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Fractional indices in supersymmetric theories
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The regularized index introduced by Witten for supersymmetric theories and discussed by Callias
for elliptic operators is studied. We relate this index to Levinson's theorem for potential scattering
and clarify its meaning even when it takes on fractional values. The index can be (and usually is)

half-integer whenever the continuum in the spectrum extends down to zero energy.

0 L
LT 0 (2)

acting on the vector with a bosonic upper component and
a fermionic lower component. Therefore b, can be identi-
fied with the index of the operator L:

b=dimKer(L) —dimKer(L )

=dimKer(L L)—dimKer(LL ) . (3)

In most of the interesting cases L is elliptic and one is led
to the general study of the index of such operators.

In supersymmetric quantum mechanics

LL 0
H=

2 IQ Q 3=
()

(4)
I

and we shall concentrate on the behavior of the index for
this problem. In general the forrnal expressions (1) and (3)
are ill defined and need regularization. Witten has sug-
gested a heat kernel regularization'

htt=Tr( —1) e

whereas Callias introduced the form

One of the outstanding problems in supersymmetric
theories is to understand the circumstances under which
supersymmetry is broken, and to identify an order param-
eter associated to this breaking. Since the spectrum of su-
persymmetric theories is positive semidefinite, supersym-
metry is broken if there are no states with zero energy.
This has led Witten' to introduce an index that counts the
number of bosonic zero-energy modes minus the number
of fermionic zero-energy modes:

5=Tr( —1)"=n~(E =0)—nF(E =0) .

If the Hilbert space of the theory is split into bosonic
and fermionic subspaces, the supersymmetry charge can
be written as'

the expressions (5) and (6) are actually regularization
dependent if the theory has a continuum of states. Thus,
the index of interest is defined as the limits

0 L u Q

d =~Ed
In our examples we write

r

L =i +P(x), Lt=i —P(x)
d d

dx dX
(9a)

and then H is diagonal with elements

a'
H =H+=LLt= — +P +P'

Bx
(9b)

H22=H =L L=—a'
2, +0

Therefore, we may write

A(z) =Tr
H +z H++z

=z lnJ„(z), (10)= d
dz

where

5= lim b,tt and 6= lim b, (z) .
P~ e) z~o+

Moreover, in recent papers ' it has been found that the
index is fractional in certain circumstances. It has been
suggested that such fractional values may arise when the
continuum extends to E=0. However, no explanation
has been provided for the particular fraction —,

' found in
examples nor why no other values have been found. The
quantity b, (z) of Eq. (6) will be studied in the case of su-
persymmetric quantum mechanics and in the process we
will clarify its physical meaning, interpretation, and possi-
ble values.

The action of the Dirac-type operator (2) onto the bo-
son and fermion states can be cast as

b,(z)=Tr( —1) H+z (6)

Actually (5) and (6) are directly related by a Laplace
transform.

It has been recognized that despite the fact that the
nonzero-energy states of fermions and bosons are paired,

J~(z)= J (z)
J+(z)

H +z
det H„+z

H++z
det" H.+
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The quantities J+—(z) are the Jost functions ' (Fredholm
determinants) of an associated Schrodinger equation with
energy E =—z. The comparison Hamiltonian H will be
chosen to ensure the existence of J and J+. If the spec-
trum of H + is—discrete [P(x) unbounded as x —++ 00] the
pairing properties of the nonzero-energy states assures
that b, (z) is z independent and equal to the integer index.
However, we are interested in the case when there is a
continuum in the spectrum, and will therefore study the
case when the background fields P(x) in (9) are bounded
as x —++ oo. The general situation can then be considered
by performing appropriate limits.

In Eq. (11), H„ is any suitable and solvable Hamiltoni-
an with potential V(x). We will make the simplest possi-
ble choice for V(x) such that it has no bound states and
achieves the same asymptotic values as P(x) when
x~+no. In the specific example P(x = —ao)=P and
P(x =+ oo ) =P+, the potential V(x) can be chosen to be
V(x)=P 0( —x)+P+ 8(x). This choice of H, guaran-
tees the existence of the Jost function. Indeed the Jost
functions can be written as

where $0,$1 are two linearly independent solutions of H
with Wronskian co. The normalization of $0(x) is fixed to
be a unit incoming wave for x & 0 and a pure transmitted
wave for x & 0. It can be easily seen that

(14)

where T„T+are— the transmission coefficients for
H„,H+—. The Jost functions have zeros at the bound
states of H +, and—are complex above threshold with a
phase equal to the negative of the scattering phase shift.
Although an evaluation of J+(E) re—quires a nontrivial
computation involving knowledge of the detailed behavior
of P(x), their ratio can be computed easily in terms of
asymptotic quantities only.

The scattering states of H+ have the boundary condi-
tions

J—+=1—— Ix U —x —xdx, (12)

where U+—=P (x)—V(x)+P'(x). The f+(x) are th—e solu-
tions to

ik x + —ik x
e +R e, x~ —~

+ ik+xT e, x~+ ~,
(15)

f+=$0(x)+-— —$0(x)I $1(y) U +(y)f+(y)dy-—

+ $1(x)f $0(y) U +(y)f+(y)&y-, -(13)

where E=k +P =k+ +P+ . Since the eigenstates
of H and H+ with nonzero energy are related by the
operator of Q in Eq. (2), one then has

ik x + . . —ik x
i (ik —P )e +R i( ik ——P )e, x~—oo

i(ik+ P+)T+e +—, x~+ oo .

Therefore the Jost. ratio JR is itself a topological invariant
given by

T+
T ik+ —P+

(P '—E)'"+P
(P

'—E)'"+P (17)

It is remarkable that J~ only depends on the asymptotic
values of P(x). Indeed the dependence of J+ and J on
the local details of the background fields P(x) cancels in
the ratio JR. To obtain b,(z) in (10) we continue to nega-
tive E= —z,

( E y2)1/2 .
( +y2)1/2

and finally achieve

b, (z) =z lnJR(z)
d
dz

0+
(z+y 2)1/2 ( +y 2)1/2 (19)

This is the expression given by Callias. However, we
have obtained it from the knowledge of the Jost function
ratio and the behavior of the scattering states.

The functions ( d /dE) lnJ +—(E) have the following
structure in the complex E plane: isolated poles (zeros of
J+—

) at the bound-state energies and a cut for the continu-
uin states starting at threshold ET ——min(P, P+). How-
ever, the poles for E&0 cancel between J+ and J in
(d/dE) lnJR (E) due to the property of pairing of the ener-

gy levels [see Eqs. (2) and (6)]. The only possible remain-

ing pole is at E=0 (a zero of J or J+). Now A(z) is an-

alytic in the complex z plane with a cut along the negative
real axis from ( —&x&) to z= ET. Any possible p—ole at
z =0 is canceled by the factor z in the numerator in (19).
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IWR(z) =in
~
J,(z)

~

—ia, ( —z), (21)

where 5a ——5 —5+ is the relative phase shift between the
scattering states of H and H+. Therefore, for finite
z, 5(z) becomes

From the expression (19) the index is obtained as the
lim, 0+5(z). However, if we want to study the limiting

case P+ ——0 or P =0, the correct prescription is to keep z
finite, let P+ or P go to zero, and then let z~0+. Since
b, (z) is analytic in the cut z plane and vanishes for large z,
it satisfies an unsubtracted dispersion relation of the form

1 h(z')dz'
b, z=

2Nt o Z —Z

where the contour c runs above the cut on the negative
real axis from z= —oo to z= ET,—around the edge of
the cut, and then below the cut from z = ET to-
z= —oo. For Ez&0 (/+&0 and P &0) Jit does not
have a zero (or a pole) at the edge of the cut because of
the pairing property. Therefore, the circle at the edge of
the cut does not contribute to (18). Furthermore, even if
ET —0 (P+ ——0—or P =0) and Jit either vanishes or has a
pole there, it can be seen that the circle around the edge of
the cut still does not contribute to (20) for finite z & 0.

Now above the cut, one has

behavior of the relative phase to the number of bound
states.

Therefore, the index becomes
r

nti (E =0)—ng+(E =0), if $+~0, P +0
5(0+)=.—,', if P =0 (26)

if /+=0.

When P =0 the zero-energy (threshold) state that con-
tributes the factor + —,

' to (25) is "half bound" in the sense

that its wave function decays exponentially as x —++ oo

and remains constant as x~ —oo (vice versa for P+ ——0).
This then translates into a v z singularity in Jii. It is easy
to see that this will always be the case when the continu-
um cut starts at the origin.

In a recent paper Akhoury and Comtet have found
that their computation of the index (with heat kernel reg-
ularization) was ambiguous in a particular model. The
direct calculation of the index did not agree with the
evaluation using the standard relation between the phase
shifts and the density of state. However, we will show

that there is no ambiguity one must take care when the
continuum can contain a threshold "bound state. " The
density of states is obtained in the following way. Since

6(z)= I dE', , 5ti(E'),E'+Z dE' ~

b,(0+)=—
[5ii (k =0)—521 (k = oo )] .I

(22)
2nip(E) = Tr

1 1
(27)

0+ H —E—ig H —E+iq

from the definition of 5(z) one has

To relate (23) to the number of bound states; we use
Levinson's theorem. 5' The standard proof proceeds by
simply observing that the quantity (dldz)lnJii(z) has
poles at the (zero-energy) bound states of H and H+. If
ET&0, these poles are within the contour c of Eq. (20)
and ~e obtain

, 1n/ii (z')dz'= —
[521(k =0)—52i (k = oo )]

~ dZ

[p (E)—p+(E)]
r

1 b, (z) &(z)
2'/ Z ~ Zs= —E—iq g =—E+l YJ

where p+ are the density of states of H+ . Thus, -

[p (E)—p+(E)]= 5(E)&(0+)

+ Imb, ( E+ig) . —1

=nti (E=0) ng+(E =0)—,

where nil (E=0) 'is the number of zero-energy bound
states of H+and H'

However, when ET 0 the situation ——is different. The
contour e now extends to z'=0 and Jz has structure at
z'=0. Indeed if P =0 then Jii(z') vanishes as v z' or if
p+ ——0 Jii '(z') vanishes as 1/z'. Since there are no
bound states within c, the contour integral in (24) has a
colltriblltlo11 llotll fl'onl tile continuum cll't ii/id frolY1 the
small circle around the origin that yields a factor + —,

'

(arising from the 1 z' singularity) and we find

, lnJit (z')dz'= —[521(k =0)—5ii (k = oo )]+—,
I

o dz

where the ( —) sign corresponds to P =0 and the (+)
sign to P+ ——0. Levinson's theorem allows us to relate the

Using t e result (i9) we find

[p (E)—p+(E)]= —,'[e(P+) —e(P )]5(E)

(E y 2)1/2
8(E — ')

g(E rh+2—
2)1/2 ~ +

X~0
e(x)= '0, x =0

—1, x~0

and
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1, x~O
8 x)=

0, x~0.
Fi'oin Eq. (30) wc cail easily understand wily 5(z) ls gcll-
erally not independent of z when the spectrum contains a
continuous part despite the pairing-of-states argument.
We see that the density of states at finite k are different
for H and H+ as one would expect since their poten-
tials differ.

It is lnstructlvc to cxaillillc Eq. (30) ill a specific case.
If P+ is positive and P is negative but smaller in magm-
tude, then the density of states below E=P+ is

whereas if P =0, then

(p —p+)= —,'&(&) .

Now for finite
I P I

the total difference in the number of
states between E=O and P+ is

I
(('- I

(y 2
y 2)1 /2

This is seen to smoothly approach —, as
I P I

goes to
zero, and 1 as

I P I ~P+. Thus, even though the density
of states is quite discontinuous, the relative number of
states is smooth. As P ~0 and P+~ 00 we sm from Eq.
(30) that there is a "half state" at E=0 and a deficit of a
half state at Z= Oo. The former yields a contribution of

whereas the latter gives vanishing contribution to the
regularized index. This resolves the ambiguity and agrees
with our general result (26).

We are now in a position to study the index using the
heat kernel regularization. To this purpose we write (fol-
lowing Goldberger )

hp= —,
'

[c((I)+)—e(p )]+—,'c(p )erfc{{pp l)'rz)

——,
' «(P+)erfc((PP+2)'~ ) . (33)

The index is obtained as the limit P~ Oo. From (33) it is
seen to coincide with A(0+) in (19) and expressions (26}.
The dependence of hp on P is again due to the difference
in the density of states of H+ and H

The hmit of P~O in {31) should give the formal ex-
pression Tr( —1) [same as z—+ co of b, (z)]. However, it is
exactly zero because the total deficit of states (including
zero modes) between H and H+ is zero, i.e., there are
the same number of states in both. This is dictated by
I.evinson's theorem.

It is amusing that from Eq. (31), the Witten index can
be interpreted as the difference of the second virial coeffi-
cients for particles whose interactions are given by H
and a+, 7 8

Although' w'e have concentrated on one-c4IBensj. onal ex-
amples, our results can be easily extended to three dimen-
sions. The only difference is that if Jtt in (21}vanishes or
is singular at z'=0, the extra —,

'
only arises from the S-

wave phase shifts (in which case the state is half bound
as in the one-dimensional case). For l & 1, it is a true nor-
malizable bound state with a contribution of +1.'

Therefore, we conclude that the index is an integer {or
zero) whenever there is a mass gap in the theory. It is
half-integer if the continuum extends to zero, indicating
that there is a zero-energy (bound or resonant) state. Even
though the index does not count states properly, only
Levinson s theorem does this, it still contains the informa-
tion about the existence of zero-energy states.¹teadded in proof. The following references should
also be mentioned: M. Hirayama, Prog. Theor. Phys. 70,
1444 (1983); S. Cecotti and L. Girardello, Nuc:1. Phys.
8239, 573 (1984); C. Imbimbo and S. Mukhi, Max-Planck
Institute Report No. MPI-PAE 88/83 (unpublished); and
M. Stone, Ann. Phys. (N.Y.) 155, 56 (1984).

where the contour d extends above the negative real axis
from z =0 to z = —Do and returns below the axis closing
at z=O+. Then it is easy to see that Eq. (31) can be
rewritten using Eq. (28) as

4p= I e ~xfp (E) p+(&)], — (32)

where [p (E)—p+(E)] is given by Eq. (30). A simple
calculatIon yields
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