
PHYSICAL REVIEW 0 VOLUME 30, NUMBER 8 15 OCTOBER 1984

Instability of rotating chiral solitons
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We show that spherically symmetric chiral SU(2) x SU(2) solitons are unstable under spin-isospin rota-
tions. Namely, the effective potential including the effects of quantizing the collective coordinate corre-
sponding to such a rotation has no minimum in the class of functions used to, describe such solitons.

The idea that baryons may emerge as solitons' in a
U(N) x U(N) chiral model has been recently given a new
impetus. 2 The phenomenology of static nucleons and nu-
cleon resonances has been studied. 3 A mixed picture, 4

wherein for small distances the nucleon is viewed as an MIT
bag consisting of three quarks and for large distances as a
chiral soliton, has also been studied. Of course, a complete
treatment has to include a quantization of all modes around
the soliton solution. A partial quantization was done in Ref.
3. In that work, the mode corresponding to a joint spin-
isospin rotation, which is a constant of the motion for the
soliton, was quantized. The procedure followed was first to
solve the static equations for the soliton and then to rotate
this fixed solution in spin and isospin coordinates. In one-
particle quantum mechanics, an analogous procedure ~ould
consist of finding the minimum, r = rc, of a potential V(r)
and then adding a rotational energy with fixed moment of
inertia, I= mro . To this order, the energy of a state with
angular momentum l would be V(rc)+ l(l+ I)/2mrs . A
somewhat more accurate procedure would be first to diago-
nalize the angular momentum, obtaining an effective poten-
tial V, (rtr) = V(r)+ l(l+1)/2mr2, and then to minimize
V,(((r). Had the minimum of V(r) been very steep, the
difference in these two procedures would not have been, for
small l, very significant. For large values of 1, V,(((r) will,
in general, cease to have a minimum. In this note we will
show that if we follow the second procedure, then in the
chiral model there will be no spherical soliton solution for
any value of the spin-isospin.

The Skyrme model' is based on the Lagrangian
2

I.= Tr[B„UB„U]+ . (I)

U( r ) =exp[iF(r) F r]" (3)

U is an SU(2) matrix and F„ is related to the pion decay
constant, F =186 MyV. The dots refer to terms quartic
(and possibly of higher order) in U. The latter are essential
in order to prevent the soliton from shrinking to zero size.
As we will be concerned with large-distance behavior, their
details will not be important. For the sake of notational
compactness we will denote all contributions arising from
such terms by dots.

The static potential energy corresponding to (1) is
2

V[U]= t dr Tr[UU 0U]+ . . (2)16 J
The Skyrme soliton is a minimum of this potential in a class
of functions F(r), with F(0) =m. and F(~)=0, based on
the ansatz

where r is a unit vector in the r direction, 7- the Pauli ma-
trices. Spin-isospin rotations correspond to the transforma-
tion

U~ AUA (4)

F„
M[F] = 4' r dr + +

A. [F]= 4m r2dr sin2F+
6

In the above I=2J=2I, where J and I are the spin and
isospin of the nucleon states. Minimizing M[F] yields the
usual soliton solutions. We shall show that, for any
l, V,(([F] has no minimum within the class of functions
considered.

The Euler-Lagrange equation for the minimum of V,ff is

mF — r + sin2F+8 28F
Br Br

1

3l(l+2) ' r2sin2F+
I

16m F„
J

We claim that for I & 0 these equations do not have a solu-
tion. For large r we seek solutions with F 0 and thus we
may linearize Eq. (6),

82F 2 8F 2+ —F
8f r 8r r

3 l(l+2) F 0 (7)
I ~r psin2F+

,J
[The quartic terms in the Lagrangian contribute only to the
integral in the denominator of Eq. (7). Other terms de-
crease faster then the ones retained. ] Equation (7) has the
form of a free-particle radial Schrodinger equation with an-
gular momentum equal to one and wave number

3l(i+2)
Svr F I dr sin F+

t I

Asymptotically F behaves as (sinkr)/r or (coskr)/r and the
integral in the denominator of Eq. (S) does not converge.

(8)

with A a space-independent SU(2) matrix. Diagonalizing
the Hamiltonian for the motion corresponding to A we ob-
tain an effective potential3

Ve(([F] = M[F]+ l(l+ 2)/Sit [F]
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For k2=0, F goes as 1/r2 yielding a convergent value for
the integral and a nonzero value for k . This contradiction
shows that Eq. (6) has no solutions for any finite value of
I/F„2.

If one treats the chiral, low-energy, Lagrangian as an ef-
fective Lagrangian for QCD in the large-N limit (N is the
number of colors), then the rotational term in the Lagrangi-
an is formally of order 1/N relative to the main term. s

Quantization of the rotational degrees of freedom can then
be considered as semiclassical with 1/N being the small
parameter. The relative 1/N factor between the static and
rotational terms obtained in Ref. 3 is due to the fact that
the characteristic distances in F(r) are rF„—JN When.
V ff is minimized much larger distances become relevant
changing the N dependence of these terms.

The breaking of chiral symmetry through the addition of
a pion mass5 modifies Eq. (7) by adding a term proportional
to m„F to it. We now expect, at least for small l, exponen-
tially damped solutions of Eq. (6). Of course, all nucleon
properties would not be smooth in the limit m„0, contra-
dicting the hypothesis that at least nucleon masses have a

smooth chiral limit.
A different regularization of this problem is achieved by

introducing a radius R, with F(R) =0, and at the end let-
ting R ~. For finite R, we solve Eq. (6) with k' of Eq.
(8) fixed and then use this equation to determine it self-
consistently. For large R, k —1/R and an analysis of Eq.
(6) shows that the rotations do not contribute to the energy.

Topics remaining to be investigated are whether deformed
(nonspherical) solitons are stable under rotations and/or
whether additional time dependence s will dampen the
large-distance oscillation. Although the contributions of
these additional vibrations is expected to be still of higher
order in 1/N, it is possible for them to regulate the rotation-
al instability and in fact restore the results of Ref. 3.
Should any of these approaches prove correct, then the cen-
trifugal barrier introduced by rotations would stabilize the
soliton against collapse to smaller sizes, removing the neces-
sity for the quartic term in the Lagrangian.
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