
PHYSICAL REVIEW 0 VOLUME 30, NUMBER 8

Comments

15 OCTOBER 1984

proofs are sent to authors.

Comment on Einstein-massless-scalar field equations and conformally fiat solutions

J. Beckers and S. Sinzinkayo
Service de Physique Theorique et Mathematique, Universite de Liege, Institut

de Physique au Sart Tilman, Batiment B.5, B-4000 Liege 1, Belgique

J. Demaret
Institut d'Astrophysique, Universite de Liege, Avenue de Cointe, Batiment E.1,

B-4200 Cointe —Ougree, Belgique

(Received 7 May 1984; revised manuscript received 6 July 1984)

An (infinite) family of conformally flat solutions of the Einstein-massless-scalar field equations is derived

when the space-time dependence of the conformal factor and of the scalar field is of the type u = k x, k

being a constant and uniform lightlike four-vector. This includes the Penney solution and completes

GQrses's discussion on the subject. Parallel developments are discussed when the space-time dependence

is given by the variable ~ =x: they lead to the unique GQrses solution.

I. INTRODUCTION II. ON SCALAR FIELDS $(k x) AND Q(k x)

Conformally flat solutions of the coupled massless-scalar
and gravitational field Einstein equations have been given
by Penney' and Gurses. In particular, Gurses has asserted
that there can be only two distinct solutions of these equa-
tions, characterized by a dependence only on u = k x
= k„x" or on v = x2 = g„„x"x",k = [kq, )~. = 0, 1, 2, 3} being a

constant and uniform four-vector.
We derive here, in the case of a u dependence with a

lightlike k, an explicit particular infinite family of solutions
parametrized by a nonzero real number m. For m= 2, we

recover Penney's solution. ' We also show that all the solu-
tions characterized by different values of the parameter m

are nonequivalent: they cannot be related through coordi-
nate transformations as is clear from a detailed study based
on the use of the program cLAssI from sHEEP. These
results are thus at a variance with Gurses's general con-
clusions when k =0.

The program CLAssI also shows that our conformally flat
solutions (with k'=0) can be interpreted in terms of a null

electromagnetic field. These solutions describe special
plane-fronted gravitational waves with a constant null vector
k, of the type considered by McLenaghan, Tariq, and
Tupper4 (Cf. Ref. 5, theorem 32.17).

Section II contains the discussion of scalar fields whose u

dependence corresponds to lightlike (IIa) and to nonlightlike
(IIb) four-vectors k, leading to the above results and to the
Penney solution in particular. The discussion of a v depen-
dence is presented in Sec. III in a complete parallel way
leading to the unique GGrses solution.

The signature (+, —,—,—) is chosen for the metric
tensor and the Ricci tensor is defined by R„„=R „„.

Let us consider a conformally flat space-time with metric
tensor

g„„(x)= it~'(u) q„„, u = k x (2.1)

~jaw
= t)pitit)vA Ygpvg t)airer)p& (2.3)

where Q is a scalar field whose space-time dependence is

also given in terms of the variable u, are equivalent to the
system

k k „ , k2q
2 ", [Qp" 2(@')']+ """—[(~ti')' —2Qp "l = —K T~,

and

T„„=(y')'(k„k„—~k'~„„) .

(2.4)

(2.5)

The derivatives are taken with respect to the variable u

and k2= q~"k„k„.
From Eqs. (2.4) and (2.5), the Einstein equations are

equivalent to

with

k„k„A + g„„k2B= 0, p„, v = 0, 1, 2, 3 (2.6)

, l44"—2(4 ')')+K(q ')' (2.7)

where k is an arbitrary constant and uniform four-vector.
The coupled Einstein equations

(2.2)
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and

, l(p')' —
2&0 "] —Y~(q ')' . (2.8)

so that we have to solve the only condition:

(2.17)

Let us distinguish different cases corresponding to the
lightlike (k2=0) or nonlightiike (k2 & 0) character of k.

(a) If k'= 0, then we immediately get from Eq. (2.6) Q(k x) = [C (k x)+ C ]'i' (2.18)

We are led to the unique solution (up to arbitrary constants

C~ and C2)

A=O

This relation implies from Eq. (2.7) that

y =42/~ J [@(P ') "]'i'du'

(2.9)

(2.10)

corresponding to the Penney solution when k2 & 0 and

Ci = 1, C2 = d.

III. ON SCALAR FIELDS ${xt }AND P {x2}

In particular, if we choose for the scalar field @ the explicit
form (suggested by Penney's work) Let us assume now that the space-time dependence of the

scalar fields $ and P is given by the variable v = x2, namely,

@(k x) =(k x+d)
where d and m are arbitrary constants, we get

S/2
2m(1+m)

1 (k +d)+$

leading to a family

g„„(x)= (k ~ x+ d)2 q„„, P(k x) —= (2.12)

(2.11)

(2.12)

(2.13)

with

x„x„A'+q„„B'=0

and

g„.= p'(~) q„„, p = y (~) .

Equations (2.2) and (2.3) imply that

(3.1)

(3.2)

(3.3)

of solutions satisfying the Einstein-massless-scalar field
equations.

The program CLASSI from SHEEP, developed in order to
check the eventual equivalence between different metrics of
four-dimensional Riemannian manifolds, solutions of
Einstein's field equations, has been used to show explicitly
that the various solutions (2.13) corresponding to different
values of the parameter m are really intrinsically different.
This is at variance with Gurses's2 contention that there exist
only two distinct solutions when the source of Einstein's
equations is a massless scalar field. If m=& (and b=0),
we recover the Penney solution while, if m = —1, we get
the Minkowski metric.

As shown by the use of the program CLASsI, the Ricci
tensor associated with solutions (2.13) is of the algebraic

type 2 3[(11,2) ] in Segre notation (see, for example, Ref.
5), implying that the related energy-momentum tensor can
be interpreted as that of a pure radiation field which can it-

self be interpreted in terms of a null electromagnetic field.
This result is in agreement with the well-known fact that

the line element associated with the metric tensor (2.1)
when k2=0 can be brought into the following Brinkmann
form (cf. Ref. 5, Sec. 21.5)

ds2 = —dx2 —dy2+ K4(u) (x2+y2) + 2du dud Q

2

This metric tensor is, in fact, the on1y existing conformally
flat solution with a null electromagnetic field. 4

Let us also notice, in eonneetion with Gurses's develop-
ments, 2 that our $ solution (2.11) satisfies

0 —= qI'"@ „@„=0 and Clg—= g""8„8„/=0 (2.15)

A =0 and B=O (2.16)

so that we immediately recover the Gurses-Penney solution
in this case.

(b) If k2& 0 (k is timelike or spacelike), we obtain from
Eq. (2.6)

[~ [(@')' —2@&"] —3pP'] —v u (y')',
Q2

(3.4)

where the derivatives are taken with respect to the variable

Equation (3.2) is satisfied if and only if

A'=0

and

B'=0
By combining Eqs. (3.4) and (3.5), it follows that

This equation is easily integrated by putting
a~=44

(3.5a)

(3.5b)

(3.6)

(3.7)

where a is an arbitrary constant. Indeed, Eq. (3.6) is then
reduced to the form

vS'+ 3S= 0

which implies that

S=, b =constb
V

From Eqs. (3.7) and (3.9) we immediately get

p = (Cg+ C2/x4)'i',

(3.8)

(3.9)

(3.10)

where C~ is an arbitrary constant and C2= —ab.
Using Eqs. (3.3), (3.5a), and (3.10), we recover finally

Gurses's solution

g„„=(C)+ C2/x4)q„„,

p = —v'6/~ tanh '(x2+C~/ab )
(3.11)

This means that, if the space-time dependence of the scalar
fields @ and P is given by the Lorentz invariant u = x', then
Eqs. (2.2) and (2.3) admit Gurses's solution as the unique
solution.
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