involving the anomalous moments were
absent in the previous paper!® because there we assumed
the constituent particles to be point Dirac particles. These
terms can be derived on the basis that when the internal

interaction among the constituent particles goes to zero,
]
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correct to order v2/c? and in this section we will not
choose a specific form. As shown in a previous paper!®
by one of the authors (K.J.S.), if A is the quantized radia-
tion field, the linear terms coupling the composite system
to the radiation field are given by

2 2SJ (VJXE1)+ 3 (3, ’Sj B; an
m;¢

' —

e
2, 2S (Ejij)+ i
J .l

U.'Jl

; (1)

the interaction Hamiltonian should be a simple sum of
single-particle Hamiltonians of Dirac particles (with
anomalous moments) in an external electromagnetic field,
each single-particle Hamiltonian being reduced to order
v2/c? by the Foldy-Wouthuysen technique. The Vg term
of Eq. (1) cannot be derived by the principles stated in
Ref. 13. However, if we start from a covariant Breit-type
two-particle Hamiltonian with scalar and vector interac-
tions (see Ref. 8), introduce the electromagnetic field by
minimal coupling, carry out a Barker-Glover reduction to
order v2/c2, then we obtain this scalar term and also veri-
fy the other terms of Eq. (1). This equation can also be
derived by other methods.*!""!* The symbol Vg stands
for the part of the potential which transforms as a scalar
in the covariant Hamiltonian mentioned above.

We now proceed to the derivation of radiative decay
rates. Let T'(zy) denote the probability amplitude for ob-
serving the composite system at ¢, in state | 4) with the
simultaneous presence of a photon of energy w, momen-
tum K, and polarization vector €, if at time ¢ =0 the sys-
tem is known to be in state | B) with no photon present.
Using the interaction Hamiltonian H; in first-order per-
turbation theory we find that

-
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8 iHo— ,
fo et(w a)BA)tdt, , (3)

?)

where o= | E| =k. In Eq. (3) the states | 4) and | B) are direct products of the internal states and the center-of-mass

states with energy eigenvalues w, and wp.
follows that

|B>= |B>I®Io>c.m,; |A>=|A>I®I~E)cm ’

Thus, assuming the initial state to have zero center-of-mass momentum, it
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where | A); and | B) are eigenstates of the internal Hamiltonian &, which is related to the total Hamiltonian H of the
composite system by

H =(h*+c%?*)!? (5)

to order v2/c2. The state vectors |0)., and | — E)c m. are, respectively, eigenvectors of the total-momentum operator
P =D+ D, with eigenvalues of zero and the recoil momentum — K.

Next we express the constituent variables T;, P;, and S (j=12) in Eq. (3) m terms of the relat1v1stlc internal and
center-of-mass variables by means of the relations given by Krajcik and Foldy'® and others.'® After extracting the
parity-odd and parity-even portions of the vector part of the transmon operator, we obtain the electric dipole (E 1) and
the magnetic dipole (M 1) transition amplitudes in the form!?
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Tm(to)=-—‘/c—l—; 27 ko4 |x0+x1|3>,f"’ Ho—opa gy : ©6)
where cko=E} —E}, and
io=99?» , )]
X,= tkeg {(?21‘:—’+FFZ)—%[F(?-F)—HF-?)?]}—i@i(?xﬁ), | ®
20mc 4mc
and | )
S = L5147y . | ©

In the preceding expressions eg is assumed to be the charge of the particle (e.g., quark, electron, etc.) rather than the an-
tiparticle, a is the anomalous moment parameter, &', are the Pauli matrices for partlcles 1 and 2, respectively, T is the
difference g — p, between the relativistic internal position variables of the two particles,® and 7 is the corresponding rel-

ativistic relative momentum:
172
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In Eq. (12) U° is the nonrelativistic limit of the internal
interaction (i.e., the nonrelativistic potential), M is the
sum of the rest masses comprising the composite system,
Vv‘;’ is the spin-dependent part of W@ (the interaction-
dependent part of the Lorentz boost operator) as defined
by Krajcik and Foldy,! and #‘? is the nonrelativistic part
of the internal Hamiltonian.

In Eq. (12) only the spin-dependent operators have been

retained, since only these can connect the initial and final

states of interest, namely, states in which the total spin
changes by one unit (i.e., singlet-triplet or vice versa). We

(12)

I
wish to point out that the last term of Eq. (12) is due to
the nonzero recoil momentum of the composite system,
and its correct form emerges only through the use of rela-
tivistic center-of-mass variables, or by carrying out a
Lorentz boost of the final composite wave function, as
discussed in Ref. 8. As we will see later, this term makes
an important contribution to the decay rate of the “rela-
tivistic” M1 transition between ¢’ and 7, and also be-
tween 77, and .

Equations (6) and (10) give rise to the following decay
rates:
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Wii=3kok | (4 |Xo+X, B, |2, (13)

Wi =4+k*| (4| Yo+Y,|B); | (14)
For E 1 decays of charmonium the relevant decays are

238,—1°P;+y and 1°P;}—1°S;+vy, (15)

where j =0, 1, or 2. When Eq. (13) is applied to the first
of these decays the decay rate becomes'®

W23s —13p, =Inr(14r+7ry5+r35) (16)

where I'yg is the nonrelativistic decay rate, ry; is the rela-
tivistic correction due to the modification of the nonrela-
tivistic wave function, ryj is the relativistic correction
originating from the relativistic modification of the tran-
sition operator due to terms involving the anomalous
magnetic moment of the quark in the interaction Hamil-
tonian, and r3; is also a relativistic correction but it ori-
ginates from the relativistic modification of the transition
operator, coming from the difference of ¢'¥T and 1 in

the plane-wave expansion of the vector potential A. We
find that

Inr=wkoke,A2j +1)G,?, (17a)
(G,+G%)  (G,+G4)?
r1j=2 Gl G12 N (l7b)
ak
ry= gy (17c¢)
where
nj=2,1,—1 for j=0,1,2 (17d)
and
1 2G4 1 600 (Gs—Gs)
j=———ko"— — 17
"T T 0% G, T8 me2 . G, (17¢)

In Egs. (17), the integrals G; (i =1,2,...,6) are defined

by the following equations:

G = [ RYRGrdr (182)
G,= fO”Rg‘}JR‘;s’ﬁdr , (18b)
Gi= waR‘,}.?,R‘°’ 3dr (18¢c)
Gi=[" R\PRQr%dr , (18d)
Gs= [~ RYRY ar (18¢)
Go= [, RYRRrar (18)

where R'? is the radial part of the zeroth order or non-
relat1v1stxc wave function (chosen to be real) and

R(O) =2r d§ +R(0) (19)
The quantity R‘? is the first-order relativistic correction
to the radial wave function R‘?. For exam (}gle, if an un-
perturbed 2S state has a state vector %53 while the
corrected state is

¢ZS 2 (an ¢(0)+b ¢(0)

then the correction to the 2S radial wave function is
R5=3(a,R3 +b, Ry —R%) . (20)
Similarly for the 1P states we find
R‘,}) =3 CIRY—RP, j=0,1,0r2. (21)
The expression for ry; is now given by

2
® 37 |2 i ® p(0)p(0).3 ‘
R p.R,grdr RipR dr
‘fo 1P; 28 fo 1pRogT

- p , (22)
UO RGR®rdr

r1j=

where
Rip=Rip+Rip and Rys=R53+R5 . (23)
Now let us turn to the expressions for the rates of the

E 1 decays 1 3Pj—+l 38, +7. They are given by

Wlsp S3s, =INR(L+ry4r05+7r3) (24a)
where I'ng, 71j, 725, and r3; have the same physical sig-
nificance as in Eq. (16) but they are now given by the ex-
pressions

FNRZ %kozkeq 2F12 (24b)
(Fi+F3) (Fy+F3)?
r1j=2 Fl —+ F12 ’ (240)
— 2k (mj=2,1,—1 for j=0,1,2
== e (M=21,—1forj=012), (4d
and
1 wo (Fs—Fg)
r3j-— loko 8 mc Fl ) (246)

where the integral F; (i=1,2,...,6) is obtained by re-
placing 1P by 1S and 2S5 by 1P in Egs. (18) for the in-
tegrals G;.

Equations (16)—(18) are applicable to any potential act-
ing between the quark and the antiquark. They can be
easﬂy generalized to any E 1 decays n >S;—n’>P;+v and
n3P;—n'3S, +v of the q7 system.

Let us now turn to the magnetic dipole decays of q7.
There are four M 1 decays of interest in charmonium. We
have

(a) 238, —1!So+y or Y -1, +7,
(b) 2'So—1°S; +v or gi—Y+vy,
(¢) 23S, —>2'So+y or Y —m.+7,
(d) 138, —1'So+7 or p—n.+7y .

The first two are “nonrelativistically forbidden” and can
occur only due to relativistic effects, because the leading
M 1 operator _?o will have zero matrix elements between
the nonrelativistic n =1 and n =2 states. The last two
decays (c) and (d) are allowed even in the nonrelativistic
limit.
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For any of the above cases we can write the decay rate
as
mi_16 1 .3
PT9 28+

where S; is the initial spin, a is the fine-structure con-
stant, and

W _"|11+12+13+14|2 (25)

_ g2y, _k_ )
_<¢, (1+4a)(1— L&)+ 4mc(1+2a)1db, ,
(26a)
? 1
e &), o)
aU(O)
13=<¢f %7"% o ¢i>, (26¢)
Vs
I,= —— ;) . : (26d
¢ <¢f mc? ¢’> )

In Egs. (26) | ¢;) and |¢;) are the spatial parts of the in-
itial and the final-state wave functions of quarkonium.
Since we are calculating the matrix elements correct only
to order v%/c? we can use nonrelativistic wave functions
everywhere except when we calculate the matrix element
of 1+a between |¢,) and |¢;) in the expression for ;.
As Sucher* has previously demonstrated, the matrix ele-
ment of the unity operator in Eq. (26a) can be written as

T (E—E;) E)

where US§ is the coefficient of Sl SZ in the mteractlon
terms of the internal Hamiltonian A‘D. Since US§ is al-

ready of order v2/c? in most models, on the right-hand
]

H=(c@;"B1+Bimcd) +(cay PatBmac)+BB:Vs+(1— L&)

side of Eq. (27) we can take |¢;) and | ;) to be the non-
relativistic spatial wave functions. If the spin-spin in-
teraction is due only to the one-gluon exchange between
the quark and the antiquark, then
+ 8 Km

Uef = —-:;—r—n'—zc—z's(s)(ﬂ . (28)
In our case the operator has a different form dictated by
the reduction. It is important to point out that a contri-
bution of —7?/6m?%? to Eq. (26b) came from the last
term of Eq. (12). This originated from the simultaneous
presence of the recoil of quarkonium and of the v2/c?
terms in the relativistic relation between the constituent
and the center-of-mass variables.? Alternatively, as dis-
cussed in Ref: 8, we can think of it as arising from the
Lorentz-boosted wave function of the recoiling composite
system in the final state. The presence of recoil correc-
tions to magnetic-moment operators of composite systems
was also known and studied many years ago in connection
with g factors of composite systems.!®

In Secs. IV and V we will turn to the numerical evalua-
tion of the M1 and the E 1 decay rates of the c¢ and the
bb systems based on the Buchmiiller-Tye potential.'? In
Sec. III we will present the results on the energy spectrum
of charmonium (cZ) and b-quarkonium (bb) based on
this potential.

III. NUMERICAL RESULTS ON THE ENERGY
SPECTRUM OF CHARMONIUM
AND b-QUARKONIUM BASED
ON THE BUCHMULLER-TYE POTENTIAL

We shall assume as a working model that at the relativ-
istic level the quark-quark interaction is simulated by the
exchange of vector and scalar particles. Then the Hamil-
tonian at the relativistic level can be written as

-

a)Vy+adFayfrvy, (29)

where Vs and V) are the scalar and the vector potentials. Making a Barker-Glover reduction®?° to order v?/c? and
writing the Hamiltonian in the c.m. frame we get the internal Hamiltonian

h(0)=_;i+Vs+ VV , (303.)
4 .
(1)_ m 1 =. — 1 = 2 l =, = 2 1 _1_ ’ ' —’_—'
h = amie? -}-—-——-—zmzc2 T Vy17'————--——mzc2 TrrVyf 17+-—8m2c2[77 , TV Vyl+ Tme? r (3Vy—Vg5)S'L
2 1 = —> 1 = = 2 1 = = = AN AN ” i -’
+ 4m202V (VV+Vs)‘— 22 T Vsem+ 6m2c_2 (0‘1 7,)V VV+’~—““‘12m2c2 [0'1 02——-3(0'1 r)(O'z r)] Vy— ; Vy
(30Db)
For Vy + Vs we will take the Buchmiiller-Tye potential'?
Vir=Vy+ Vs =kr— 871%—’—) for r>0.01 fm
16m 1 53 1
= 1+Qyp+ ) —L
25 IlAggr DL | ET T (At
— L Inln(Agg?r?)~/In(Aggr?)~! | for r <0.01 fm, 31
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TABLE 1. Energy spectrum of charmonium (ns=1) in GeV. m,=1.548 GeV, Me, = 1.486 GeV.

State Enr AE 8K My " Meype?
238, (¢") 0.7272 —0.2424 —0.018 3.563 3.686 +0.0001
2'S, (7¢) 0.7272 —0.3137 —0.018 3.491 3.592 +0.005
138, () 0.1275 —0.1120 —0.015 3.097 3.0969+0.0001
118, (n¢) 0.1275 —0.2329 —0.015 2.976 2.981 +0.006
13P, (X5) 0.5504 —0.1719 —0.016 3.459 3.5558+0.0006
%P (x9) 0.5504 —0.2135 —0.016 3.417 3.5100+0.0006
13Py (X§) 0.5504 —0.2777 —0.016 3.353 3.415 +£0.001
1P, 0.5504 —0.2037 —0.016 3.427

2See Ref. 10 and references given in that paper.

where

Agis=0.509 GeV, k =0.153 GeV?,
A=0.406 GeV, yz=0.5772

(MS denotes the modified minimal-subtraction scheme).
The function v(x) has been tabulated by Buchmiiller and
Tye.!> Except for the confining part V,=kr, the
Buchmiiller-Tye potential is based on perturbative quan-
tum chromodynamics. The piece that is derivable from
perturbative quantum chromodynamics (based on one-
gluon-exchange diagrams and their corrections) is vector
and the rest of the potential is assumed to be partly vector
and partly scalar, i.e.,

Vs=mngkr and Vy=Vgr—nskr . (32)

The eigenvalues and eigenfunctions of the nonrelativistic
internal Hamiltonian A© were solved numerically by the
Runge-Kutta method. The nonrelativistic wave functions
were evaluated for about 2000 points equally spaced be-
tween zero and 2 fm. The corrections to the nonrelativis-
tic energies due to ‘! were calculated in first-order per-
turbation theory.

The results for the energy spectrum of charmonium and
b-quarkonium for the two special cases (a) 7g=1 (confin-
ing potential is purely scalar) and (b) 75 =0 (confining po-
tential and hence the whole potential is purely vector) are
given in Tables I-IV.

The nonrelativistic energies are obtained for the input
mass of the charmed ‘quark, m,=1.486 GeV. When the
relativistic corrections are added to these nonrelativistic
energies, for case (a) above the predicted energies were

found to be consistently low. This can be remedied by in-
creasing quark mass to 1.548 to refit the energy of the ¢
state. To the desired degree of accuracy, the effect of this
mass shift on the rest of the terms making up the energy
levels can be obtained perturbatively from the correction
to the kinetic energy term due to the increase of the quark
mass. In the table on charmonium energy levels this
correction to the kinetic energy due to the change of
quark mass is called 8K. The predicted value for the vari-
ous masses will then be given by

Mth=2mCZ+ENR+AE+8K . (33)

Since the relativistic corrections to the cC levels are
large, higher-order perturbation theory could alter these
corrections by as much as 20%. In view of this uncer-
tainty we have not fine-tuned the results to the best possi-
ble value of ng. However our work suggests that a value
of ms near unity gives significantly better overall agree-
ment with experiment than does a value close to zero.?!
For ng of unity our hyperfine splittings are 0.072 and
0.120 GeV as compared with 0.094 and 0.116 GeV for the
2S and 1S states, respectively. For the energy separations
between the 9’ and the X, ; o states, states of interest for
the E 1 transitions later to be discussed, the energies we
obtain are 0.088, 0.130, and 0.194 compared to experimen-
tal values of 0.130, 0.176, and 0.271. Although our
separations are too small for these states we feel that
higher-order relativistic effects could account for this.
The fine-structure splittings for 5= 1 appear to be closer
to experiment than for ng=0.

Turning now to bb, we examine the fine-structure split-
tings of the 1P and 2P states and find the results to be in

TABLE II. Energy spectrum of charmonium (7s=0) in GeV. m,=1.478 GeV, me = 1.486 GeV.

State E NR AE 8K M th M exp'a
238, (¢") 0.7272 —0.097 0.002 3.587 3.686 +0.0001
218, (12) 0.7272 —0.206 0.002 3.478 3.592 +0.005
138, () 0.1275 0.0125 0.002 3.097 3.0969+0.0001
1180 (1.) 0.1275 —0.184 0.002 2.901 2.981 +0.006
13P, (X5) 0.5504 —0.124 0.002 3.383 3.5558+0.0006
13P; (X5) 0.5504 —0.198 -0.002 3.309 3.5100+0.0006
13Py (X§) 0.5504 —0.283 0.002 3.224 3.415 +0.001
1lp, 0.5504 —0.183 0.002 3.324

2See Ref. 10 and references cited in that paper.
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TABLE III. Energy spectrum of b-quarkonium (s=1) in GeV. m;=4.88 GeV.

State ENR AE Mth Mexpt (Ref, 22)
238, () 0.2581 —0.058 9.960 10.0234+0.0007
218, (73) 0.2581 —0.089 9.929
138, (1) —0.2962 —0.031 9.433 9.4600+0.0001
118, () —0.2962 —0.098 9.366 .
1%P, (x2) 0.1319 —0.036 9.856 9.915 +0.002
1°P, (x}) 0.1319 —0.058 9.834 9.894 +0.003
13Py (X%) 0.1319 —0.086 9.805 9.873 +0.005
1'p, 0.1319 —0.052 9.840
338, (Y") 0.5940 —0.077 10.302 10.3500+0.0007
318, (n3) 0.5940 —0.100 10.305
23p, (x%) 0.4920 —0.058 10.194 10.266 +0.002
23p;, (1) 0.4920 —0.074 10.178 10.248 +0.003
23P, (X8) 0.4920 —0.095 10.157 10.228 +0.005
21p, 0.4920 —0.069 10.183

significantly better agreement with experiment for ng=1
than for ng=0. With ng=1, the 1P states 1P,, 1P;, and
1P, are, respectively, 13.0, —9.0, and —38 MeV from the
center of gravity (c.o0.g.) while for the 2P states we find
2P,, 2Py, and 2P, to be 9.0, —7.0, and —28 MeV from
the c.0.g. On the other hand with 7, =0 for the 1P states
we find 21, — 17, and — 55 while for the 2 P states we ob-
tain 15, —12, and —40. The experimental numbers are
11.7, —9.3, and —30.3 for 1P and 10.2, —7.8, and —27.8
for 2P. While the =1 numbers are generally in good
agreement with experiment, the 17g=0 results are quite
poor. Since fine-structure splittings are very sensitive to
the value of 7 these splittings support an 75 near unity.
Silverman recently reported an average R value,

R =(E1 —Eo)/(Ez—El) ’

for the 1P states of 1.30+0.20.2> Our theoretical result
yields 1.32 for pg=1 and 1.00 for ng=0. Thus we see
that our 175 =1 result is in excellent agreement with exper-
iment.

IV. NUMERICAL RESULTS ON THE M1 DECAY
RATES OF QUARKONIA

We have calculated the M1 decay rates of quarkonia
using Eqgs. (25)—(27). In order to evaluate the matrix ele-
ments I, I,, I, and I, we need to know only the non-
relativistic wave functions ¢; and ¢, for initial and final
states, respectively. For the leading operator, 1+a, we
make use of Sucher’s result, given in our Eq. (27), while
for the other terms, which are already of order 1/¢2, non-
relativistic wave functions can be used. With our expres-
sion for h‘" given by Eq. (30b), U3 of Eq.(28) will be
given by

ss_ 2 2
Ugr= Imie? VVy . (34)
Since this is of order 1/c¢?, nonrelativistic wave functions
may be used.

It is clear that I, and I, (26a) and (26d) can depend in
an important way on the parameter 75 determining the
scalar admixture in the potential. We find that the M1
widths in keV for c¢ decays are as follows:

TABLE IV. Energy spectrum of b-quarkonium (775=0) in GeV. m;=4.88 GeV.

State EN'R AE Mth Mexpt (Ref. 22)
238, () 0.2581 —0.037 9.981 10.0234+0.0007
218, (173) 0.2581 —0.074 9.944
138, (1) —0.2962 —0.010 9.454 9.4600+0.0001
118, (1) —0.2962 —0.088 9.376
13P, (X3 . 0.1319 —0.011 9.889 9.915 +0.002
13P; (xh) 0.1319 —0.040 9.851 9.894 +0.003
13Py (X8) 0.1319 —0.079 9.813 9.873 +0.005
1lp, 0.1319 —0.032 9.860
338, (Y") 0.5940 —0.048 10.306 10.3500+0.0007
318, (m8) 0.5940 —0.075 10.279
23p, (x%) 0.4920 —0.022 10.230 10.266 +0.002
23pP, (x¥) 0.4920 —0.049 10.203 10.248 +0.003
23P, (X§) 0.4920 —0.077 10.175 10.228 +0.005
21p, 0.4920 —0.043 10.209
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TABLE V. M1 decay rates of charmonium.
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WMy —n, +7)=475(0.079+0.137a +0.0547
$ ~ —0.033a75)?, (35)
S 3 WM (! —h+y)=558(0.115+0.173a +0.0407
—0.047ans)?, (35b)
2 5 3 5 WMy >n. +7)=1.54(0.766+0.975a —0.40975)? ,
(=] (=] (=] [=]
. (35¢)
8 9 3 % WMl(h—n, +y)=2.93(0.821+0.997a —0.20075) .
o - < o In Table V we present results for ng=1 and 7g=0 with
S g = three possible values of the anomalous moment, namely,
a =0, a =-—0.25, and a = —1.00.

For the bb states none of the rates have been measured,
§ § but we have calculated the M 1 decays for the transitions
S ©o o o which correspond to the ¢C transitions, namely,

! ' T >n+7, M—>T+y, Y'—ny+y, and T—n+7.
These results are presented in Table VI. We have not
N S presented the individual contributions I; as in Table V.
2 = The comparison of the theoretical and experimental
I I rates indicates a substantial discrepancy if the quarks have
no anomalous moment. This disagreement occurs in the
< o Y'—m.+v decay. It is clearly reduced by assuming a
8 S large negative anomalous moment for charmed quarks.
9 Cl’ The choice of a =—1.00 and 7g=1 gives quite good
agreement for the M 1 decays, but such a large value does
- . not appear to be reasonable. Even with an anomalous mo-
ment of a=—0.25 with 7y still 1 our result for this de-
5 ® cay still disagrees substantially with experiment. On the
= = other hand for 17g=0 and a = —0.25 satisfactory agree-
| | ment is found for this decay. All of this suggests that the
M1 decay rates are very model-dependent and that fac-
5 g tors of two or three can occur in the decay rates if the
2 = confining potential is changed from pure scalar to pure
| | vector.
Our results for M1 decay rates may be compared to
Q ° those of Zambetakis and Byers (ZB)!! if a is chosen to be
g s zero and the confining potential is purely scalar. For the
I | so-called “hindered” transition ¢¥’'—7,+7v, without cou-
pled channel mixing the authors of Ref. 11 obtain
© o > I =0.12 whereas we obtain ¥, I =0.13.2 It should be
2 p= noted that our I, includes both I, and I; of Ref. 11 while
| |
2 0":3 TABLE VI. Theoretical M 1 decay rates of b-quarkonium.
e e Decay
and
photon Predicted rate in eV
3 8 energy in GeV ns\a 0 —0.25 —1.00
Y'—>n5+Y 1 33.6 175 0.452
0.594 0 23.1 9.55 4.28
- o - © n—Y+7y 1 70.8 37.1 0.751
0.486 0 57.4 38.0 7.03
S w a o« Y —np+y 1 1.72 0.877 0.035
:’; 8 -|: '.: 0.037 0 2.03 1.10 0.006
}F C"’ TP <ﬁ Y—np+7y 1 17.7 9.38 0.150
5 ® 5 0= 0.078 0 19.0 10.3 0.056
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TABLE VII. Comparison of M 1 decays.

Experiment
I, I, I, >1I (Refs. 24 and 11)
Y'—n.+vy
This work 0.20 —0.16 0.09 0.13
ZB 0.18 —0.14 0.07 0.12 0.047:£0.008
I-.0.032
with coupled-
channel mixing
Y. +vy
This work 1.02 —0.20 —0.20 0.62
ZB 1.00 —0.17 0.25 1.08 0.7 £02
Y one+y
This work 1.01 —0.24 —0.41 0.36 L1—1.7
ZB 1.00 —0.20 0.07 0.87 ’ ’

2Qur value of I, above is equivalent to — I, —I; of ZB while I, and I, are equivalent to — I, and — I,.

our I is a different contribution, which is proportional to
a, and hence vanished when there is no anomalous mo-
ment. Also our I’s have opposite signs to that of ZB. We
see from Table VII that without the coupled-channel mix-
ing used by ZB our results essentially agree with those in
Ref. 11, but both are much larger than experiment. Al-
though this problem could be cured with a sufficiently
large anomalous moment, we are somewhat skeptical and
place more credibility in a resolution based on coupled
channel mixing. In the present work we have not at-
tempted to include such effects. _

For the other decays in which a comparison is possible,
namely, ¥—7,+v and ¢¥'—n.+v we find that for the
former we have ,I=0.62 as compared to 1.08 in Ref.
11 while for the latter we have 0.36 compared to 0.87. Of
these two decays, for the first Table VII shows our result
to be closer to experiment than that of Ref. 11, while for
the second the reverse is true.

In Table VII a comparison of various terms is provided.
For the ¢—7.+v and ¢¥'—n,+v the main difference
occurs for I,. It is a model-dependent difference which
presumably arises because ZB have a constant term in the
scalar potential whereas we do not.

V. NUMERICAL RESULTS IN
THE E1 DECAY RATES OF QUARKONIA
AND COMPARISON WITH OTHER WORK

We have calculated the E 1 decay rates of the ¢z and bb
states by making use of Eqs. (16)—(24). The integrals G;
and F;, with i running from one to six were calculated nu-
merically. Since the correction to the decay rate due to
the relativistic modification of the wave functions is quite
large for some of the E1 decays these cases should be
handled with care. For example, in Egs. (17b) and (24c)
for ry;, which give the dominant corrections to the rates
due to the relativistic modification of the wave functions,
the first term on the right-hand side is of order v?/c?

whereas the second term is of order v*/c*. In cases where
this v*/c* term is large we include it since we believe that
in such cases it is the most important v*/c* term.!®

For the states of interest in ¢ we find the following
corrections to the nonrelativistic radial wave functions:

0) 0) 0)
Rjs>~R3s+asRis+a1pRip ,

Ris~RQ+a,sRY+aipRY , (36)

R,3, ~R{P+azp R5P (j=0,1,2).
J J

The coefficients a5, a;p, a5, a1p, and ayp, are calculat-
ed in first-order perturbation theory. We find

 a15~—0.18740.097(1—75s) ,
a1p~—0.0052+0.0024(1 —75) ,
ars=—ass5,
a)p~—0.0153—0.005(1—75) , (37
azp,~=0.243—0.163(1—175) ,

02p12=0.341 —0.096( 1 —ns) N
a2p,~=0.461—0.052(1—75) .

It should be noted that other intermediate state correc-
tions to Eq. (36) can be neglected for two reasons: (1) the
coefficients of the other intermediate states will be smaller
because of larger energy denominators and more impor-
tantly (2) when the radial quantum numbers r differ by
more than one unit we generally find that the overlap ra-
dial integral of the relevant operator r is negligibly small.
In Table VIII we present theoretical decay rates for the
E 1 transitions of ¥ —X; +v for 75 equal to one and zero
for various values of a presumed quark anomalous mo-
ment a. In Table IX corresponding results are given for
Xj—y+v. From these tables we find that for the decays
Y'—X;+v and X;—1+v, the overall agreement of the
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TABLE VIII. Numerical results of the decay rates for ¢'—X;+7y as given by Eq. (16) for ns=1 and 0 and a =0, —0.25, and

—1.00.
Predicted Experimental
Nonrelativistic Correction from rate rate
rate relativistic modification Correction from Finite-size I'=TnrX [expt
Decay 'nr of wave function anomalous moment correction (14 ry;+ry+7r3;) (keV)
(k in GeV) (keV) rij ry r3; (keV) (Ref. 26)
ns\a 0 —025  —1.00 0 —025 —1.00
Y'—X+v 35.7 1 —0.291 0 0.007 0.029 260 263 27.1
: 0.020 175
k =0.128 0 0.108 0 0.007 0.029 40.3 405 41.3
¥v'—-X1+v 54.5 1 —0.489 0 —-0.007 —-0.027 28.3 28.0 26.9
0.009 195
k =0.173 0 —0.324 0 —0.009 -—0.036 37.3 36.8 35.4
¥ —Xo+v 64.7 1 —0.686 0 —0.012 —0.047 17.5 16.8 14.5
—0.043 21+6
k =0.262 0 —0.606 0 —0.013 —0.052 22.7 219 19.3

predicted results with experiment is definitely better for
the ng=1 case than for the 75=0 case. We have also
worked out the decay rates for the E1 decays of the bb
system. In Table X we provide the results of our calcula-
tions for the bb system for a =0. For the E 1 decays of
b-quarkonium, the experimental data are rather sparse.
In general the theoretical predictions for the E1 decay
rates of the bb system are not strongly dependent on ei-
ther 775 or the anomalous moment. But there is one im-
portant exception. This happens for the interesting de-
cays T"—»X}’—Hf. These decays are strongly inhibited in a
nonrelativistic calculation because of the approximate
vanishing of the radial integral of the position operator
between 3.5 and 1P states. But in a first-order relativistic
calculation, the decay rates are greatly enhanced by first-
order relativistic effects. Moxhay and Rosner'® have not-
ed that there is some evidence that these decays have been

seen experimentally which would indicate that their actual
rates are much larger than the nonrelativistic prediction,
which is too small to be observed.

Our results for ¢¢ may readily be compared with the
work of McClary and Byers (MB)° and Moxhay and Ros-
ner (MR).!® In Table XI we present relativistically
corrected decay rates for ¢¢ E 1 decays. Here we find that
our corrected rates more nearly agree with those of MB
than those of MR. We find very substantial relativistic
corrections, which are large enough to suggest that
second-order corrections may be significant.

Since our decay rates and those of MB are closer to ex-
periment than those of MR, this suggests that the E1
rates are quite sensitive to the treatment of the relativistic
corrections, as well as to the nature of the potential. In
both the present work (with g equal to 1) and that of MB
it is presumed that the confining potential is scalar while

TABLE IX. Numerical results of the decay rates for X;—-+v as given by Eq. (24a) for 7s=1 and 0 and @ =0, —0.25, and

—1.00.
Predicted Experimental
Nonrelativistic Correction from rate rate
rate relativistic modification Correction from Finite-size F'=InrX Cexpt
Decay 'nr of wave function anomalous moment correction (14 ry;+ry+73;) (keV)
(k in GeV) (keV) ry 7y r3j (keV) (Ref. 26)
ns\a 0 —025 —1.00 0 —025 —1.00 -
X2—Y+v 1 —0.187 0 —0.024 —0.096 413 399 357
579 —0.100 490+330
k =0.425 ) 0 —0.099 0 -0.031 -0.126 464 446 391
X1—v+vy 1 —0.175 0 0.022 0.089 340 350 378
425 —0.071 <700
k =0.385 0 —0.076 0 0.030 0.122 363 375 414
Xo—¢Y+v 1 —0.157 0 0.037 0.149 162 176 198
198 —0.025 97+38
k =0.302 0 —0.051 0 0.047 0.189 183 192 220
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TABLE X. Numerical results of the E 1 decay rates in bb.

Predicted rate

Photon energy Nonrelativistic rate T in keV

Decay (GeV) I'nr (in keV) Ns=1 ns=0 Experiment
Y —X5+y 0.107 2.01 1.84 1.93 2.75+1.05°
Y X4y 0.127 2.01 1.62 1.65 2.1640.89°
Y —X6+y 0.148 1.06 0.73 0.72 1.19+0.86"
X—T+y 0.441 41.0 33.0 345
XY +y 0.422 35.9 29.8 31.2
X5—Y+y 0.402 30.0 25.7 27.0
Y Xy +y 0.0838 2.49 2.29 2.44 total exptl. rate®
Y Xt +y 0.101 2.63 2.15 2.24 65 +1.4
Y >xE +y 0.122 1.54 1.09 1.07 -
S Y 0.772 9.98 18.2 18.9
XX >Y+y 0.755 9.31 11.8 11.0
X&—>Y+y 0.737 8.66 6.50 5.33
XY +y 0.243 19.8 12.9 13.1
XYY +y 0.225 15.7 119 12.5
X&Y' +y 0.206 12.0 10.6 11.4
Y >Xi+y 0.428 0.0055 0.194 0.430
Y SxXi+y 0.447 0.0038 00034  0.0003
T —Xo+y 0.467 0.0014 0.114 0.130

2See Han et al. (Ref. 27). .

bSeveral reports of these decays have been given (Ref. 28). We have used the branching ratios given by
the CLEO collaboration, along with a total width of 27 keV to obtain these partial rates, with errors due

only to errors in the branching ratios.

in the work of MR confinement occurs due to the longitu-
dinal color electric field. Thus while we use 8,8,V¢ in
the “covariant” Hamiltonian they use just V.

In Table XII we compare results for the decays
Y'—X 5? +v with Moxhay and Rosner. As mentioned ear-
lier this decay from 3S to 1P is quite interesting because
nonrelativistically it is extremely small. When wave-
function corrections are included, enormous enhance-
ments occur. Moxhay and Rosner also find very large
enhancements, but their results differ from ours. This is
not surprising in view of the fact that these decays come
almost entirely from relativistic effects and our treatment
of such effects differs from theirs in the assumptions con-.
cerning the nature of the confining potential as well as in
the nonrelativistic potentials used.

The bulk of the relativistic correction in most decays
come from the relativistic modification of the wave func-
tion. The corrections to the rates coming from the

TABLE XI. Comparison of E 1 decay rates in keV for cc.

This work Expt.
MB* MR (ps=1) (Ref. 26)
Y —X+y 27 (22) 41 26 1745
Y -Xi1+7Y 31 (23) 48 28 19+5
P —>Xo+vY 19 (16) 37 18 21+6
X2—Y+v 347 (305) 609 . 413 490+330
X1—¢+y 270 (240) 460 340 <700
Xo—>¢¥+Y 128 (117) 225 162 97+38

*Numbers in parentheses give results when coupled-channel
mixing is used.

anomalous moments (r,;) of the quarks are negligible un-
less the anomalous moment is exceptionally large as in the
case of @ =—1. The finite-size correction r;; as given by
Eq. (17b) is also small in all cases except when the energy
of the emitted photon is very high as in the decays
Xf —Y+y and T”»Xf—}—y. For these exceptional de-
cays we have written the finite-size correction as

. 73j
r3j=r3j 1+bl+T N (38)
where
(Fj+F3) .
bj=——2—Fl——3— for Xj? —Y +7 decays
and (39)
(G2 +GY)
bj=—2—Gl—3 for Y”—»Xj-’+‘y decays .

The terms involving b; and r3;/4 in Eq. (38) are actually
of order v*/c* But since the wave-function corrections
and the finite-size corrections are huge in these cases it is
justifiable to keep these terms in our formulas, for the

TABLE XII. Comparison of I'g; in keV for 'Y‘"—»X}’+'y.
J=2 J=1 J =0

Predicted (Moxhay-Rosner) 0.15 0.025 0.025
Predicted (nonrelativistic rate) 5.5%10~3 3.8x 10~ 1.4 103
Predicted (9s=0) 0.43 0.0003  0.130
Predicted (ns=1) 0.19 0.003 0.114
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same reasons we kept the quadratic term in the formula
for ry;. The justification is that even though we cannot
calculate all corrections of order v*/c* to the rates, we are
including the most important ones in these exceptional sit-
uations. Since the quantity b; depends on 75, we see that
r; has different numerical values for the ng=1 case and
the 75=0 case. We would like to point out that the
correction r3; is quite large for the decays X}' —Y+vy and
T”—»Xf—{»—‘y. In the case of X"; —Y+7, the finite-size
correction even dominates over the correction due to the
relativistic modification of the wave function. In the case
of the decays Xj—t-+y and Xf-’ —Y +7, this correction,
even though much smaller, is yet significant.

VI. CONCLUSIONS

In conclusion, we find that when the Buchmiiller-Tye
potential is used in an approximately relativistic formula-
tion of the ¢ bound state problem, results for the spectra
and the E 1 decay rates are in reasonable agreement with
experiment if the confining potential is predominantly
scalar.?’ The calculation of some of the M1 decay rates
indicates substantial discrepancy unless a large negative
anomalous moment is assumed. Although this assump-
tion seems implausible and it appears more likely that the
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discrepancy may be remedied by the inclusion of
coupled-channel mixing,!! experimental determination of
quark moments can help to resolve this issue.*®

~ Calculations are also carried out for bb, and ng=1 pro-
vides much better fine-structure separation than 7g=0.
For bb states the E1 and M 1 decay rates have been given
in Tables X and VI. The sparseness of experimental data
does not yet permit a detailed comparison between theory
and experiment.

Our results confirm conclusions by others that the rela-
tivistic effects in g7 can be very large, and due to cancella-
tions between various terms decay rates can change
dramatically due to fairly small changes in several of the
terms.
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