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We calculate the energy spectrum and the one-photon E1 and M1 decays of charmonium and b-

quarkomum including their first-ordex relativistic corx'ections, within the context of the
Buchmuller-Tye potential. Results seem to suggest that the confining potential is predominantly
scalar since this assumption gives good agreement for spectra and for El decay rates of cc and gives
reasonable results for bb. For M1 decays discrepancies persist unless the quarks have large
anomalous moments, but the resolution of such discrepancies can probably be achieved by other
means. As an interesting by-product of our investigations vie find that for the nonx'elativistically in-

hibited E1 decay Y"—+gj.+y of the hb systexn, some rates are enhanced by a huge factox by first-
order relativistic effects. %'hen more data are available these decays should provide an additional
testing ground for models of relativistic corrections.

I. INTRODUCTION

The study of electric dipole (E 1) and Inagnetic dipole
(M 1) one-photon transitions between the bound states of
qualkonia silcll Rs thc CC alld bb systcIIls ls llscfill 111 tllc
search for 8 phenomenological potential describing the
flavoI'-llldcpcliclcllt IIltcl'Rctloll between 'thc qllark Rllcl tllc
antiquark. Although the potential is primarily deter-
mined by comparing the calculated and the experimental
energy spectrum, it is clear that the choice of a potential
may be constrained further by the comparison of the
theoretical and experimental one-photon radiative transi-
tions of quarkonia. In recent years many authors have at-
tempted to calculate the E 1 and the M 1 transitions of
charmonium from several different points of view. '

The common feature of the E 1 calculations is that the
predicted nonrelativistic rate for the g ~XJ.+y decay is
too high by a factor of two to three, no matter what po-
tential one uses. This suggests that the relativistic correc-
tions may be extremely important in E 1 decays. In fact,
several recent calculations support this point of
view. ' ' ' Rclatlvis'tlc colYcctlolls RI'c also crilciR1 fol'
the calculation of certain M 1 decays such as g'~I), +y
and Il,

' —+p+y, since these decays are forbidden in the
nonrelativistic limit. Two of us have recently carried out
calculations of the M 1 decays of the qq system, and have
concluded that some important recoil terxns were neglect-
ed in previous works. These neglected terms turned out
to be as important- numerically as the terms which had al-
ready been calculated.

In th1s paper wc px'cscIlt a coIQprchcns1vc approach to
bo'tll tllc E 1 Rlld tllc M 1 traIlsltlolls of IIlasslvc qg sys-
tems, 1nclud1ng thc1r lcadlng rclat1v1stlc corrections. Wc
present formulas for the decay rates in a way which large-
ly avoids commitment to a specific choice of the poten-

tial. We find that the predicted results for the M 1 decays
depend crucially on whether or not the potential contains
a scalar part and on whether the quark has an anomalous
magnetic moment. We present numerical results for the
Buchmiiller-Tye potential' for which the nonrelativistic
predictions on the energy spectrum of qq systems are very
good. The confining part of the Buchmuller-Tye (BT) po-
tential, namely, the linear potential, is assumed to be a
mixture of two terms, one of which transforms as a vector
and the other as a scalar in the covariant limit. The part
of the BT potential derived from perturbative quantum
chromodynamics is always assumed to bc the fourth com-
ponent of a four-vector. We have calculated the energy
spectrum of both the cc and the bb systems in two cases:
(1) when the confining linear potential is purely scalar
(Ilz ——1) and (2) when the confining potential is also pure-
ly vector (Ilz ——0). In the second case the entire potential
can be thought of as arising from the exchange of a vector
particle. We have obtained numerical results for M 1 de-
cays in terms of the parameter Ils and a presumed quark
anomalous moment a. %e have also calculated the E1
decays of both the cc and the bb systems in terms of the
parameters q~ and a.

The format of the rest of the paper is as follows. In
Sec. II we derive the formulas for the E 1 and the M 1 de-
cay rates. In Sec. III we introduce our Hamiltonian
correct to order u /c based on the Buchmuller-Tye po-
tential and present numerical results for the energy spec-
trum of the ce and the bb bound states including their
fine and hyperfine structure splittings for two cases,
namely, (a) when the confining part of the Buchmiiller-
Tye potential is a I.orentz scalar and the rest of the poten-
tial is vector and (b) when the entire Buchmiiller-Tye po-
tential including the confining linear potential is vector.
In Sec. IV we present numerical results for the M 1 decay
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rates of the bb and the cc bound states for the cases men-
tioned above. In Sec. V we give the numerical results for
the E 1 decay rates af the cc and the bb bound states. Fi-
nally, in Sec. VI we make some concluding remarks.

II. DERIVATION OF E1 AND M 1 DECAY RATES

Let K be the Hamiltonian far an isolated composite
system consisting of two particles. It is assumed that K is

correct to order v /c and in this section we will not
choose a specific form. As shown in a previous paper'
by one of the authors (K.J.S.), if A is the quantized radia-
tion field, the hnear terms coupling the composite system
to the radiation field are given by

2 iej ej
Kt $—— [A., [r,K]]+— S"B-

2c ' ' + mc 'j=1 j
e) e) ~ -+

2 3 VsS).B)— ajS).B)+
mj c mjc

ej
~ 2 SJ'(EJ X pj) —

~ zSJ (V'tXEJ)+ 3 3 [PJ,SJ BJ]+
2m) c, 4mj c 4m) c

eja) ejaj seja)
3 3 [B,"p, ,S; p, ]+ . »—S,"(E, X p,. ) + i 3 ~J J4mj c mj c 2mj c

where

AJ =A(r—j,t),

BJ——VJ x A(rj, t),

EJ = —A(rj, t),
and rj and pj are, respectively, the position and momen-
tum operators of the jth particle. In Eq. (1), the
anomalous moment parameter aj of the jth particle is de-
fined by

p J ——e&SJ(1+aj. ) /mc

where p~ is the magnetic-moment operator for the jth
particle. For a system such as quarkonium, made up of a
particle and its antiparticle, we have a ~

——a2 ——a. We shall
assume A'=1, throughout. In Eq. (1) we have included
possible anomalous moments aJ for the constituent parti-
cles. The terms involving the anomalous moments were
absent in the previous paper' because there we assumed
the constituent particles to be point Dirac particles. These
terms can be derived on the basis that when the internal
interaction among the constituent particles goes to zero,

t

the interaction Hamiltonian should be a simple sum of
single-particle Hamiltonians of Dirac particles (with
anomalous moments) in an external electromagnetic field,
each single-particle Hamiltonian being reduced to order
U /c by the Foldy-Wouthuysen technique. The Vs term
of Eq. (1) cannot be derived by the principles stated in
Ref. 13. However, if we start from a cavariant Breit-type
two-particle Hamiltonian with scalar and vector interac-
tions (see Ref. 8), introduce the electromagnetic field by
minimal coupling, carry out a Barker-Glover reduction to
order U /c, then we obtain this scalar term and also veri-
fy the other terms of Eq. (1). This equation can also be
derived by other methods. "" The symbol Vs stands
for the part of the potential which transforms as a scalar
in the covariant Hamiltonian mentioned above.

We now proceed to the derivation af radiative decay
rates. Let T(tp) denote the probability amplitude for ob-
serving the composite system at tp in state

~
A ) with the

simultaneous presence of a photon of energy to, momen-
tum k, and polarization vector e, if at time t =0 the sys-
tem is known to be in state

~
B ) with no photon present.

Using the interaction Hamiltonian Kt in first-order per-
turbation theory we find that

T(tp) = c 2s'

V co

r

[[rJ,K]., e e ]++ SJ.(kXe )e
2c + mc'

eJk —jk'fgJ'e (pg XE~)
2m) c

+ ', , S,'(kxe )e
4mj c

'» [p, ' SJ (kxe. )e ']+
4mj c

ej
, , VsSJ (kXe )e '+ SJ (kXe )e

m c m)C

4mj c m)C

2mj c 0
(3)

where co =
~

k
~

=k. In Eq. (3) the states
~

A ) and
(
B ) are direct products of the internal states and the center-of-mass

states with energy eigenvalues co& and coq. Thus, assuming the initial state to have zero center-of-mass momentum, it
follows that

/&)= /&~t /0) . .' [~)= /~)t
/

—k) . (4)
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where
~

A )I and
~

8 )I are eigenstates of the internal Hamiltonian h, which is related to the total Hamiltonian H of the
composite system by

(p 2+&2+2)1/2 (S)

C 2&
Tzi(to) =

co

where cko ——E~ —E~, andI

to order U /c . The state vectors
~
0), and

~

—k ), are, respectively, eigenvectors of the total-momentum operator

p =pi+ pz with eigenvalues of zero and the recoil momentum —k.
Next we express the constituent variables rj, pi, and Si (j =1,2) in Eq. (3) in terms of the relativistic internal and

center-of-mass variables by means of the relations given by Krajcik and Foldy and others. ' After extracting the
parity-odd and parity-even portions of the vector part of the transition operator, we obtain the electric dipole (E 1) and
the magnetic dipole (M 1) transition amplitudes in the form' '7

' 1/2

koe I(A ~Xo+X, ~8)1 f e
" "~" (6)

and

Xo—8Q I

ike z z , ike a
Xi —— I(r ir+Pr r ) —,

' [r(r. i—r)+(F r)r]I — (r~ X),
20mc 4mc

X=—,'(oi+oz) .

In the preceding expressions e~ is assumed to be the charge of the particle (e.g., quark, electron, etc.) rather than the an-

tiparticle, a is the anomalous moment parameter, o i z are the Pauli matrices for particles 1 and 2, respectively, r is the
difference p, —pz between the relativistic internal position variables of the two particles, and ir is the corresponding rel-

ativistic relat1ve momentom:

c
~~i(to) =

8g
Yo— ~ (o,—o,)(1+a)

2mc

eg k
Yi —— —

z z (oi —crz) — 3, [(cri —oz) ir]ir
2mc 4mc 2m c 4m c3

ie k ea ek+» rX[(a,—oz)Xir](1+2a)+ [r (~l ~z) 2 [r'(~i —~z)]r I(1+a)
16m c 4mc mc 40mc

8g,
2m c

+ [(a'i —oz)X ir]X ir .
Sm c3

In Eq. (12) U is the nonrelativistic hmit of the internal
interaction (i.e., the nonrelativistic potential), M is the
sum of the rest masses comprising the composite system,

Ws is the spin-dependent part of W (the interaction-(1) ~ (&)

dependent part of the Lorentz boost operator) as defined
by Krajcik and Foldy, ' and h' ' is the nonrelativistic part
of the internal Hamiltonian.

In Eq. (12) only the spin-dependent operators have been
retained, since only these can connect the initial and final
states of interest, namely, states in which the total spin
changes by one unit (i.e., singlet-triplet or vice versa). We

I

wish to point out that the last term of Eq. (12) is due to
the nonzero recoil momentum of the composite system,
and its correct form emerges only through the use of rela-
tivistic center-of-mass variables, or by carrying out a
Lorentz boost of the final composite wave function, as
discussed in Ref. 8. As we will see later, this term makes
an important contribution to the decay rate of the "rela-
tivistic" M 1 transition between P' and i), and also be-
tween il,

' and it.
Equations (6) and (10) give rise to the following decay

rates:
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wpfg ———', kp k
I I (A

I
xp+xi

I
8 )I I

~BA 3k II&~ I
Yo+&i I~&I I'.

For E 1 decays of charmonium the relevant decays are

2 S1~1 Pj+& and 1 Pj ~ 1 S1 +&

(13)

(14) then the correction to the 2S radial wave function is

Rzs =g(a„R~'+b„R„'13' R—zs } .

(15) Similarly for the 1P states we find

(20)

where j=0, 1, or 2. When Eq. (13) is applied to the first
of these decays the decay rate becomes'

W 3 3 —FNR(1+rJ+rzj+r3J)E1 (16)

where I NR is the nonrelativistic decay rate, r 1j is the rela-
tivistic correction due to the modification of the nonrela-
tivistic wave function, rzj is the relativistic correction
originating from the relativistic modification of the tran-
sition operator due to terms involving the anomalous
magnetic moment of the quark in the interaction Hamil-
tonian, and r3j is also a relativistic correction but it ori-
ginates from the relativistic modification of the transition

operator, coining from the difference of e'" ' and 1 in

the plane-wave expansion of the vector potential A. We
find that

R",~' =g CJR„'p' R i—i', j=0, 1, or 2 .
J

The expression for r,j is now given by

f 2

0 Rip R2sr dr — RipRzsr dr3 (0) (0) 3
0

f R''R''r d r
0 1P 2sr

where

R 1p =R 1p +R 1p. and R zs =R zs +R zs
(0) (1) (0) (1)

J J

(21}

(23)

W33p i3S
——PNR(1+rij+rzj'+r3J)E1 (24a)

Now let us turn to the expressions for the rates of the
E 1 decays 1 Pj~ 1 S1+y. They are given by

I NR
———„kp keq (2j+ 1)Gi

(Gz+G3) (Gz+G3)'
r1j=2 + 2G1 G1

(17a)

(17b) 4 2 2 2I NR ———,ko keq Fi (24b)

where I NR, r,j, rzj, and rzj have the same physical sig-
nificance as in Eq. (16) but they are now given by the ex-
pressions

ak
rzj gj ~

2pplc

where

and

3)j ——2, 1,—1 for j=0 1 2

(17c)

(17d)

(FR+F3) (Fz+ F, )'
r1j——2

F1 F

rzj= — 3)j (3)j——2, 1,—1 for j=0, 1,2),ak
2' c

(24c)

(24d)

r3j=— 1 2 G4 1 a3p (G3 —G6)
(17e} r3i = , F4 1 a3p (F,—F6)

(24e)

In Eqs. (17), the integrals G; (i =1,2, . . . , 6) are defined
by the following equations:

G1 = R 1pRzsr dr,(0) (0) 3

0

Gz —— R1pRzsr dr,(0) (1) 3
0

G~3 —— R 1p R zsr dr(1) (0) 3

0 j
G4= R 1pR zs«r(0) (0) S

G5 —— R1pRzs r dr,(0) (0)' 3

0

G6= R1pRzsr dr ~

(0)' (0) 3
0

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

where R' ' is the radial part of the zeroth order or non-
relativistic wave function (chosen to be real) and

dR'"R( )' 2r +R( )

dr
(19)

The quantity R"' is the first-order relativistic correction
to the radial wave function R' '. For examgle, if an un-
perturbed 2S state has a state vector Pzs' while the
corrected state is

where the integral F; (i =1,2, . . . , 6) is obtained by re-
placing 1P by 1S and 2S by 1P in Eqs. (18) for the in-
tegrals G;.

Equations (16)—(18) are applicable to any potential act-
ing between the quark and the antiquark. They can be
easily generalized to any E1 decays n S1~n' Pj+y and
n PJ ~n' Si+y of the qq system.

Let us now turn to the magnetic dipole decays of qq.
There are four M 1 decays of interest in charmonium. We
have

(a) 2 Si —+1'Sp+y or P'~3), +y,
(b) 2'So~1 Si+y or g,'~P+y,
(c) 2 Si~2'Sp+y or g'~3),'+y,
(d) 1 Si~l 'So+y or $~3),+y .

The first two are "nonrelativistically forbidden" and can
occur only due to relativistic effects, because the leading
M1 operator Y0 will have zero matrix elements between
the nonrelativistic n =1 and n =2 states. The last two
decays (c) and (d) are allowed even in the nonrelativistic
limit.



H. GROTCH, D. A. O%'EN, AND K. J. SEBASTIAN

For any of the above cases we can write the decay rate

where S; is the initial spin, a is the fine-structure con-
stant, and

I~ —— f 1+a 1 —~'4 k r + 1+2a
4mc

1 ~'
1+

m c 3 m c
(26b)

(26c)

I4 ——

In Eqs. (26)
~
P;} and ~gf }are the spatial parts of thein-

itial and the final-state wave functions of quarkonium.
Since we are calculating the matrix elements correct only
to order U /c we can use nonrelativistic wave functions
everywhere except when we calculate the matrix element
of 1+ & be~ween

I yf & and
I yI& In t e expression for II.

As Sucher has previously demonstrated, the matrix ele-

ment of the unity operator in Eq. (26a) can be written as

&0f I U'ff I
0- &

SS +

where U,ff is the coefficient of SI.SI in the interaction
terms of the internal Hamiltonian lI'". Since U,II is al-
ready of order U /c in most models, on the right-hand

side of Eq. {27)we can take
~ P; }and

~
Pf.& tobe the non-

relativistic spatial wave functions. If the spin-spin in-
teraction is due only to the one-gluon exchange between
the quark and the antiquark, then

Uss 8 KIT 5(Sj(g
m c

In our case the operator has a different form dictated by
the reduction. It is important to point out that a contri-
bution of Ir —/6m c to Eq. {26b) came from the last
term of Eq. (12). This originated from the simultaneous
presence of the recoil of quarkonium and of the U2/c2

terms in the relativistic relation between the constituent
and the center-of-mass variables. Alternatively, as dis-
cl1ssed 111 Ref. 8, we ca11 th111k of 1f, as arIslng f10111 tlM
Lorentz-boosted wave function of the recoiling composite
system in the final state. The presence of recoil correc-
tions to magnetic-moment operators of composite systems
%as also known and stud1ed many years ago 1n connection
with g factors of composite systems. '

In Secs. IV and V ere vvill turn to the numerical evalua-
tion of the M 1 and the E 1 decay rates of the cc and the
bb systems based on the Buchmiiller-Tye potential. ' In
Sec. III we will present the results on the energy spectrum
of charmonium (cc) and b-quarkonium (bb) based on
this potential.

III. NUMERICAL RESULTS ON THE ENERGY
SPECTRUM OF CHARMONIUM
AND b-QUARKONIUM BASED

ON THE SUCHMULLER-TYE POTENTIAL

We shall assume as a working model that at the relativ-
istic level the quark-quark interaction is simulated by the
exchange of vector and scalar particles. Then the Hamil-
tonian at the relativistic level can be written as

H =(caI p +Ip ImIc)+(ca2 p2+pImIc )+pIp2VS+(1 ——,
' aI ap)Vv+ , aI r aI r—rVv,

where Vs and Vv are the scalar and the vector potentials. Making a Barker-Glover reduction 20 to order u /c and
writing the Hamiltonian in the c.m. frame we get the internal Hamiltonian

lI' '= + Vs+ Vv, (30a)

4

, ,+, , ~r'Vvtr —,, ~ r «vr"'~+, , [~' «'Vvl+, , —(3Vv —Vs)S'L
4m c 2m c 2m c 8m c 2m c

+ I 2 V (Vv+Vs) —
1 2 Ir Vsm+(o. 1 o2)V Vv+ [crI op —3(c7I r)(o2 r)] Vv' ——Vv

4m c2 m c 6m c 12m c T

For V~+ Vs we will take the Buchmuller-Tye potential'

VST ——Vv+ Vs ——kr — for r &0.01 fm
8 U(Ar)

27

(30b)

25r ln(AMs2rI) ' ln(AMs r )

—„',1nln(AMs~r ) '/ln(AMs r )
' for r &0.01 fm,
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TABLE I. Energy spectrum of charmonium (gs ——1) in GeV. m, = 1.548 GeV, m, =1.486 GeV.
0

State

2 Si (f')
2'So (g:)
1'S) (g)
1 So(Y/).
1'&2 (Xg)
1'~) (X))
1'Po (X~o)

1'P)

0.7272
0.7272
0.1275
0.1275
0.5504
0.5504
0.5504
0.5504

—0.2424
—0.3137
—0.1120
—0.2329
—0.1719
—0.2135
—0.2777
—0.2037

—0.018
—0.018
—0.015
—0.015
—0.016
—0.016
—0.016
—0.016

Mth

3.563
3.491
3.097
2.976
3.459
3.417
3.353
3.427

a
Mexpt

3.686 +0.0001
3.592 +0.005
3.0969+0.0001
2.981 +0.006
3.5558+0.0006
3.5100+0.0006
3.415 +0.001

'See Ref. 10 and references given in that paper.

where

~s=gskr and Vv= ~m —gs« (32)

The eigenvalues and eigenfunctions of the nonrelativistic
internal Hamiltonian h' ' were solved numerically by the
Runge-Kutta method. The nonrelativistic wave functions
were evaluated for about 2000 points equally spaced be-
tween zero and 2 fm. The corrections to the nonrelativis-
tic energies due to h'" were calculated in first-order per-
turbation theory.

The results for the energy spectrum of charmonium and
b-quarkonium for the two special cases (a) gs ——1 (confin-
ing potential is purely scalar) and (b) gs ——0 (confining po-
tential and hence the whole potential is purely vector) are
given in Tables I—IV.

The nonrelativistic energies are obtained for the input
mass of the charmed 'quark, m, = 1.486 GeV. When the
relativistic corrections are added to these nonrelativistic
energies, for case (a) above the predicted energies were

+—
s
——0.509 GeV, k =0.153 GeV

A, =0.406 GeV, yE ——0.5772

(MS denotes the modified minimal-subtraction scheme).
The function U (x) has been tabulated by Buchmiiller and
Tye. ' Except for the confining part V, =kr, the
Buchmuller-Tye potential is based on perturbative quan-
tum chromodynamics. The piece that is derivable from
perturbative quantum chromodynamics (based on one-
gluon-exchange diagrams and their corrections) is vector
and the rest of the potential is assumed to be partly vector
and partly scalar, i.e.,

found to be consistently low. This can be remedied by in-
creasing quark mass to 1.548 to refit the energy of the g
state. To the desired degree of accuracy, the effect of this
mass shift on the rest of the terms making up the energy
levels can be obtained perturbatively from the correction
to the kinetic energy term due to the increase of the quark
mass. In the table on charmonium energy levels this
correction to the kinetic energy due to the change of
quark mass is called 5X. The predicted value for the vari-
ous masses will then be given by

Mg, ——2mc +ENR+AE+M . (33)

Since the relativistic corrections to the cc levels are
large, higher-order perturbation theory could alter these
corrections by as much as 20%. In view of this uncer-
tainty we have not fine-tuned the results to the best possi-
ble value of gs. However our work suggests that a value
of gs near unity gives significantly better overall agree-
ment with experiment than does a value close to zero. '

For gs of unity our hyperfine splittings are 0.072 and
0.120 GeV as compared with 0.094 and 0.116 GeV for the
2S and 1S states, respectively. For the energy separations
between the f' and the X2 i o states, states of interest for
the E1 transitions later to be discussed, the energies we
obtain are 0.088, 0.130, and 0.194 compared to experimen-
tal values of 0.130, 0.176, and 0.271. Although our
separations are too small for these states we feel that
higher-order relativistic effects could account for this.
The fine-structure splittings for gs ——1 appear to be closer
to experiment than for gs ——0.

Turning now to bb, we examine the fine-structure split-
tings of the 1P and 2P states and find the results to be in

TABLE II. Energy spectrum of charmonium (gs ——0) in GeV. m, =1.478 GeV, m, =1.486 GeV.
0

State

2 S) (g')
2 'So (Y/c )
1'S) (P)
1'So (g. )
1'~2 (X2)
1'~) (X))
1'~o (Xo)
1 'P)

ENR

0.7272
0.7272
0.1275
0.1275
0.5504
0.5504
0.5504
0.5504

—0.097
—0.206

0.0125
—0.184
—0.124
—0.198
—0.283
—0.183

0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

3.587
3.478
3.097
2.901
3.383
3.309
3.224
3.324

a
Mexpt

3.686 +0.0001
3.592 +0.005
3.0969+0.0001
2.981 +0.006
3.5558+0.0006
3.5100+0.0006
3.415 +0.001

'See Ref. 10 and references cited in that paper.
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TABLE III. Energy spectrum of b-quarkonium (g~ ——1) in GeV. mb ——4.88 GeV.

State

2 Si (Y')
2'Sp (gb)
1 Si (Y)
1'Sp (gb)
i'P, (X2b)

1'Pp (Xp)
1 P1
33Si (Y")
3 Sp (gb')
2'P, (X,')

2'Pp (Xp )

2 'Pi

0.2581
0.2581

—0.2962
—0.2962

0.1319
0.1319
0.1319
0.1319
0.5940
0.5940
0.4920
0.4920
0.4920
0.4920

—0.058
—0.089
—0.031
—0.098
—0.036
—0.058
—0.086
—0.052
—0.077
—0.100
—0.058
—0.074
—0.095
—0.069

M,h

9.960
9.929
9.433
9.366
9.856
9.834
9.805
9.840

10.302
10.305
10.194
10.178
10.157
10.183

M,„, (Ref. 22)

10.0234+0.0007

9.4600+0.0001

9.915 +0.002
9.894 +0.003
9.873 +0.005

10.350G+0.0007

10.266 +0.002
10.248 +0.003
10.228 +0.005

significantly better agreement with experiment for gs ——1

than for gz ——0. With gs ——1, the 1P states 1P2, 1Pi, and
1PO are, respectively, 13.0, —9.0, and —38 MeV from the
center of gravity (c.o.g.) while for the 2P states we find
2P2, 2Pi, and 2PO to be 9.0, —7.0, and —28 MeV from
the c.o.g. On the other hand with ri, =0 for the 1P states
we find 21, —17, and —55 while for the 2P states we ob-
tain 15, —12, and —40. The experimental numbers are
11.7, —9.3, and —30.3 for 1P and 10.2, —7.8, and —27.8
for 2P. While the gz ——1 numbers are generally in good
agreement with experiment, the gq ——0 results are quite
poor. Since fine-structure splittings are very sensitive to
the value of gz these splittings support an gz near unity.

Silverman recently reported an average E value,

R =(Ei —Eo)/(E2 —Ei) i

for the 1P states of 1.30+0.20. Our theoretical result
yields 1.32 for rid 1 and 1.00 for gs————0. Thus we see
that our gq ——1 result is in excellent agreement with exper-
iment.

IV. NUMERICAL RESULTS ON THE M 1 DECAY
RATES OF QUARKONIA

We have calculated the M 1 decay rates of quarkonia
using Eqs. (25)—(27). In order to evaluate the matrix ele-
ments Ii, I2, I3, and I4 we need to know only the non-
relativistic wave functions P; and Pf for initial and final
states, respectively. For the leading operator, 1+ a, we
make use of Sucher's result, given in our Eq. (27), while
for the other terms, which are already of order 1/c, non-
relativistic wave functions can be used. With our expres-
sion for h'" given by Eq. (30b), U,rr of Eq.(28) will be
given by

U,ff ——SS V Vy.
301 C

(34)

Since this is of order 1/c, nonrelativistic wave functions
may be used.

It is clear that Ii and I4 (26a) and (26d) can depend in
an important way on the parameter g~ determining the
scalar admixture in the potential. We find that the M 1

widths in keV for cc decays are as follows:

TABLE IV. Energy spectrum of b-quarkonium (gq ——0) in GeV. mb ——4.88 GeV.

State

2'S, (Y')
2'Sp (gb)i'S, (Y)
1'Sp (gb)
1'Pp (X )

1'Pp (Xp)
1'P,
3 Si (Y")
3 Sp (95)
2'P (X )

2 P.'(X )
2 'Pi

0.2581
0.2581

—0.2962
—0.2962

0.1319
0.1319
0.1319
0.1319
0.5940
0.5940
OA920
0.4920
0.4920
0.4920

—0.037
—0.074
—0.010
—0.088
—0.011
—0.040
—0.079
—0.032
—0.048
—0.075
—0.022
—0.049
—0.077
—0.043

Mth

9.981
9.944
9.454
9.376
9.889
9.851
9.813
9.860

10.306
10.279
10.230
10.203
10.175
10.209

Mex pg (Ref 22)

10.0234+0.0007

9.4600+0.0001

9.915 %0.002
9.894 +0.003
9.873 +0.005

10.3500+0.0007

10.266 +0.002
10.248 +0.003
10.228 +0.005
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8' '(g' —+1l, +y) =475( 0.079+0.137a +0.0541)s

—0.033a 11@)

8' '(g,' —&/+ y) =558( 0.115+0.173a +0.04011@

—0.047a11s )

(35a)

(35b)

WM'(y'~q, '+y) =1.54(0.766+0.975a —0.409', )',
(35c)

~, +y) =2.93(o.gzi+0. 997a —0.200~, )'.

ln Table V we Present results for ris ——1 and 11+——0 with
three possible values of the anomalous moment, namely,
a =0, a = —0.25, and a =—1.00.

For the bb states none of the rates have been measured,
but we have calculated the M 1 decays for the transitions
vvhich correspond to the ec transitions, namely,
Y ~gb+fp gb +Y+fp Y ~gb+fp and Y +gb+pe
These results are presented in Table VI. We have not
presented the individual contributions I; as in Table V.

The comparison of the theoretical and experimental
rates indicates a substantial discrepancy if the quarks have
no anomalous moment. This disagreement occurs in the
p'~1k+y decay. It is clearly reduced by assuming a
large negative anomalous moment for charmed quarks.
Tile cllolce of a =—1.00 aIld 'lls = 1 gives qlllte good
agreement for the M 1 decays, but such a large value does
not appear to be reasonable. , Even vnth an anomalous mo-
ment of a =- —0.25 with mls still 1 our result for this de-
cay still disagrees substantially with experiment. On the
other hand for rid —0 and a = —0.25 satisfactory agree-
ment is found for this decay. All of' this suggests that the
M 1 decay rates are very model-dependent and that fac-
tors of two or three can occur in the decay rates if the
confining potential is changed from pure scalar to pure
vector.

Our results for M 1 decay rates may be compared to
those of Zambetakis and Byers (ZB)" if a is chosen to be
zero and the confining potential is purely scalar. For the
so-called "hindered" transition P' —+g, +y, without cou-
pled channel mixing the authors of Ref. 11 obtain

gI =0.12 whereas we obtain gI =0.13. It should be
noted that our Il includes both Il and I3 of Ref. 11 while

TABLE VI. Theoretical M 1 decay rates of b-quarkonium.

g ~ +
a

+ ~ +
II

gas

II f II

Decay
and

photon
energy 10 GcV

Y +//+A
0.594
gbt ~Y+p
0.486
Y ~g$+g
0.037
Y +g$+g
0.078

11,ga
1

0
1

0
1

0

0

33.6
23.1
70.8
57.4

1.72
2.03

17.7
19.0

17.5
9.55

37.1
38.0
0.877
1.10
9.38

10.3

Predicted rate in cV
0 —0.25

OA52
4.28
0.751
7.03
0.035
0.006
0.150
0.056
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TABLE VII. Comparison of M 1 decays.

Experiment
(Refs. 24 and 11)

nc+y
This work

ZB
0.20
0.18

—0.16
—0.14

0.09
0.07

0.13
0.12

0.047 +0.008

=0.032
with coupled-

channel mixing

i).+y
This work

ZB
1.02
1.00

—0.20
—0.17

—0.20
0.25

0.62
1.08

0.7 +0.2

nc+y
This work

ZB
1.01
1.00

—0.24
—0.20

—0.41
0.07

0.36
0.87

1.1—1.7

'Our value of I& above is equivalent to —I& —I3 of ZB while I2 and I4 are equivalent to —I2 and —I4.

our Ii is a different contribution, which is proportional to
a, and hence vanished when there ls no anomalous mo-
ment. Also our I's have opposite signs to that of ZB. We
see from Table VII that without the coupled-channel mix-
ing used by ZB our results essentially agree with those in
Ref. 11, but both are much larger than experiment. Al-
though this problem could be cured with a sufficiently
large anomalous moment, we are somewhat skeptical and
place more credibility in a resolution based on coupled
channel mixing. In the present work we have not at-
tempted to include such effects.

For the other decays in which a comparison is possible,
namely, /~i', +y and g'~il,'+y we find that for the
former we have gI =0.62 as compared to 1.08 in Ref.
11 while for the latter we have 0.36 compared to 0.87. Of
these two decays, for the first Table VII shows our result
to be closer to experiment than that of Ref. 11, while for
the second the reverse is true.

In Table VII a comparison of various terms is provided.
For the p—+il, +y and g'~i),'+y the main difference
occurs for I4. It is a model-dependent difference which
presumably arises because ZB have a constant term in the
scalar potential whereas we do not.

V. NUMERICAL RESULTS IN
THE E1 DECAY RATES OF QUARKONIA
AND COMPARISON WITH OTHER WORK

We have calculated the E 1 decay rates of the cc and bb
states by making use of Eqs. (16)—(24). The integrals G;
and E;, with i running from one to six were calculated nu-
merically. Since the correction to the decay rate due to
the relativistic modification of the wave functions is quite
large for some of the E 1 decays these cases should be
handled with care. For example, in Eqs. (17b) and (24c)
for rij, which give the dominant corrections to the rates
due to the relativistic modification of the wave functions,
the first term on the right-hand side is of order U /c

a is——0 187+0 097(1—its)

a iD- —0.0052+0.0024(1 —its),
a2s a1s

a iD ——0.0153—0.005(1—its),

a2p =0.243 —0. 163( 1 —ris)

a2p ———0.341—0 096(1—its»

a 2p =0.46 1 —0.052( 1 —'res )

(37)

It should be noted that other intermediate state correc-
tions to Eq. (36) can be neglected for two reasons: (1) the
coefficients of the other intermediate states will be smaller
because of larger energy denominators and more impor-
tantly (2) when the radial quantum numbers n differ by
more than one unit we generally find that the overlap ra-
dial integral of the relevant operator r is negligibly small.

In Table VIII we present theoretical decay rates for the
E 1 transitions of f'~XJ +y for gs equal to one and zero
for various values of a presumed quark anomalous mo-
ment a. In Table IX corresponding results are given for
+J —+P+y. From these tables we find that for the decays
P'~XJ+y and X~~f+y, the overall agreement of the

whereas the second term is of order U /c . In cases where
this U /c term is large we include it since we believe that
in such cases it is the most important U /c term. '

For the states of interest in cc we find the following
corrections to the nonrelativistic radial wave functions:

R 2s—R 2s +a 1SR 1s +a1DR 1D
(0) (0) (o)

(0) (0) ~ {0)R 1s—R 1s +a 2sR 2s +a 1DR 1D

R, =R ip+a2pR2p (j =0, ,1,2) .
J J

The coefficients ais, aiii, a2s, a&D, and a2p. are calculat-

ed in first-order perturbation theory. We find
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TABLE VIH. Numerical results of the decay rates for 1('—+XJ.+y as given by Eq. (16) for rlq= 1 and 0 aud a =0, —0.25, and
—1.00.

Nonrelativistic
late

Decay
(k in GeV) (keV)

f'~Xp+ y

k =0.128

P'~Xi+ y

k =0.173

g'~Xo+y

k =0.262

Correction from
relativistic modification

of wave function

0.108

—0.686

Correction froIIl
anomalous moment

0 —0.25

0 0.007

0 0.007

—1.00

0.029

0 —0.007 —0.027

0 —0.012 —0.047

0 —0.013 —0.052

0 —0.009 —0.036

Finite-size
correction

0.020

—0.043

PI'edicted
rate

I =I NR&
(1+r 11+rq~+ rq~)

(keV)
0 —0.25 —1.00

26.0 26.3 27.1

40.3 40.5 41.3

28.3 28.0 26.9

37.3 36.8 35.4

17.5 16.8 14.5

22.7 21.9 19.3

Experimental
rate
I expt

(keV}
(Ref. 26)

predicted results with experiment is definitely better for
the r)s ——1 case than for the vis ——0 case. We have also
worked out the decay rates for the E 1 decays of the bb
system. In Table X we provide the results of our calcula-
tions for the bb system for a =0. For the E 1 decays of
b-quarkonium, the experimental data are rather sparse.
In general the theoretical predictions for the El decay
rates of the bb system are not strongly dependent on ei-
ther g~ or the anomaIous moment. But there Is one un-
portant exception. This happens for the interesting de-
ca/8 Y ~gj +g. These deca/8 are stronglg j.nhlblted I a
nonrelativistic calculation because of the approximate
vanishing of the radial integral of the position operator
between 3S and I P states. But in a first-order relativistic
calculation, the decay rates are greatly enhanced by first-
order relativistic effects. Moxhay and Rosner'o have not-
ed that there is some evidence that these decays have been

seen experimentally which would indicate that their actual
rates are much larger than the nonrelativistic prediction,
which is too small to be observed.

Our results for cc may readily be compared with the
work of Mcclary and Byers (MB) and Moxhay and Ros-
ner (MR). ' In Table XI we present relativistically
corrected decay rates for cc E 1 decays. Here we find that
our corrected rates more nearly agree with those of MB
than those of MR. We find very substantial relativistic
corrections, which are large enough to suggest that
second-order corrections may be significant.

Since our decay rates and those of MB are closer to ex-
periment than those of MR, this suggests that the El
rates are quite sensitive to the treatment of the relativistic
corrections, as well as to the nature of the potential. In
both the present work (with rls equal to 1) and that of MB
it is presumed that the confining potential is scalar while

TABLE IX. Numerical results of the decay rates for Xi +f+y as given -by Eq. (24a) for r)@=1 and 0 and a =0, —0.25, and
—1.00.

Nonrelativistic
rate

Decay
(k in GeV) (keV)

X2~$+y

k =0.425

X)~t(+y

k =0.385

Xo~g+y

k =0.302

Correction from
relativistic modification

of vrave function

—0.157

—0.051

Correction from
anomalous IIloIDent

0 —0.024 —0.096

0 0.022

0 0.030

0 0.037

0 0.047

0.089

0 —0.031 —0.126

Fimte-size
correction

—0.100

—0.071

Predicted
rate

~=I NR&
(1+r i)+r2J+ r3j)

(keV)
0 —0.25 —1.00

413 399 357

464 446 391

340 350 378

363 375 414

162 176 198

183 192 220

Experimental
rate
I expt

(keV)
(Ref. 26)

490+330

97+38
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TABLE X. Numerical results of the E 1 decay rates in bb.

Photon energy
(GeV)

Nonrelativistic rate
I NR (in keV)

Predicted rate
I in keV

qs ——1 qs ——0 Experiment

+ ~X2+f
~X$+f

&'~Xo+g
Xg~&+g
XI~++/
Xo~++p

X~+y
~X] +f

& '~XO +g
,
- +y

XI ~++/
Xo ~++g
X',-Y'+y
X] ~++(
Xo ~+ +f
Y" X2+7

~X$+g
~XO+f

0.107
0.127
0, 148
0.441
0.422
0.402
0.0838
0.101
0.122
0.772
0.755
0.737
0.243
0.225
0.206
0.428
0.447
0.467

2.01
2.01
1.06

41.0
35.9
30.0
2.49
2.63
1.54
9.98
9.31
8.66

19.8
15.7
12.0
0.0055
0.0038
0.0014

1.84
1.62
0.73

33.0
29.8
25.7
2.29
2.15
1.09

18.2
11.8
6.50

12.9
11.9
10.6
0.194
0.0034
0.114

1.93
1.65
0.72

34.5
31.2
27.0
2.44
2.24
1.07

18.9
11.0
5.33

13.1
12.5
11.4
0.430
0.0003
0.130

2.75+ 1.05~

2.16+0.89'
1.19+0.86'

total exptl. rate
6.5 +1.4

'See Han et al. (Ref. 27).
bSeveral reports of these decays have been given (Ref. 28). We have used the branching ratios given by
the CLEO collaboration, along with a total width of 27 keV to obtain these partial rates, with errors due
only to errors in the branching ratios.

TABLE XI. Comparison of E 1 decay rates in keV for ce.

g'~XI+y
P'~X&+ y
g'~Xo+y
X2~$+ y
X&~/+ y
Xo~g+y

MB'

27 (22)
31 (23)
19 (16)

347 (305)
270 (240)
128 (117)

41
48
37

609 .

460
225

This work
(ps=1)

Expt.
(Ref. 26)

17+5
19+5
21+6

490~330
~ 700

97+38

'Numbers in parentheses give results when coupled-channel
mixing is used.

in the work of MR confinement occurs due to the longitu-
dinal color electric field. Thus while we use plpzVe in
the "covariant" Hamiltonian they use just Vc.

In Table XII we compare results for the decays
Y"~XJ +y with Moxhay and Rosner. As mentioned ear-
lier this decay from 3S to 1P is quite interesting because
nonrelativistically it is extremely small. %hen wave-
function corrections are included, enormous enhance-
ments occur. Moxhay and Rosner also find very large
enhancements, but their results differ from ours. This is
not surprising in view of the fact that these decays come
almost entirely from relativistic effects and our treatment
of such effects differs from theirs in the assumptions con-.
cerning the nature of the confining potential as well as in
the nonrelativistic potentials used.

The bulk of the relativistic correction in most decays
come from the relativistic modification of the wave func-
tion. The corrections to the rates coming from the

le

(EJI +F3 )
bJ = for XI ~Y+y decays

F1

(6,+6', )
bj = for Y"~XJ + y decays .

6)

(39)

The terms involving bj and r3J/4 in Eq. (38) are actually
of order u /e . But since the wave-function corrections
and the finite-size corrections are huge in these cases it is
justifiable to keep these terms in our formulas, for the

TABLE XII. Comparison of I EI in keV for Y"—+XJ+y.

Predicted (Moxhay-Rosner) 0.15 0.025 . 0.025
Predicted (nonrelativistic rate) 5.5&10 3 3.8&10 1.4)&10
Predicted (qs ——0) 0.43 0.0003 0.130
Predicted (gs ——1) 0.19 0.003 0.114

allolllalous Illolllcnts ( re. ) of tllc qllalks alc ncghglbic llll-

less the anomalous moment is exceptionally large as in the
ease of a =—1. The finite-size correction r3J as given by
Eq. (17b) is also small in all cases except when the energy
of the emitted photon is very high as in the decays
XJ- —+Y+y and Y"—+XJ.+y. For these exceptional de-
cays we have written the finite-size correction as

r

P'3J
I 3J I 3J 1 +bJ +

4
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same reasons we kept the quadratic term in the formula
for rij. The justification is that even though we cannot
calculate all corrections of order u lc to the rates, we are
including the most important ones in these exceptional sit-
uations. Since the quantity bj depends on gq, we see that
r 3J has different numerical values for the res

——1 case and
the gz ——0 case. We would like to point out that the
correction rsI is quite large for the decays XJ —+Y+y and
Y"—+XJ+y. In the case of Xz ~Y+y, the finite-size
correction even dominates over the correction due to the
relativistic modification of the wave function. In the case
of the decays XI—+p+y and XJ ~Y+y, this correction,
even though much smaller, is yet significant.

VI. CONCLUSIONS

In conclusion, we find that when the Buchmuller-Tye
potential is used in an approximately relativistic formula-
tion of the cc bound state problem, results for the spectra
and the E1 decay rates are in reasonable agreement with
experiment if the confining potential is predominantly
scalar. The calculation of some of the M 1 decay rates
indicates substantial discrepancy unless a large negative
anomalous moment is assumed. Although this assump-
tion seems implausible and it appears more likely that the

discrepancy may be remedied by the inclusion of
coupled-channel mixing, " experimental determination of
quark moments can help to resolve this issue.

. Calculations are also carried out for bb, and ris ——1 pro-
vides much better fine-structure separation than gs ——0.
For bb states the E 1 and M 1 decay rates have been given
in Tables X and VI. The sparseness of experimental data
does not yet permit a detailed comparison between theory
and experiment.

Our results confirtn conclusions by others that the rela-
tivistic effects in qq can be very large, and due to cancella-
tions between various terms decay rates can change
dramatically due to fairly small changes in several of the
terms.
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