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Connection of relativistic and nonrelativistic wave functions
in the calculation of leptonic widths
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We generalize our previous JWKB relations between the relativistic qq wave function at the origin
and (a) the inverse density of states of the qq system and (b) the nonrelativistic qq wave function at
the origin, to the case of potentials with a Coulomb singularity. We show that the square of the
Bethe-Salpeter wave function at the the origin is given approximately for 1 states by
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for M„~2m~, where F(u)=(4~a, /3v)[1 —exp( —4vu, /3v)] ' is the usual Coulomb factor and

g (v)=1 is associated with the lowest-order gluonic radiative corrections. We present numerical evi-

dence for the remarkable accuracy of these relations, which have important implications for the use
of,nonrelativistic potential models to describe quarkonium systems. We also discuss some subtleties
in the U and a, dependence of corrections to leptonic widths.

I. INTRODUCTION

The square of the Bethe-Salpeter wave function at the
origin is an important quantity for qq systems. For exam-
ple, it appears in expressions for the leptonic and hadronic
widths I + and I 3s for 1 states, and the hadronic

widths I ze for the 0 states. The leptonic width for the
decay of 1 states, which will appear in this paper, is
given by

I67Tcx eql„(e+e )= ~X„(0,0)
~

(1—5„) .
M„

Here a is the fine-structure constant, ee is the quark
charge in units of e, and M„=2m&+E„=W is the total

energy of the qq or e+e system. X„s(0,0) is the large-
large S-state component of the Bethe-Salpeter two-
fermion wave function for zero space-time separation of
the quarks, and h„corrects for D-state, small-small, and
(kinematic) relativistic effects left out in the large-large
approximation. '

The function X~(0,0) is frequently treated theoretical-
ly by replacing the full Bethe-Salpeter interaction kernel
by an appropriate instantaneous interaction (the Salpeter
approximation). This reduces the Bethe-Salpeter equation
to a relative-time-independent Salpeter equation.
X~(0,0) is then written in terms of a first approximation
%~(0) and a factor which corrects for the retardation

and gluonic radiative effects omitted in the instantaneous
approximation,

~
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The definition of 6'„ in this expression depends on the
scheme used to determine %~,' only the complete function

X„s(0,0) is unique. Because of the difficulties involved in
constructing and solving relativistic models for qq sys-

tems, the relativistic wave function 0"„z(0) is usually ap-
proximated in phenomenological studies of quarkonium

by the solution g„"s "(0) of a Schrodinger equation with a
potential adjusted to fit the observed spectrum. It is
therefore of considerable importance to explore the rela-
tionships between X„s(0,0) [or an appropriately defined
qt'„q(0)], and the Schrodinger wave function g„"s "(0) or
other better understood quantities.

In two recent papers, ' we discussed the calculation of
the leptonic width I"„(e+e ) in detail [Eqs. (1) and (2)
appear as Eqs. (57) and (58) in Ref. 1]. We showed that
for nonsingular interactions the Salpeter wave function
4'„z(0) is simply related to the Schrodinger wave function
g"„s "(0) calculated with a potential which fits the exact
relativistic spectrum. We then used a duality argument
and a conjectured extension of this result to the case of
potentials with a color-Coulomb singularity to estimate
the "radiative correction" 5„' to the leptonic widths of Si
states in charmonium and b-quarkonium to 0 (a,~),
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where a, is the strong coupling constant. In the present
paper, we will extend our earlier results to the case of
singular potentials, and demonstrate the remarkable accu-
racy of our relations numerically.

The plan of the paper is as follows. In Sec. II, we re-
view some background: the relation of

I
V„s(0)

I
to the

inverse density of states for either relativistic or nonrela-
tivistic systems with nonsingular interactions, the result-
ing relation between

I
%~(0)

I
and

I
P"„s "(0)I, and the

extension of the nonrelativistic relation to singular poten-
'tials. In Sec. III we present numerical tests of our rela-
tions for a relativistic oscillator interaction, and show that
they are accurate to a few percent even for highly relativ-
istic particles. In Sec. IV, we extend our results for the
relativistic wave function to the physically interesting case
of potentials with color-Coulomb singularities, and again
demonstrate their validity numerically. In Sec. V, we dis-
cuss the calculation of 5„ in Eq. (1), and the relation of
b,„and b, „' to the QCD perturbation expansion for the
e+e annihilation cross section. We summarize our
principal results in Sec. VI.

mnonrel 2 q nonrel

4~~ dn
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where u„ is the velocity of a free quark with kinetic ener-

gy —,
' [E.—V, (0}],
u„"' "=j[E„—V, (0)]/ms J'~

and the confining potential V, (r) is assumed to be non-
singular at r=0. In Ref. 1, we derived a relativistic ana-
log of Eq. (3) for the Salpeter wave function for an instan-
taneous qq interaction,
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(5)

dn

where u„"' is the velocity of a free quark with total energy
—,M„' = —,[M„—V, (0)J, M„=2mq+E„, and

1/2
4m

M'
n

(6)

The existence of such a relation for the relativistic case
had been conjectured but not proved by Tainov. Again,
the interaction must be nonsingular at the origin for Eq.
(5) to hold, as this result was derived by making the
JWKB approximation on a "relativistic Schrodinger"
reduction of the Salpeter equation correct to 0 (u /c ).

For nonsingular potentials, then, we can use Eq. (5) to
relate

I
%~(0)

I
directly to the measurable quantity

dM„/dn; or we can combine Eqs. (3} and (5) to relate

I
%~(0)

I
to the Schrodinger wave function

I g~ "(0)
I

corresponding to the same measured spectrum,

II. BACKGROUND

We begin by recalling that
I
P"„s "(0)I, the square of

the Schrodinger wave function at the origin, is related to
the inverse density of states dE„/dn in the JWKB ap-
proximation by

rel

I

q' s(0)I = I'Cs
mq Un

(7)

We emphasize that a given spectrum is generated by dif
ferent interactions in the nonrelativistic and relativistic
cases. We are' not concerned with the more familiar prob-
lem (e.g., in QED) of relating relativistic and nonrelativis-
tic wave functions for a fixed interaction.

If V, (0)=0 for both the relativistic and nonrelativistic
cases, we can write the factor in Eq. (7) as

2
U
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where a, is the strong coupling constant and the confin-
ing potential V, (r) is again nonsingular at the origin.
Their result for E„—V, (0) & 0 is

m dE„
(10)nS n 4 2 n

where u„"' " is given in Eq. (4), and F(v) is the Coulomb
factor

4mo.
F(v) =

I
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I

= [1—exp( —4ma, /3u)]
3U

Thus, the only explicit effect of the extra color-Coulomb
interaction is to multiply the original formula in Eq. (3)
by F(u„"'""'), though there is an implicit change through
the change in the spectrum and dE„/dn. We will derive a
relativistic generalization of this result in Sec. IV.

For E —V, (0) &0, we can use either the phase integral
method of Froman and Froman' or a modification of the

This is always greater than unity for E„&0 (as for a
monotonically rising confining potential), so that

I
%~(0)

I
is always greater than

I
P„"s""'(0)

I

. The
physical reason for this is that the relativistic kinetic ener-

gy in the Salpeter equation is less than the nonrelativistic
kinetic energy,

2(p +ms )'~ —2m~ &p /m& .

As a result, for a fixed spectrum, the relativistic potential
energy must be larger than the nonrelativistic potential
energy, and the relativistic wave function is more tightly
confined, hence larger at the origin.

In Sec. III, we present numerical tests of Eqs. (5} and
(7) for the spinless oscillator potential which demonstrate
that these equations are accurate to a few percent even for
highly relativistic particles. We also test Eq. (5) for the
oscillator interaction with vector coupling (a strongly
spin-dependent case). Although spin dependence was not
built into our derivation of Eq. (5), the results are again
excellent.

Since realistic qq potentials involve a singular color-
Coulomb component, Eqs. (3) and (5) cannot be used as
they stand for the qq system. However, Bell and Pasu-
pathy and Froman and Froman' '" have extended the
nonrelativistic relationship to the singular potential

V= —', a, r '—+ V, (r),
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Bell-Pasupathy procedure to obtain the alternative expres-
sion'

am dE
~

g~""'(0)
~

=,E„—V, (0)(0.
3n dn

(12)

This result is exact for a pure Coulomb potential, and
connects smoothly with Eq. (10) for E„—V, (0)—+0.

[2(p+m)1/2M+ i 2~'arel(p)Q (13)

where %(p) is the Salpeter wave function in momentum
space, and we have expressed p, mq, M, and r ' in units
of k i/3, with k the spring constant of the oscillator. With
the substitutions r ~—Vz and M =2mq+E, we obtain
the differential equation

III. NUMERICAL TESTS
OF THE JWKB RELATIONS

FOR OSCILLATOR POTENTIALS

The expression for
~ g~ "(0)

~

for nonsingular confin-
ing potentials given in Eq. (3) has been tested by a number
of authors, ' and is quite accurate. We will therefore con-
centrate on tests of the relativistic relations in Eqs. (5) and
(7).

We first consider a spinless Salpeter equation for a qq
system with an oscillator interaction,

q 2+E V(r) ynonrel(r) 0
mq

(18)

We have solved Eq. (14} numerically for mq=3. 276
and mq

——1.310 (values chosen to permit later comparison
with spin-dependent calculations of Hostler and Repko' ).
Our results for the S-state spectrum and the exact wave
functions at the origin are given in Table I. We have also
calculated the JWKB prediction for

~

qr~(0)
~

using Eq.
(5) with dM„/dn (or dE„/dn) calculated from a cubic po-
lynomial fit to the n dependence of the spectrum. The
predictions for

~

%"„~(0)
~

given in Table I are in excellent
agreement with the exact results even for n= 1. The un-

certainty in dM„/dn is on the order of 1%, as judged by
comparing results for quadratic and cubic fits to the ener-
gies, and is essentially as large as the errors in

~

%'~(0)
~

We note that the case mq
——1.310 is quite relativistic with

ground-state quark velocities v=0.79 at the origin and
U, =0.65.

In order to test the relation in Eq. (7), we need
Schrodinger wave functions for a potential which has the
same spectrum as the Salpeter equation, Eq. (14). We can
convert Eq. (14) into the desired Schrodinger equation
without changing the eigenvalues E„by the substitution

p ~(mq/2)'/ r, and find that f"'""'(r) satisfies the equa-
tion

I ,'V~ +E —[2(P—+mq )'/ —2mq]Iqr'"(P)=0.

The wave functions are of the form

'Ir'„'(' (p)=@'„'('(p)I'i (p)

with the normalization

(14) where

V(r)=(2mqr +4mq ) / 2mq—
2 2

—,r, r «2mq
(2mq)'/ r —2mq, r »2mq .

(19a)

(19b)

(19c)

(2m )
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The S-state wave functions at the origin in coordinate
space are given by

0'"'(0)= f d p%"'s(p)=
4 / f CN(p}p dp .

(17)

The Schrodinger potential V(r) is always less confining
than the oscillator potential —,'r used in the Salpeter
equation, in agreement with the physical argument fol-
lowing Eq. (8).

The potentials and the (identical) spectra for Eqs. (14)
and (18) are shown in Fig. 1. The expected trend toward
closer spacing of the energy levels as V(r) approaches the

TABLE I. Numerical test of the relativistic JWKB expression for
~

4"„z(0)
~

in terms of the inverse

density of states, Eq. (3). The energies and wave functions were calculated for the spinless Salpeter
equation with an oscillator potential, Eq. (13). dE„/dn was calculated from a cubic fit to the spectrum
for n =1—4. Energies and masses are given in units of k', with k the spring constant of the oscilla-
tor.

~
%~(0)

~

is given in units of k.

3.276 1.133
2.553
3.887
5.152

dE„/dn

1.469
1.375
1.307
1.238

JWKB

0.2872
0.5012
0.7023
0.8896

Exact

0.2931
0.5020
0.6972
0.8871

Error
(%)

—2.0
—0.2
+ 0.7
+ 0.3

1.310 1.660
3.528
5.165
6.654

2.012
1.739
1.550
1.443

0.1846
0.3766
0.5601
0.7545

0.1864
0.3758
0.5616
0.7477

—1.0
+ 0.2
—0.3
+ 0.9
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wave function at the origin with the values predicted us-

ing Eq. (7). The agreement is excellent, with a maximum
error of 3.3% for the n=1 state in the highly relativistic
system with m&

——1.310. We note that the conversion fac-
tor

rel g4 2 nonrel

is 1.22 even for the least relativistic state ( n = 1,
mz ——3.276), and is quite large for the more relativistic
states (5.33 for n =4, ms =1.31).

In the last column of Table II we give the Schrodinger
wave function at the origin for the nonrelativistic oscilla-
tor problem

1
p 2+E 2 pose( ~) ()

m~
(20)

00 2 4 5

FIG. 1. Illustration of the difference between nonrelativistic
and relativistic potentials which give the same energy spectrum,
using the potential 2 r in the spinless Salpeter equation, and the

equivalent nonrelativistic potential V(r) =(2mqr + 4mq )'
—2mq in the Schrodinger equation. V(r) is quadratic for
r &(2mq, and approaches the linear potential shown in the fig-
ure for r &&2mq. This change in the dominant r dependence is
reflected in the decreasing spacing between adjacent levels. E,
mq, and r ' are given in units of k', with k the spring con-
stant of the relativistic oscillator.

linear potential in Eq. (19c) is clearly evident
[E~~(n —

~ ) ~ for the high states in a linear potential,
while E~ ~ (n ——,

'
) for the oscillator].

In Table II, we compare the exact values of the Salpeter

the nonrelativistic limit of Eq. (14). The Schrodinger
wave function is only a reasonable (10%) approximation
to the Salpeter wave function for the n= 1 state with

mq
——3.276.

As a separate, somewhat more realistic test of our rela-
tions in physical problems, we have used Eqs. (5) and (7)
to predict

~

4'„'z(0)
~

for the Si states in the problem
studied by Hostler and Repko. '" Those authors solved the
(large-large) Salpeter equation exactly for an oscillator in-
teraction with vector coupling. The results are strongly
spin-dependent. (The splitting between the lsS, and 1 'So
states for the case ms =1.31 is 30% of the spin-averaged
S-state energy while the splitting between the 1 I'0 and
1 Pz states is 35% of the spin-averaged P-state energy. )
Nevertheless, as shown in Table III, Eq. (5) gives excellent
values for

~

ql'„z(0)
~

in terms of the Si spectrum. The
predictions for the square of the 'So wave function at the
origin are of comparable accuracy. This is not a trivial
result, since the Si and 'So spectra and wave functions
differ significantly. ' We therefore conclude that Eq. (5)
is more generally valid than the derivation in Ref. 1

would suggest.
We have also made a rough check of the relation in Eq.

(7) between the relativistic and nonrelativistic wave func-
tions for equivalent potentials by obtaining best fits to the

TABLE II. Numerical test of Eq. (5), the JWKB prediction for the square of the spinless Salpeter wave function at the origin for
an oscillator potential in terms of the nonrelativistic Schrodinger wave function for a potential which gives the same spectrum, Eqs.
(18) and (19). Energies and masses are given in units of k'~, with k the spring constant of the oscillator.

~

4'„s(0)
~

is given in units
of k.

3.276

E„

1.133
2.553
3.887
5.152

M 2
n Un

4 2 nonrel
mq Un

1.223
1.519
1.814
2.109

~

qllallrel( 0 )
~

2

0.2411
0.3316
0.3850
0.4216

~

4"'(0) ~2

Exact

0.2931
0.5020
0.6972
0.8871

Predicted

0.2949
0.5037
0.6984
0.8892

Error

0.6
0.3
0.2
0.2

I

@-'(0)
I

'
Nonrelativistic

oscillator

0.2600
0.3900
0.4875
0.5688

1.310 1.660
3.528
5.165
6.654

1.874
3.035
4.186
5.332

0.1027
0.1246
0.1347
0.1406

0.1864
0.3758
0.5616
0.7477

0.1925
0.3782
0.5639
0.7497

3.3
0.6
0.4
0.3

0.1308
0.1962
0.2452
0.2861
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TABLE III. Numerical test of the relativistic JWKB expression for
~

ql'„s(0)
~

in terms of the in-

verse density of states, Eq. (3), using exact results for the spin-dependent Salpeter equation for an oscil-
lator kernel with vector coupling (Ref. 14). dE„/dn was calculated from a quadratic fit to the S& spec-
trum for n =1—3. Energies and masses are given in units of k', with k the spring constant of the os-
cillator.

~

ql'es(0)
i

is given in units of k.

mq

3.276

E„( Si)

1.316
2.851
4.356

dE„/dn

1.550
1.520
1.490

JWKB

0.3364
0.6106
0.8975

Exact

0.3271
0.6078
0.8924

Error
(%)

+ 2.8
0.5
0.6

1.310 1

2
3

2.420
4.457
6.368

2.101
1.974
1.848

0.2886
0.5816
0.9042

0.2852
0.5825
0.9003

1.2
0.02
0.5

spin-averaged Hostler-Repko spectra using Schrodinger
potentials of the form V(r) =Kr" and similar forms. Al-
though we could not fit the relativistic spectrum precisely,
the results were reasonably good, with errors of 10% and
15% in the ground-state wave functions for ms ——1.310
and 3.276, and errors of less than 3% for the n=2 and
n=3 states. The accuracy of the results for the excited
states is especially striking in view of the very large con-
version factor in Eq. (7). We are therefore confident that
proper spin-dependent fits to the Hostler-Repko spectra
would lead to results as accurate as those in Table II.

IV. RELATIVISTIC EXTENSION
OF THE COULOMB CASE

The relation in Eq. (10) between
~

1(„"s "(0)
~

and the
inverse density of states for potentials with Coulomb
singularities was derived by Bell and Pasupathy using a
modified JWKB argument and by Froman and Froman'
using a phase-integral method. We will use the Bell-
Pasupathy method to derive a relativistic extension of Eq.
(10), but note that our assumptions could be weakened
somewhat in the phase-integral approach. ' '"

The Bell-Pasupathy technique is based on the assump-
tion that the exact wave funotion in the potential

4a,
V(r) = — + V, (r), V, (0) finite,

3p'

can be approximated by a pure Coulomb wave function
for the shifted energy E —V, (0) for r small, and by the

JWKB wave function for the full potential for r large. By
matching the Coulomb and JWKB wave functions at in-
termediate r where V, is relatively unimportant, they con-
struct a phase-shifted JWKB function which is a valid
solution of the Schrodinger equation from the matching
point out. This corrected JWKB function is then normal-
ized. The normalization depends primarily on the
behavior of the wave function in the outer region where
the full potential acts, and is insensitive to the form of the
wave functions very close to the origin. The result in Eq.
(10) is then obtained by continuing the normalized wave
function to the origin using the exact Coulomb function.

The essential feature of Eq. (10) is that the effects of
the long-range confining interaction V, (r) appear only
through the inverse density of states. The extra multipli-
cative factor relative to Eq. (3) is calculable using only the
color-Coulomb interaction. This relation has been tested
numerically for the Coulomb-plus-linear potential by Bell
and Pasupathy, Table I in Ref. 9. We give a similar test
in Table IV using a different fit to the spectrum E„.'
Except for the ground state, which is not expected to be
well described in the JWKB approximation, Eq. (10) gives
excellent values for

~ g~ "(0)
~

. An analytic test of Eq.
(10) for the exactly solvable Hulthen potential was given
some time ago in a different context by one of the au-
thors' and has been repeated in more detail by Froman
and Froman, ' again with excellent results.

Our extension of the Bell-Pasupathy analysis to relativ-
istic qq systems involves some subtleties which are not
present in the nonrelativistic problem, but the principle of

TABLE IV. Numerical test of the nonrelativistic JWKB relation for
~

f"„s""'(0)
~

2 in Eq. (10) for the
singular potential V(r)= —a/r+br with a=0.25, b=0.18 GeV, and mq 145 GeV. dE„/dn was
calculated from cubic-polynomial fits to lnE„as a function of inn (see Ref. 15).

(Gev)

0.5161
1.0556
1.4779
1.8451
2.1768

dE„/dn
(GeV)

0.6273
0.4667
0.3890
0.3472
0.3185

~

ynonrel(0)
~

2

Predicted
(GeV')

0.035 85
0.032 44
0.030 10
0.028 96
0.028 16

I
PP"'(0)

I

'
Exact
(GeV')

0.038 69
0.032 37
0.03020
0.028 95
0.028 29

Error
{'Fo)

—7.4
+ 0.2
—0.3
+ 0.02
—0.5
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the analysis is the same. Our objective is the calculation

of ~X„s(0,0) ~, the square of the Bethe-Salpeter wave
function at the space-time origin, for use in the exact ex-
pression for I „(e+e ), Eq. (1). We carry out the calcula-
tion in two steps. We first consider the region in which
the quarks have a spacelike separation r &m~ '. We
make the standard assumptions that the qq Pock state
gives the dominant contribution to X in this region, and
that the qq interaction is adequately described by the in-
stantaneous Coulomb-gauge interaction in Eq. (21}, and
ignore possible long-range spin-dependent effects. The
dominant S-state part of the Bethe-Salpeter wave function
for t=O, r»mq ' is then given by a solution of the in-
stantaneous Salpeter equation for the qq system,
g~(r, O) =%~(r), where

[2(p'+m, ')'"—M„+V(r)]e"„s'(r)=0, (22)

with m& the on-shell quark mass. We solve this reduced
problem using relativistic JWKB methods, and determine
the normalization of the Salpeter wave function using a
generalization of the Bell-Pasupathy technique.

In the inner region r (mq, relativistic retardation ef-
fects in the qq interaction and radiative effects involving
transverse gluons are important, and we need a full rela-
tivistic treatment of the problem. However, the variation
of the long-range confining interaction can be ignored in
this region. The quarks act essentially as "free" particles
with the usual short-distance QCD interactions and a to-
tal energy M„—V, (0), and the variation of X for
r(m& ' can be determined using perturbation theory.
We will return to this point later.

We will begin by considering the outer region and
determining the normalization of the JWKB solution of
Eq. (22) constructed by Cea et al. ' The radial wave
function u„(r) found by those authors has the form

u„(r)=N' I fM„—V(r)]/[M„— V( 0)) 'I~ w„(r),

tential 4—a, l3r+V, (0), normalized to unit asymptotic
amplitude,

h(r)= f p(r)dr+/(E) .
min

(27)

Veff~Veff +A 5(r —R ) (29)

and calculate its effect on the energy eigenvalues in two
different ways. We first observe from Eq. (28) that the
perturbation induces a discontinuity of height mqA, in the
logarithmic derivative of w„(r) at r =R, and therefore
changes the asymptotic phase of w„(r) by an amount e,

sin b, (R) mq ze= —mqi, = — w„(R) .
p(R) p

(30)

The extra phase changes the JWKB quantization condi-
tion from

max
n.n (E„)=—f p (r)dr +P(E„)+—=no.

min
n 4

to

nn(E„)+@=. nm . (32)

Since n is fixed for a given state, the energy eigenvalues
E„must change as the result of the perturbation by an
amount 5E„determined by the condition

dn(E„) 5E„+a=0. (33)

Thus, from Eqs. (30) and (33),

The matching conditions are discussed by Castorina
et a/. ' We note that w„(r} is the JWKB solution to the
Klein-Gordon equation

d2
w„(r)+mq[E„—Veff(E„,r)]w„(r)=0. (28)

dr

To determine the normalization constant N in Eq. (23),
we add a small 5-function perturbation to V,rr in Eq. (28),

where V(r) is the potential in Eq. (21) and w„(r) is a
JWKB-type function,

mqA, dE„5E„= . w„(R) .
~p dn

(34)

w„(r) = [p/p (r)]'~ sinb, (r) .

Here p (r) is the local momentum,

(&+ —,
' )'

p (r) = —,
' [M„—V(r)] —mq-

(I+ —,
' )'

mq(E„—V,rf)—
r

V.ff«n I') = V — «n —V}'1

mq

(24)

(2&)

and p is the relativistic momentum of a free quark with
total energy

We can obtain a second relation for 5E„using first-
order perturbation theory. Because the effective potential
in Eq. (28) is energy dependent, the calculation is some-
what different from usual. We find that

A, w„(R)=5E„f w„(r) 1—d V,rr
dp

=5E„f w„(r) 1+ (E„—V) dr .
2' q

(35)

The extra factor in the integrand is just what is necessary
to relate w„ to u„. Thus, using Eq. (23) and the normali-
zation condition for u„,

2 [MN VC(o)]=—mq+ 2 [EN Vc(0)] . —
h(r) is the usual JWKB phase shifted by a constant P(E)
so that N '~zu„(r) matches smoothly for r r;„ to the
exact solution' of Eq. (22) for the shifted Coulomb po-

I

A, w„(R)=5E„—f u„(r) dr
2m& N 0

—5E„, M„' =M„—V, (0) .Mn 1

2m' X (36)
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Combining Eqs. (34) and (36), we find that the normaliza-
tion constant X is given by

8 71

S =(4M' —mq }
2&p dn

(37)

X~(r,o)-,
&

u„(r}, r &ro,JWKB

(4~)'"r " (39a)

=N'/ qls "(r}, mq
' &r &ro, (39b)

=N'~ Xs"(r,o), 0 & r & mq (39c)

where u„(r) is defined in Eq. (23), and ro is a JWKB-
Coulomb matching point. We emphasize that the effec-
tiveness of this method of constructing X~ (as checked by
extensive numerical calculations in the nonrelativistic and
instantaneous relativistic problems) depends on the
smoothness of the wave functions and confining interac-
tion, and is insensitive to the particular choice of match-
ing points for the wave functions constructed in the vari-
ous regions. '

If we evaluate X„s(0,0) using Eqs. (39c) and (37), we
find that

I X„s(o,o)
I
'=N

I
Xs"-(o,o)

I

'
M„' dM„

, Ix'"(o,o) I'
27Tp dn

To complete our derivation of the relativistic generali-
zation of Eq. (10), we need to determine IXs"(0,0)

I

We next observe that, by construction, the JWKB wave
function connects smoothly with the exact solution of Eq.
(22) for a pure color-Coulomb interaction,

u„(r)~N'~ u, "'(r)

=(4~N)'~ r%s (r),
(38)

V, (r) —V, (0) &4a, /3r, r & mq

Here %s is the Salpeter Coulomb wave function for en-

ergy E„—V, (0), with the usual plane wave normaliza-
tion, i.e., u,c'"'(r) goes asymptotically to a sine wave of
unit amplitude for r~oo. This function (which we re-
cently constructed analytically' ) gives a solution of the
instantaneous form of the free Bethe-Salpeter problem
(the problem in which the confining interaction is neglect-
ed) for r &mq '. With a proper phase shift, it connects
smoothly with the qq component Xs"(r,o) of the com-
plete free solution valid in the inner region r & mq.

'

We conclude that the full Bethe-Salpeter wave function
X~(r,o) can be approximated smoothly for different
(overlapping) ranges of r by

We observe first that the square of the exact, properly
norinalized Salpeter Coulomb wave function for r-mq
involves an overall factor'

p gc] p 4~&@F(v"')= [1—exp( —4ma, /3v"')]
4m. 4m 3U"'

p
4m

2m'as
1 2~as

SU 3U

2

IXs (0,0)
I

= F(v"')[1+0(a,)] .
4m

(42)

In order to determine the corrections to Eq. (42), we
must deal with the retardation and spin-dependent correc-
tions to our instantaneous approximation, and include the
effects of interactions involving transverse gluons. The
standard approach to this problem involves a perturbative
calculation of the corrections to X~ beginning with the
solution of Eq. (22) as input. This is essentially equivalent
to the calculation of the "radiative" corrections to the
widths I „(l+l ) for the leptonic decay of the 1 states
carried out by a number of authors. One expands the
Bethe-Salpeter equation relative to the instantaneous ap-
proximation in Eq. (22), includes the retardation and
spin-dependent effects and the contributions of transverse
gluons as perturbations, and calculates the corrections to
X~ directly, hence, by Eq. (1), the corrections to
I „(l+l ). [See, for example, Bergstrom et al. for a cal-
culation of this type which starts with the Schrodinger ap-
proximation to Eq. (22).] Rather than repeat this calcula-
tion, we will identify the radiative corrections using an ap-
proach based on duality, ' that is, the equality of ap-
propriate energy averages of the physical cross section for
e+e ~ resonances, and the total cross section for e+e
annihilation into channels containing a heavy-quark pair
calculated in perturbative QCD. ' (We will ignore the
small mixing with channels in which the annihilation
photon initially produces a light-quark pair. ) This ap-
proach has been discussed in more detail elsewhere.

To implement the duality argument, we express the res-
onance cross section in terms of IXs"

I
using Eqs. (1)

and (40),

(41)

This factor, which sets the scale of X,"'(r,o) at r-mq
is just the square of an ordinary Coulomb wave function
at r=o. The characteristic dependence of F(v"') on
a, /v "i is associated with the longer-range (infrared) part
of the Coulomb interaction, and cannot be modified. by
short-range effects as r~0. The function

I
Xs"(0,0)

I

must therefore contain F(v"') as an overall factor, and
must be of the form

W o.(e+e ~hadrons) = g 6nI'„(e+e )5(.W' —M„)+continuum contributions

IXs"(0,0)
I

(1—b, ) 5(W —M„)+ (43)
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average over a range of energies in the resonance region, and equate the result to the average of the @CD cross sec-
tion. ' Upon replacing the sum on n by an integral, we find that

rel

~Xs'"(0,0) ~'(I —a) = (1——,'u"") 1+
16as g(v'")+0 (a, ') l,3' (44)

where b. is the correction defined in Eq. (1) and'

g (u)=1+0.046u —u (1—u) (45)

is an accurate approximation to Schwinger's exact expres-
sion. ' The factor (1——,

' u"' } in Eq. (44) may be identi-
fied with (1—6) as will be discussed in Sec. IV. The first
two terms in the remaining expression are just the leading
terms in the expansion of the expected color-Coulomb
factor, Eq. (41), which can be extracted as an overall fac-
tor on the right-hand side of Eq. (44). The remaining
term is the leading radiative correction.

We observe finally that the radiative corrections are
short-range effects in r, or equivalently, involve mass
scales on the order of m~, and are therefore insensitive to
energy averaging on the scale set by the resonance spac-
ings. Restricting the energy average to the region of a sin-

gle resonance, we conclude that

I

If V, (0)&0, M„should be replaced in this expression by
M„—V, (0), and the relativistic velocity u"' modified ac-
cordingly. We conjecture but have not proved that Eq.
(48) should be modified for M„&2m& to

r

o.gM„dM„16m,
~X„s(0,0)

~

= 1 — +O(a, ) . (49)
12m dn 3m

The two expressions connect smoothly for u"'~0 and
agree with Eqs. (10) and (12) in the nonrelativistic limit.

These results can be generalized to different spin-parity
states by using the Coulomb factor for nonzero angular
momentum, and changing the relativistic and radiative
correction factors to those appropriate for the process of
interest.

In Table V we present a numerical check of our results.
We have calculated the solutions to the Salpeter equation,
Eq. (22), for the potential

16es
iXs"(0,0)

i
= F(u"') 1 — g(u"')+O(a, )4~ 3m

V(r) = ——+bra
r

(50)

M„&2m~ . (46)

The correction term in this equation evaluated for u=0
(g =1}is just the radiative correction to

~
X„s(0,0)

~

cal-
culated by a number of authors neglecting the motion of
the quarks,

for a=0.25, b=0.18 GeV, and ms ——1.45 GeV (values in
the range needed for charmonium) and divided the results
by the solution of the Coulomb Salpeter equation' at
small r. The ratio of the two wave functions for r —+0
should equal the spectrum-dependent factor in Eq. (48),

(47)
lim

~

e„s(r)/es'" (r)
~ =,u„"

04~ dn
(51)

M„)2m' . (48)

Finally, combining Eqs. (40) and (46), we obtain our rel-
ativistic generalization of Eq. (10) for 1 states:

M„' dm„
~
X„s(0,())

~

=F(u"') u„"'
16m2

" dn

16cts
X 1 — g(u"')+O(a, )3'

We see from Table V that the agreement of the numerical
and theoretical results is excellent. The remaining argu-
ments needed to justify the transition from Eq. (40) to Eq.
(48) depend only on the separation of short-range and
long-range effects, and well-established results in pertur-
bation theory.

We note finally that we can use Eqs. (10) and (48) to re-
late nonrelativistic and relativistic systems which have the
wave functions for the same spectrum. Eliminating
dM„/dn =dE„/dn between the two equations, we find
that

TABLE V. Numerical test of the relativistic JWKB relation for lim„o(p /4m)
~

%~(r)/%s'"'(r) ~,
Eq. (51), for the singular potential V(r)= —a/r+br with a=0.25, b=0.18 GeV, and mq ——1.45 GeV.
dE„/dn was calculated from a polynomial fit to the lowest six energies.

1

2
3
4
5

E„
(GeVi

0.4924
1.0022
1.3925
1.7260
2.0236

rel
Un

0.519
0.669
0.737
0.779
0.808

2

~

+~(&)/+g'"'(&)
~

'

(GeV )

0.0242
0.0281
0.0309
0.0334
0.0355

M. ' „,dM
16+ du

(GeV')

0.0229
0.0280
0.0306
0.0332
0.0350

Error

—5.4
—0.3
—1.0
—0.6
—1.3
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~X~(0,0)
)

F(u ) n u noorei 0 2
rel ~ rel

F i nonrel i 4 2 nonrei
~U ) PE& U

where k =mq[E —V, (0)]. We will neglect the D-state
contribution. The integrals over r in Eq. (54) are easily
performed, and we find that

16',
X 1 — g(v"')+O(a, )3'

M„&2mq . (52)

The combination of factors multiplying
~

g"„s "(0)
~

from the left is always greater than unity [this follows
from Eq. (8), the observation that F(u) is a monotonically
decreasing function of v, and the fact that u"' "&v'"].
As a result, in the absence of the radiative corrections,

~
X„s(0,0)

~

would always be larger than
~

P"„s "(0)
~

2 in
agreement with the "tighter confinement" argument given
following Eq. (8). (This assumes, of course, that it is pos-
sible to fit the relativistic spectrum using a Schrodinger
model and the given a, .)

For M & 2mq, Eq. (12) and our conjectured formula for
~
X„s(0,0)

~

in Eq. (49) give the alternative expression

M

4m'

16',
+O(a, )

(53)

IV. THE CORRECTIONS 5 AND 6'

We now return to a brief discussion of the radiative and
relativistic corrections b„b, to the leptonic widths of qq
bound states defined in Eqs. (1) and (2). In Refs. 1 and 2,
we used duality and the QCD expansion of o(e+e -+qq)
to estimate these quantities to order a, . Equation (48) in
the present paper provides a simple derivation of the dual-
ity relation, and justifies our earlier extraction of the
Coulomb-related terms (powers of a, /u) from the QCD
perturbation series. These terms are part of

~
X„s(0,0)

~

The correction b,„was derived in Ref. 1. In the present
notation it is given to order v /c by

[X„s(0,0)]
3m

ce

)( J dr Ko(mqr) Xes(0,0) „[rX—es(r~o)]

+v 2x„,(o,o)

—V 2 [rX„g)(r,o)]
dr

(54)

where X„D is the large-large D-state component of the
Bethe-Salpeter wave function and Ko(mqr) is the ex-
ponentially decreasing hyperbolic Bessel function. We
will suppose that the dominant S-state wave function can
be approximated for r small by a series solution to a rela-
tivistic Schrodinger equation with the proper normaliza-
tion at r =0,

X~(r,o) X„s(0,0)[1—3a,mqr —6k r +O(a, )],
(55)

16a, E„—V, (0)
9m 3m'

(56)

In Refs. 1 and 2, we identified b,„with
[E„—V, (0)]/3mq ——,'u„(0), the result appropriate for
nonsingular interactions as shown in Eq. (61) of Ref. 1.
In the presence of a color-Coulomb singularity, the ap-
proximation to b,„ in Eq. (56) contains an extra piece
16a, /9nwhi. ch contributes one third of the "radiative
correction" in Eqs. (43) or (48). It is not an extra contri-
bution to the radiative correction: in the absence of a con-
fining interaction, one must get the same total value for
~Xs(0,0)

~

or cr(e+e ~qq) whether the calculation is
done using perturbation theory or the Bethe-Salpeter
equation. The effect of including a confining interaction
is simply to renormalize X„s(0,0) as in Eq. (40). The
short-range corrections defined by ratios of wave func-
tions are unchanged to the accuracy to which we are
working. By choosing b,„=—,'u„ in Eq. (44) and Refs. 1

and 2, we have in fact redefined b,„and must delete the
term 16a, /9nfrom Eq. . (56).

%'e remark also that the division of the various a, -

dependent terms into corrections b,„and b, '„[the "radia-
tive" correction relative to a particular choice of wave
function in Eq. (2)] is gauge dependent, though the total
result is not. Our treatment of the Bethe-Salpeter equa-
tion presupposes the use of the Coulomb gauge, whereas
the free QCD calculations are usually done in the Feyn-
man gauge.

We will henceforth define b,„ to be —,
' v„, thus retaining

only the last term in Eq. (56). However, we note that
(1——,

' u„) is a natural factor to isolate in Eq. (1) for two
reasons: First, it is the analog of the overall factor
(1——,

'
v ) which appears in the free cross section for

e+e ~qq [a fact which we used in Refs. 1 and 2 and the
discussion following Eq. (42)] and second, it depends only
on u„, while all other terms depend on a, . With this defi-
nition the function ~X"'(0,0)

~

needed in Sec. III is
given by Eq. (46).

If we wish finally, to separate ~X„s(0,0)
~

in Eq. (1)
into a leading term and a "radiative correction" 6„' as in
Eq. (2), we must choose an appropriate initial approxima-
tion for the Bethe-Salpeter wave function. A usual choice
in phenomenological studies of quarkonium is to equate
the-function 0"„q(0) in Eq. (2) with the nonrelativistic
Schrodinger wave function for the potential in Eq. (21),
but this choice neglects essentially kinematic relativistic
effects which can be quite large for light-quark systems.
We prefer to circumvent this problem in a way useful for
numerical studies and consistent with our earlier duality
arguments (but perhaps awkward for perturbative calcu-
lations) by calculating %~(r) for r & mq

' using the Sal-
peter equation and matching the result to a solution of the
relativistic Schrodinger equation for r & mq

' as in Sec.
II. In this case, the argument in Ref. 2 gives
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16a ag(v")+C2, , (57)
377 7T'

where g(v) is defined in Eq. (45) and

a 8 dM„
I „(e+e )= u"'F(v"')

dn

16a,
X 1 — 'g(v„"')+O(a, ) (1——,'u„"' ),

II

Cg -24.26—0.115' . (58) M„)2m@ . (61)

The first-order correction 16u, /3n. in this expression is
independent of (any reasonable) choice of 4'„'s(0) for the
reasons sketched by Celmaster and by Kummer and

- Wirthumer. The value of C2 depends on this choice
(and on the choice of renormalization scheme). Our result
is equal for the free cross section o(e+e ~qq) to that
obtained by simply extracting the known color-Coulomb
factor F(u'") from the @CD perturbation series in the
modified minimal-subtraction (MS) scheme.

VI. SUMMARY

or by

r„(e e )=—,ae& a, 1—4 2 z dM„

dn

16as 2 2+O(a, ,u„)

M„&2m& . (62)

We can also use the results in Eqs. (59) and (60) and the
corresponding results for a Schrodinger potential model
fitted to the same spectrum to relate the relativistic and
nonrelativistic wave functions. If we eliminate
dM„/dn (=dE„/dn) between Eqs. (10) and (59), or (12)
and (60), we find that for a fixed a,

In this paper, we have derived a JWKB relation be-
tween the square of the Bethe-Salpeter two-fermion wave
function at the origin and the inverse density of states of
the system. Our derivation holds for the realistic situa-
tion in which the two-fermion (quark-antiquark) interac-
tion includes a color-Coulomb component at short dis-
tance and a long-range confining interaction. Our princi-
pal results are as follows.

For 1 states, we find that
~
X„s(0,0)

~
is given for

Mp & 2plq by

M„dM„
i g„s(0,0)

i
=F(v"), v"

dn

rel ~ 2 relF(v } + v
~

nonrel

F( u
nollMl } 4m 2 v IloIlIcl

(0)~

X
16a,

g(v"')+O(~, ')

M„&2mq,

( x~(0,0)
~

'

~

g„"s "(0)~' 1 — +O(a, )

q

Mn (2mq .

(63}

(64)

16a,
X 1 — ' g(u"')+O(a, )

3m
(59)

where F(u) is the Coulomb factor defined in Eq. (11), M„
is the mass of the nth state, and u"' is the relativistic
velocity of a free quark with mass mz and total energy
M„/2. This expression includes the effects of the short-
range gluonic radiative corrections; the function g(u) is
defined in Eq. (44). For M„&2m~, we believe (but have
not proved) that

agM„dM„16ug
l&ns(0 0)

I

= ' " "
1 — ' +o(&g }

12m dn 3'

a result which connects smoothly with Eq. (59) for
u"'~0 and reduces to the (proven) nonrelativistic expres-
sion in Eq. (12) for

~

M„—2m&
~

/2m~ && 1 .

Using these results, we find that the leptonic width for the
decay of 1 states is given in terms of the inverse density
of states by

These relations allow us to correct the wave functions or
leptonic widths calculated in the phenom enological
Schrodinger theory to obtain reliable relativistic predic-
tions. The corrections are quite large for light-quark sys-
terns.

The present results can be generalized to different spin-
parity states by using the Coulomb factor for nonzero an-
gular momentum (see Refs. 5 and 9), and changing the
relativistic and radiative corrections to those appropriate
to the process of interest.
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u~~(r)= mq —+E
P

—1/4

' 1/2

Xsin m~'~ —+E dr+/

=(r/m~a)'~ sin[2(m~ar)' +P]

to the exact solution of the Schrodinger equation,

—( —m E)/r
u "'(r)=2( —mqE)' re

1/2
mq

-X )F)
2 —E ,2,2( —mqE)' r

' 1/2
4E

mqcx

1/4

)&sin 2(m ar)'

This determines the phase P of the JWKB wave function and
the relative normalization of the two functions. The normali-
zation of the JWKB wave function with a nonsingular confin-
ing potential present is then determined exactly as in Ref. 9,
and the normalized wave function is continued to r=O using
the matched Coulomb wave function. The result is given in
Eq. (12) for a color-Coulomb potential, u —+4a, /3. The
JWKB quantization condition for the phase-shifted wave
function is
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