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We discuss R class of models, not based on the Peccei-Quinn mechanism, that solve the strong CP
problem. These are a generalization of a model of Nelson. Improved conditions are given for such

models. These conditions are natural and in many simple models are automatically satisfied.

I. INTRODUCTION

One of the most subtle and intriguing puzzles in the
theory of CP violation is the so-called strong CP problem
which is that of explaining in a natural way the apparent
absence of CP-violating effects in the strong interactions.
It was once thought that the QCD Lagrangian automati-
cally conserved CP. The discovery of instanton effects'
showed that this is not so. The parameter that Ineasures
the magnitude of CP-violating effects in QCD is called 8
and is given by

=qcD+ qFD (1)

8&cD is the vacuum angle of QCD or, equivalently, the
coefficient of the term (1/32m )G„G'" in the QCD La-.
grangian (6„'„is the gluon field-strength tensor). 8~„D is
the phase of the determinant of the quark Inass matrix,
tha«s, 8qFD ——argdetMg. Under chiral rotations of the
quark fields 8&FD and 8&co may change but 8 is an in-
variant, physically observablc quantity. 0, bclIlg an angle,
may in principle take values between 0 and 2m, but is ex-
perimentally known to be less than or of the order of
10 . Since 8=0 does not correspond to an enlarged
symmetry of the theory this constitutes a severe fine-
tuning problem.

There are two known ways to resolve this problem.
The generally favored of these is the Peccei-Quinn mecha-
nism. This is so familiar that we will not undertake to
explain it here. The Peccei-Quinn mechanism is unques-
tionably a very elegant and economical solution to the
strong CP problem. Nevertheless, there are two reasons
for exploring the alternatives. First, elegance alone is not
enough to guarantee the correctness of any idea, so it is
important to know what the viable theoretical alternatives
are. Second, the Peccei-Quinn models are already under
some pressure from astrophysical constraints. The scale
of breaking of the Peccei-Quinn symmetry (call it Mpo)
must be larger than about 10 GCV or else axions couple
to ordinary matter strongly enough that the emission of
axions from stars will be too copious and affect stellar
evolution in ways inconsistent with observation. On the
other hand, Mp~ must be less than about 10' GCV or else
the energy trapped in the cosmological axion field will be
large enough to overclose the Universe. This is the axion
energy problem. Therefore, there is necessarily a new in-
tcrmcdiatc scale 1I1 such models. Furthermore unless
some care is taken to avoid them, Peccei-Quinn models

will lead to cosmological domain walls. These could be
red-shifted away in an inflationary epoch which occurs
after the Peccei-Quinn symmetry breaks; however, such
an inflation would necessitate generating the baryon
asymmetry at temperatures below Mp& (which is rather
low). The problem of domain walls can be avoided in oth-
er ways, but these involve collstraints 011 the structure of
the Peccei-Quinn models.

Heretofore, no simple or particularly plausible alterna-
tlvc to tllc Pccccl-QU11111 Illcc11alllslll existed. A clRss of
models based on spontaneous CP breaking which solves
the strong CP problem indeed exists in the literature.
However, these models suffer from a number of difficul-
tlcs. Ill tllc fll'st plRcc, lt ls necessary to 1111posc 111 thcIn
some symmetry for no purpose other than to render 8&FD
zero at the tree level. These are not symmetries one would
have suspected to exist for any other reason. In the
second place, all of the models of this type constructed in
the past involve CP being broken at the same scale as
SU(2))&U(1). This leads to a (probably) insurmountable
problem with cosmological domain walls. It also makes it
difficult if not impossible to generate an adequate baryon
asymmetry. Furthermore, to accomplish this CP break-
ing requires the low-energy SU(2)XU(1)-breaking Higgs
sector to be nonminimal. [This is so because to violate CP
one needs to have some nontrivial relative phase between
two (or more) vacuum expectation values. ] This leads to
Unacceptable flRvol'-chaIlglIlg neutral-current llltcractlolls
mediated by scalars, unless the Higgs masses are quite
large —in the TCV range. A final problem with these
models is that they were found to be difficult to unify. s

Recently, however, a much superior version of these
models with spontaneously broken CP has been pro-
posed. It suffers from none of the above difficulties. Far
from being contrived to solve the strong CP problem, it
was in fact put forth for other reasons' and only after-
wards discovered to resolve this problem. This model was
generalized in Ref. 11. In that paper it was observed that
any Inodel satisfying two simple criteria would solve the
strong CP problem and have the same desirable features
as the model of Ref. 9. A calculation of 8 in this general
class of models was presented in Ref. 12.

In the present paper we have several further remarks to
make on this new class of models. In the first place, we
wish to present a similar but considerably less restrictive
set of conditions than that presented in Ref. 11. Second,
we will discuss these conditions somewhat more fully than
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was done in that paper and make clear in particular that
these conditions are technically natural and quite simple
to implement. Finally, we wish to dwell on some virtues
of these models not previously emphasized.

II. THE NE% CLASS OF MODELS

A. Superheavy fermions

A key element of the new class of models discovered in
Refs. 9 and 11 is the existence of superheavy fermions.
Such fermions are a common feature of grand unified
models. (They appear, for example, in various types of
models which naturally give rise to a light-fermion-mass
hierarchy. They are also usual in Peccei-Quinn models
which manage to avoid the Sikivie domain-wall problem
by having the Peccei-Quinn symmetry break down to a
unique vacuum .) In fact, the Georgi "survival hy-
pothesis"' leads one to suspect that such fermions may be
present. According to the survival hypothesis, if a unified
group G breaks at sup erlarge mass scales down to
SU(3)XSU(2)XU(1), then all fermions which can have
6-invariant masses will naturally have such masses (un-
less some unbroken symmetry prevents it) and these
masses will be superlarge. Thus, if we have a unified
model whose fermions are in a set of representations
S =F+R, where R is a real set under G and F is a corn-
plex set under 6, then at low energies only a set of fer-
mions with the quantum numbers of F will remain light.
The remaining set with the quantum numbers of R will
become superheavy. This is because a G-invariant mass
term of the form M~(RR) can exist due to the fact that R
is a real representation and R &(R contains a singlet.
Therefore, if F contains fermions with the quantum num-
bers of the nf "families" (i.e., of the observed low-mass
fermions), then —no matter what R contains so long as it
is real under G—one will obtain the correct low-energy
light fermion spectrum. [A familiar example of this is the
right-handed neutrino which is present in each family in
SO(10) models. If SO(10) breaks to SU(5) this particle,
being an SU(5) singlet, can and naturally does acquire a
superlarge mass. ' ] An important point to emphasize is
that the particular fermions that remain light may be
mixtures of fermions in F and in R. If there are super-

large mass terms coupling F to R, then these mixings can
be quite large.

B. Conditions for solving the strong CP problem

I.et us consider a general grand unified model with a
gauge group G. Let us suppose CP is a symmetry of the
Lagrangian. Then OQCD —0 and there will be no CP-
violating phases in any of the couplings of the theory. Let
us distinguish the fermions into two sets F and R, E con-
taining fermions with the quantum numbers of nf fami-
lies and R being a real set. This in itself is no restriction
on the model but is, as we have tried to make clear, the
general fermion content of any model with the correct
low-energy spectrum. [Fmay contain some "extra" parti-
cles besides the ob'served families; e.g. , in SO(10), F may
consist of 16's which have right-handed neutrinos; or in
E(6), F may consist of 27's.] Now let us suppose that R is

composed of a set of fermion representations, C, and its
conjugate set, C. So R =C+C. Then if two simple con-
ditions are satisfied, 8 will be naturally zero at the tree
level. These conditions are the following. (Condition 1 is
slightly different and less restrictive than the correspond-
ing condition stated in Ref. 11.)

Condition 1. At the tree level there are no Yukawa or
mass terms coupling F fermions to C fermions, or C fer-
mions to C fermions.

Condition 2. The CP-violating phases appear at the tree
level only in those Yukawa terms that couple F fermions
to R =(C+C) fermions.

We will discuss the "naturalness" (in the technical and
the ordinary senses) of these conditions below. First, let
us see what they imply for CP violation.

If there were no E-R couplings, then the R fermions
would be superheavy and the light families would be pure-
ly in F. We require, however, that there be scalars which
couple F to C and which acquire superlarge vacuum ex-
pectation values (VEV's). The light fermions will then be
mixtures of E and R. It is through such mixing that CP-
violating phases show up in the low-energy effective
theory. Since the F-R terms have CP-violating phases,
the fermions that end up being light are linear combina-
tions of fields in F and fields in R with comp/ex coeffi-
cients. At low energies the effective theory, therefore,
'looks just like the Kobayashi-Maskawa model. To see
why 8=0 at the tree level, let us first examine the tree-
level mass matrix, M, of the charge ——,

'
quarks, q

and the charge + —, antiquarks, q' ). Such quarks and
antiquarks are to be found in F, C, and C. Schematically,

q' M q =(q' (F);,q' (C);,q' (C)k)

(Au);; 0 (fco) k

x (f'a)')J, M,, 0

Mkk

q (F);

q (C)~.

e- «)k

(2)

The X, f, and f' are Yukawa coupling-constant matrices.
The U, co, and co' are vacuum expectation values of scalar
fields. The Mzz and Mkk are square matrices. This is ob-
vious from the fact that there are as many q in C as
there are q' in C. The zero entries vanish by condition 1.
The detM is given by

det M =det (A,U);; det MJJ det Mkk .

Notice that the matrices fco and f'co' do not contribute to
detM . [Each term in detM must have as a factor an
element from every column of Mjj and thus one from
every row of MJJ as well, and hence none from (f'co')J, .
A similar argum~ent applies for (fee) k ]But by condition.
2 the only CP-violating phases in M appear in (fee) k
and (f'co')J, The same reasoning applies to the mass ma-
trix M+ or the charge +—', quarks, and also to the mass
matrices of other colored fermions. Therefore,

(4)

To summarize the situation. then, CP violation shows
up in the F-R terms that intermix light and superheavy
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quarks, and then filters down, as it were, to the light-
quark mass matrices. Yet an inspection such as we have
done of the entire mass matrix of the quarks, both light
and superheavy, reveals that detM~"' ——real.

C. The naturalness of the conditions

Let us now discuss the naturalness of the two condi-
tions. Looking first at condition 2, how is it possible (or
even meaningful) to say that there are no CP-violating
phases in the tree-level F-F or R-R couplings?

First, we show that the tree-level F-F couplings natur-
ally, indeed automatically, satisfy condition 2 if there is a
minimal light Higgs content. The scalar(s) that couple F
to F at the tree level contain the Weinberg-Salam Higgs
doublet(s). By minimal light Higgs content we mean sim-
ply that there is only one such multiplet and therefore
only one light Higgs doublet. This doublet has nonzero
hypercharge, of course, since it breaks SU(2)XU(1). (Its
hypercharge is Y'/2= —,'.) Therefore, by a global hyper-
charge rotation the phase of its vacuum expectation value,
v, can be changed arbitrarily. In particular, it can be set
to zero. From this it is clear that this phase cannot con-
tribute to any physical, CP-violating quantity like 8. (If
we did not set the phase of U to zero we would simply find
that it contributed oppositely to argdet M and argdet
M+ and canceled out in 8.)

If, there is more than one light Higgs doublet ("non-
minimal Higgs" ) coupling F to F, then in general these
may have VEV's with nontrivigl relative phases which
cannot be absorbed by a hypercharge rotation. In this
case condition 2 might not be satisfied.

Now, let us consider the tree-level R-R terms. These
are either explicit masses, which are necessarily CP-
invariant because W is, or spontaneous masses arising
from C-C terms (by condition 1). These latter, in some
models, could contain CP-violating phases. However,
generally speaking, this will not be so in simple models.
Suppose, for instance, that a model contains a single
Higgs boson in the adjoint representation. [Such fields are
used commonly to break SU(5) down to SU(3)
XSU(2)XU(1).] The adjoint is in the product CXC.,

However, since the adjoint is a real representation, it is
easy to see that its VEV cannot have a CP-violating
phase. In this case the R-R terms would automatically
satisfy condition 2. It is also perfectly possible to have a
realistic, phenomenologically satisfactory model without
any Higgs field in the product CXC. In this case also,
condition 2 is automatically fulfilled. In order to violate
condition 2, in fact, a model must have a somewhat corn-
plicated Higgs structure. The scalar fields coupling C to
C must be complex so that they can have phases, and
there must be enough of them so that there is at least one
phase that cannot be "rotated away. " There seems no
particular reason from the point of view of phenomenolo-

gy to introduce such a complicated Higgs structure.
To recapitulate, in order to have condition 2

satisfied —not merely naturally —but automatically, it
generally suffices to have a simple and economical Higgs
structure.

It is easy to see as well how condition 1 may be satisfied

naturally. Namely, there should not be any Higgs bosons
in the model which are in the Kronecker products F&C
and C&C. Since F, C, and C would in general consist of
different sets of representations this constraint is not very
restrictive. This should become more apparent after we
discuss some examples.

III. EXAMPLES

A. Nelson's SU(5) X SO(3)g,may XU(1)g)pba] X CP model

This model ' ' is the first of this type discovered.
The fermions are in the following multiplets:

F: (10,3,0)+(5,3,0),
(5)

C: (10,1 —1)+(5,1, —1),

C: (10,1,1)+(5,1, 1) .

The numbers represent the SU(5) and SO(3)t, ;~„represen-
tations and U(1)o~,b,~ charges, respectively. So there are
three light families and one vectorlike, superheavy family.
The Weinberger-Salam Higgs multiplet is a (5,1,0). The
SU(5) breaking is, as usual, done by an adjoint: (24, 1,0).
The breaking of CP and of the family group are both
done by a number of (1,3,1) Higgs multiplets. These cou-
ple the F to the R fermions. (One may have additional
Higgs multiplets as well, or a somewhat different set. )

Condition 1 is trivially satisfied since the model has no
scalars in the Kronecker products F& C and C &(C.

The light Higgs content is minimal. That is, there is
only one (5,1,0)It. (The subscript H will denote Higgs
multiplets. ) This is the only scalar whose VEV couples F
to F at the tree level. This VEV, which breaks
SU(2)XU(1), can be made real by a global hypercharge
rotation. So no CP-violating phase appears at the tree lev-
el in the F to F couplings in accordance with condition 2.
Moreover, the only tree-level R to R couplings are bare-
mass terms of the form m (10,1,—1)X (10,1,1) and
m'(5, 1,—1)X(5,1,1), and couplings of the adjoint Higgs
multiplets of the form g(10,1,—1)X ( 10,1,1)X (24, 1,0)tI
and g'(5, 1,—1)X(5,1, 1)X(24,1,0)~. m and m' are real
by the CP invariance of W, as are g and g'. And the
components of (24,1,0)~ which develop VEV's are Hermi-
tian and can have no CP-violating phase. Thus, condition
2 is satisfied automatically To violate . condition 2 there
would have to be either several (5,1,0)It 's, several
(24,1,0)It's, or, in some way, a more complicated Higgs
structure. Because it satisfies our two conditions,8""'=0. The reader is referred to Refs. 9. and 12 for
more details of this model.

B. An SO(10)XCP example

This model shows that our conditions can be satisfied
quite naturally without any global symmetries (other than
CP). The fermions are in the following sets of representa-
tions:

F: 16;, i =1,2, . . .,nf

C: 126,R.
C: 126 .
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The Higgs representations are chosen to be 10~, 16~, and
45~. The 10~ contains the Weinberger-Salam doublet.
The 16~'s and 45II break SO(10) down to
SU(3) X SU(2) XU(1). The 16~'s also break CP (which is
why there must be more than one of them) and couple F
to R. There are no scalars in the products Fg C
(16X 126=144+672+ 1200), or C X C (126X 126=54
+945+larger representations). So condition 1 is au-
tomatically satisfied by SO(10) invariance. Moreover,
condition 2 is satisfied for the same reasons given in the
previous example: (a) there is a minimal light Higgs con-
tent (only one 10~), and (b) the only Higgs coupling C to
C is a single 45~ which has a real VEV.

In Ref. 11 we presented a set of conditions which dif-
fered slightly from those given in this paper. Condition 1

of Ref. 11 required that there be no SU(2) XU(1)-breaking
VEV's (at tree level) coupling F to R or R to R. The su-
periority of the present set of conditions is well illustrated
using this SO(10) model (which was also used as an exam-
ple in Ref. 11). To satisfy the present set of conditions no
other restrictions have to be imposed on this model. On
the other hand, to satisfy the conditions of Ref. 11 one
has to require that the VEV's of the 16~ do not break
SU(2) XU(1) since the 16JI couple F to R at the tree level.
This is not natural unless, say, a global symmetry is im-
posed. For in the Higgs potential there would be (without
such a symmetry to prevent it) an SO(10)-invariant term
16~X16~X10~. If we decompose this under an SU(5)
subgroup of SO(10) we find that this term contains
5(16~)X 1(16~) X 5(10~), in an obvious notation.
(5(10~)) is nonvanishing and breaks SU(2) XU(1).
(1(16~)) also is nonvanishing. This acts as a linear term
in the potential for (5(16&)) and forces it to be nonvan-
ishing as well. Then (16~) will break SU(2) XU(1). This
illustrates a general phenomenon: it is difficult without
global symmetries to prevent particular Higgs multiplets
from developing SU(2) X U(1)-breaking VEV's if
SU(2) XU(l) is spontaneously broken. However, our new
set of conditions simply obviates this problem and can be
satisfied without introducing any ad hoc symmetries.

C. An SO(10)XG fgmj$y X CP example

By this time the idea should be so familiar that we will
just state the particle content of the model. The fermions
are

F: (16p),

These examples show the "usefulness" of family sym-
rnetries (whether global or local). Without such a family
symmetry the possibilities for the representations in C and
C are slightly more constrained. One could not have
C=real as then the existence of tree-level FC couplings
follow from the existence of tree-level FC couplings. Nor
could C=F or F as then the existence of FF couplings
implies CC and CC couplings. That is why C=126 was
the smallest representation one could have used in exam-
ple B. It is the smallest complex representation of SO(10)
other than 16 and 16. But with a family symmetry
present condition 1 can be satisfied even with very small
representations, as examples A and C illustrate. If nature
is parsimonious with fermions, this would be an argu-
ment, perhaps, for family symmetry.

IV. MINIMAL LIGHT HIGGS REPRESENTATIONS

A. Necessary in Nelson-type models
to solve strong CP problems

We showed in Sec. II that if there is only one Higgs
representation whose VEV contributes to the F-F terms in
M~, then one can naturally satisfy condition 2. This in
particular means there is only one Weinberg-Salam doub-
let. Now suppose, on the contrary, that there are two or
more such Higgs representations. Call them h;
(i = 1,2, . . .). Call the several Higgs representations whose
VEV's couple F to Ran, d break CP, HI, (k=1,2, . . .).
Unless there were some ad hoc symmetry to prevent it the
Higgs potential would contain terms of the form
(h; hj)(HI, III). These will perforce lead to CP-violating
relative phases between the VEV's of the h;. Thus, condi-
tion 2 would be violated. We conclude that it is a neces-
sary condition (barring ad hoc symmetries) in Nelson-type
models that only one Higgs VEV couples F quarks to F
quarks at the tree level.

B. Sufficient to avoid flavor-changing Higgs exchange

Normally if light-quark masses come from the VEV's
of several (more than one) Higgs representations there will
be unacceptably large flavor-changing amplitudes from
Higgs exchange, unless the Higgs mass is quite large () 1

TeV). If these several [SU(2)XU(1)-breaking] VEV's are
denoted U;, and the corresponding Yukawa-coupling ma-
trices in the effective low-energy theory are denoted f",
then the light-quark mass matrices are given by

C: (16,1),
C: (16,1) .

The scalars are (10,q)~, (45,1)~, and (more than one)
(I,p)~. The (10,q) does the SU(2) XU(1) breaking at low
scales. It couples the F to F, and hence q must be in

p Xp. The (45,1)~ does the superheavy breaking of
SO(10) (other Higgs representations may be necessary for
this as well). And the F Rmixing and CP b-reaking is
done by the (l,p)~. If condition 1 is to be satisfied it
must be that q&1 [or else (10,q)II will couple C to C]
and that q&p (or else it will couple F to C).

Thus, diagonalizing M~ does not in general diagonalize
the f" and the several light Higgs bosons will have
flavor-changing couplings. (In Peccei-Quinn models one
can have different Higgs bosons contribute to up and
down quark masses. This kind of nonminimal Higgs con-
tent avoids flavor-changing problems but requires some
global symmetry, generally). Consider now a Nelson-type
model which has only a single VEV coupling F to F at
the tree level. We will argue that there is no problem with
Higgs-mediated flavor changing. Whatever SU(2) XU(1)-
breaking VEV's that appear in F-R or R-R terms lead
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only to order (M /MGU&) mixings of F and R fermions.
[SU(2) XU(1)-breaking VEV's are of order M~, while the
R fermions have order MoU~ bare masses. ] Neglecting
effects of this order, the light-quark-mass at the tree level
comes only from a single SU(2) &U(1)-breaking VEV that
couples F to F. Therefore, there is no flavor-changing
Higgs exchange at the tree level.

C. Realistic light fermion masses

Ordinarily it is required that there be several Higgs bo-
sons contributing to the quark and lepton masses in grand
unified models to arrive at a realistic light-fermion mass
spectrum. This is necessary, in particular, to avoid such
relations as m~~»«~ ——

. m, ~»«~ which follow from SU(5) in
the minimal Higgs scheme. However, if there is large
mixing of light and superheavy fermions, as there is in
our CP models, then SU(5) breaking that occurs in the su-
perheavy sector of the fermion mass matrix will show up
in the masses of the light fermions. So that even with
minimal light Higgs content the bad relations like
md~b„, )

——m, (b„,) can be broken, and, indeed, quite com-
plicated patterns of light fermion masses can be achieved,
as is illustrated in Ref. 10. In fact, this is a significant ar-
gument in favor of such light-superheavy fermion mixing
in unified models.

In summary, then, a minimal light Higgs content helps
to solve two potential difficulties: flavor-changing effects
mediated by Higgs exchange and the strong CI' problem.
In other words, one of the restrictions required by condi-
tion 2 is in any event strongly suggested by phenomenolo-
gy.

V. THE VALUE OF 8 AND BARYON ASYMMETRY

0 vanishes at the tree level in these models but will re-
ceive finite contributions from radiative corrections to the
fermion mass matrix. A typical diagram of such a correc-
tion is shown in Fig. 1. An instance of such a diagram in
the model of Sec. III8 is displayed in Fig. 2. This contri-
butes to the FC elements of M~ which vanish at the tree
level by condition 1. Diagrams of this type will give con-
tributions to 19 of order

5&8=(1/16' )f (phase),

where f is a typical F RYukawa cou-pling of a su-
perheavy scalar. This is—equivalently-- of order
(Mf /Mb ), where Mf ($) are superheavy fermion (boson)
masses. For 8 to be less than or of the order of 10, one
must have that f or Mf /M~ is less than or of the order of
10 . This is technically natural as emphasized by Nel-
son, ' but perhaps awkward. For while there may be very
small Yukawa couplings in nature (at least effectively),

&5 (16„)&Q p (I( l6H)&

5( lo„) 1(45„)
/

(o((6) Io((6} ~ IO(I26) io(iz6)

such as f, —m, /300 GeV-10 or f, —m, /300
GeV-10, the heaviness of the t quark suggests that
this is not always the case.

Even if such contributions to 0 are made arbitrarily
small there are still other contributions which have been
estimated by Nelson' to be of the order of 10 ". This
number may be taken to be a lower bound on 0 in these
models.

Segre' has shown that there are contributions to n~/s
in models of this type which come from diagrams (see
Fig. 3) very similar to those that contribute to 8. If all
baryon asymmetry came from such diagrams (essentially
the decays of superheavy colored Higgs bosons directly
into quarks) then, as estimated by Segre, n~/s (10 8.
This is rather uncomfortably close as experimentally
nels =(3—10)X 10 ". Segre makes the point, however,
that there are other sources of baryon asymmetry in these
models which could be more important.

Here we would like to point out one such potentially
large contribution to ns/s. It is essentially that discussed
in Ref. 16. Consider the decays of superheavy colored
scalars. These will decay, not only directly into light fer-
mions, but also into other, lighter scalars. If the self-
couplings of the superheavy scalars are typically larger
than their Yukawa couplings (which we know from the
bounds on 8 must be (10 ), then one would expect
them to decay predominantly into lighter scalars. Because
such decay amplitudes contain CP-violating pieces (due to
the superlarge, CP-violating VEV's of some of the Higgs
scalars) one would expect asymmetries to develop between
various species of scalars and their antiparticles (see Fig.
4). Eventually the lightest of the color-triplet superheavy
scalars will decay into colored fermions (energetically,
there are no other channels open. ) As observed in Ref. 16,
a scalar's decay modes may, on average, be preferentially

&1 (16M) &
FIG. 2. An instance of a one-loop contribution to 0 in exam-

ple 8 of Sec. III.

FIG. 1. A one-loop contribution to 0 in Nelson-type models.

colored
higgs

FIG. 3. Typical baryon-number-violating decay amplitudes
of superheavy colored Higgs bosons. The interference between
these amplitudes leads to a baryon asymmetry. The magnitude
of this effect is related to the magnitude of the contributions to
8 shown in Fig. 1 as pointed out by Segre.
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CP- violatin
VEVs,

CP - v i 0 la ting g
VEVs ~

+ Ir

FIG. 4. Typical amplitudes that lead to asymmetries between
colored Higgs scalars and their antiparticles. When these later
decay into quarks and antiquarks a baryon asymmetry can re-
sult.

5X10 "e cm(D„(5X10 e cm . (10)

This is to be compared to the contribution to D„by 8 in
Peccei-Quinn models which is expected' to be of order
10 ' ecm.

VI. CONCLUSIONS

We have shown that any model satisfying two condi-
tions has 0=0 at the tree level. These conditions may be
satisfied in a technically natural way. In fact, we argue
that with a sufficiently economical Higgs structure they
are automatically satisfied. These models have CP broken
spontaneously at unification scales, thus there is no prob-
lem with domain walls which may be inflated away. We
have shown that there is no difficulty with flavor-
changing neutral currents. A large baryon asymmetry is a
natural feature of these models as shown by Segre. No

into quarks rather than antiquarks (or vice versa). The
antiparticle decays, of course, would have the opposite
preference. The asymmetry between a scalar and its an-
tiparticle would then be converted ultimately into an
asymmetry in baryon number. Various decay modes
would presumably contribute to nz/s with various signs
so that some cancellation will result. However, the essen-
tial point (emphasized in Ref. 16) is that the resulting
asymmetry is controlled not by Yukawa couplings but by
scalar self-couplings (see Fig. 4). Thus, this contribution
to nels is not tied to the value of 8 and may be quite
large in principle.

If, nevertheless, the mechanism discussed by Segre
turns out to be the dominant contribution to nz/s, it
would argue for a large value of 8 around the present
bound of about 10 . If the baryogenesis mechanism we
have suggested here is dominant, then 0 could be as low as
10 " which is the bound derived by Nelson. With 8 in
the range

10 "(0(10 (9)

one expects' that the neutron electric dipole moment will
be in the range

ad hoc symmetries (either discrete or continuous global
symmetries) are needed in these models. 8 is predicted to
lie in the range 10 to 10 " which is larger than the
Peccei-Quinn prediction and accessible to experiment in
the foreseeable future. These models can thus be dis-
tinguished experimentally from Peccei-Quinn models by a
larger neutron electric dipole moment and by the absence
of axions.

APPENDIX: LIGHT MIRROR FERMIONS

It may be asked whether this mechanism for solving the
strong CP problem requires that the set F, which has the
same quantum numbers as the light fermions, is a corn-
plex representation of the gauge group. There are various
attractive theoretical ideas for which it is necessary that
light fermions be in a real representation, implying the ex-
istence of "mirror" families' with V+A weak interac-
tions. In such a case we could replace F by a set F+F. If
we still imposed our two conditions, then the mass matrix
M would look, schematically, like

r

VL, 0 0 e F
0 Vg u 0

q'M q =(FFCC), 0 M 0
— . (Al)

0 Q' 0 M C

The determinant of this would depend on co, co', and hence
be CP violating. However, to rule out the disastrous su-
perheavy F-F masses (whose presence is otherwise sug-
gested by the survival hypothesis), it is necessary to have
some unbroken global or discrete symmetry. ' This same
symmetry will also rule out the FC entries in the mass
matrix which we have denoted u, u' in Eq. (Al). (We are
assuming that the CC and FC couplings are present. )

That is, the symmetry which forbids F+F from acquir-
ing superheavy masses also prevents the F from mixing
with the superheavy fermions. This will lead to 8""=0
as before. To illustrate this let us add some 16 mirrors to
the second model of Sec. III. Suppose we still allow
126f X126f bare-mass terms and (16fX126f)X16H and
(16fX 16f)X 10~ couplings so that the ordinary families
mix with the superheavies. If a symmetry rules out
1~6 )& 16f bare masses it will rule out the
(16fX126f)X16II couplings as well. [An example of
such a symmetry is given in Ref. 19 for an SO(16) model.
If we embed SO(10) in SO(16) there is a discrete group
transformation (called K in Ref. 19) under which
F~ iF, F~iF, a—nd R —+ —R. If we impose as well a
discrete symmetry D under which F—+iF, F~iF, and
R~—R, with the scalars transforming suitably, then DK
need not be broken and will allow RR and FR couplings
but forbid FF.]

A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Ty-
upkin, Phys. Lett. 598, 85 (1975);V. N. Gribov (unpublished);
G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); R. Jackiw and C.
Rebbi, ibid. 37, 172 (1976); C. G. Callan Jr., R. F. Dashen,
and D. J. Gross, Phys. Lett. 638, 334 (1976).

N. F. Ramsey, Phys. Rep. 43C, 409 (1977).
3R. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

For axions, see S. Weinberg, ibid. 40, 223 (1978); F. Wilczek,
ibid. 40, 279 (1.978). For invisible axions see Jihn E. Kim,
ibid. 43, 103 (1979); A. Vainshtein and V. Zakharov, Nucl.



30 NATURAL CLASS OF NON-PECCEI-QUINN MODELS 1811

Phys. B166, (1980); M. Dine, W. Fischler, and M. Srednicki,
Phys. Lett. 104B, 199 (1981); M. Wise, H. Georgi, and S. L.
Glashow, Phys. Rev. Lett. 47, 402 (1981);H. P. Nilles and S.
Raby, Nucl. Phys. B198, 102 (1982).

4D. Dicus, E. Kolb, V. Tcplitz, and R. Wagoner, Phys. Rev. D
18, 1829 (1978};22, 839 (1980); K. Sato and H. Sato, Prog.
Theor. Phys. 54, 1564 (1975); M. Fukugita, S. Watamura, and
M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).

5L. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983); J.
Preskill, M. Wise, and F. Wilczek, ibid. 120B, 127 (1983); M.
Dine and W. Fischler, ibid. 120B, 137 (1983).

P. Sikivie, Phys. Rev. Lett. 48, 1156 (1982). For solutions to
the domain-wall problem, see G. Lazarides and Q. Shafi,
Phys. Lett. 115B, 21 (1982); S. Barr, D. Reiss, and A. Zee,
ibid. 116B, 227 (1982); H. Georgi and M. Wise, ibid. 116B,
227 (1982); S. Barr, X. C. Gao, and D. Reiss, Phys. Rev. D
26, 2176 {1982);R. Holman, G. Lazarides, and Q. Shafi, ibid
27, 995 (1983); Y. Fujimoto, K. Shigemoto, and Z. Zhiyong,
Z. Phys. C 20, 291 (1983); S. Dimopoulos, D. Frampton, H.
Georgi, and M. Wise, Phys. Lett. 117B, 185 (1982); B. Gross-
man, Rockefeller University report, 1983 (unpublished); R.
Holdom, Phys. Rev. D 27, 332 (1983).

~M. A. B. Beg and H.-S. Tsao, Phys. Rev. Lett. 41, 278 (1978);
H. Georgi, Hadron. J. 1, 155 (1978); R. N. Mohapatra and G.
Senjanovic, Phys. Lett. 79B, 283 (1978); G. Segre and H. A.

Weldon, Phys. Rev. Lett. 42, 1191 (1979);S. Barr and P. Lan-
gacker, ibid. 42, 1654 (1979); and others. The difficulties of
solving the strong-CP problem in some third way are explored
in A. Masiero, R. N. Mohapatra, and R. Peccei, Nucl. Phys.
B192, 66 (1981); S. Barr and D. Seckel, ibid. B233, 116
(1984).

S. M. Barr, Phys. Rev. D 23, 2434 (1981).
9A. Nelson, Phys. Lett. 136B, 387 (1984).

A. Nelson, Phys. Lett. 1348, 422 (1984).
S. M. Barr, Phys. Rev. Lett. 53, 329 (1984).
A. Nelson, Harvard University Report No. HUTP-84/A022,
1984 (unpublished).

H. Georgi, Nucl. Phys. B156, 126 (1977).
E. Witten, Phys. Lett. 91B, 81 (1980).

ISG. Segre, University of Pennsylvania Report No. UPR-0257T,
1984, (unpublished) and (private communication).

6S. Barr, G. Segre, and H. A. Weldon, Phys. Rev. D 20, 2454
(1979).
V. Baluni, Phys. Rev. D 19, 2227 (1979); R. Crewther, P.
DiVecchia, G. Veneziano, and E. Witten, Phys. Lett. 88B,
123 (1980).

SM. Wise, H. Georgi, and S. L. Glashow, Ref. 3.
G. Senjanovic, F. Wilczek, and A. Zee, Phys. Lett. 141B, 389
(1984).


