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Starting from Witten s large-X power counting we derive an equation identical to the so-called
bootstrap condition of strong-coupling theory. The large-X baryons are therefore characterized by
representations of the strong-coupling group (SCG). It is pointed out that the bootstrap relation is
quite general and valid when the semiclassical expansion about soliton solutions is at work. The col-
lective coordinates of the soliton correspond to the coordinates of induced representations of the
SCCA. One of the interesting representations of the SCG is the quark representation and this makes
a bridge between the Skyrme solitons and the nonrelativistic quark model. We explicitly show that
the induced representation is derived from X static quarks with N~ 00. We further emphasize the
generality and power of the algebraic method. For this purpose we present a modified chiral bag
model which exhibits the algebraic relations in large Ã and approaches the Skyrme-soliton picture in
the zero-bag-radius limit.

I. INTRODUCTION

In a recent paper' we derived exact equations for QCD
to leading order in the number N of colors. Our starting
point was Witten's analysis of baryon dynamics in the
large-N limit which shows that baryons are similar to
solitons if one replaces the parameter of the semiclassical
expansion by 1/N.

In effect, the QCD baryons can be recovered as solitons
of an effective chiral Lagrangian for which, the soliton ef-
fective action being of order N, one can indeed regard the
semiclassical expansion parameter to be 1/X.

Witten's identification of Skyrme solitons4 with QCD
baryons is very beautiful but such a topological miracle
calls, in our opinion, for a more physical understanding.
In particular, since Skyrme solitons are similar to 't
Hooft-Polyakov monopoles, they are somewhat remote
from the naive quark bound-state picture. This situation
raises a general problem which is quite interesting by it-
self. We have a theory (here @CD) with a parameter P
(here p=l/1/N) such that for p—+0 the spectrum in-
volves particles (here the baryons) which behave exactly as
solitotls. However, p is not the semiclassical expansion
parameter of the original Lagrangian (QCD), rather it
would be that of the effective Lagrangian, which we do
not know a pnori The Skyr. me-soliton fnodel of Witten
and his collabox'atol's ls a specific nlodel 111 wlllc11 tile ef-
fective Lagrangian is given by the chiral Lagrangian.
Another possible effective Lagrangian model would be the
chiral bag model and probably some others. %e believe,
however, there should be some general features applied to
all of these possible models.

The relevant features of the P~O limit is as follows.
There are heavy particles of mass O(p z) (the would-be
solitons) and light particles of mass O(P ), strongly in-
teracting with a coupling of order P . This is reminis-
cent of the old static strong-coupling thtxlries. These
were studied by algebraic methods ' which as we pointed
out in Ref. 1 can be applied, to leading order in P ', to

any theory where the above small-P behavior is realized
without making use of any specific solution of classical
field equations. Hence one can directly study the baryons
in @CD to leading order in N.

In Ref. 1 we only gave a brief account of our ideas.
One aim in the present paper is to provide more pedagogi-
cal details. As we pointed out in Ref. 1, one solution of
the large-K algebraic equations can be identified with the
static quark model. Hence this is one step toward bridg-
ing the above-mentioned gap between large- JSkyrme sol-
itons and the static quark model. ' In general the above
solution gives a quark picture of the would-be solitons
which we further develop in the rest of the paper. The
algebraic equations are of the same nature as the equa-
tions first derived in the static theories. They are Lie
algebra commutation relations associated with noncom-
pact groups K X T, semidirect products of the spin && fla-
vor group I( with a commutative group T. The represen-
tations of such algebras are naturally described by the
induced-representation method, "where T is diagonalized.
This corresponds to the usual picture of solitons. The col-
lective coordinates of solitons' play the role of coordi-
nates of the induced representation. Starting from the
above-mentioned quarklike solution we develop an alter-
native method where the induced representation is derived
from X static quarks with X~ 00. This establishes a link
between collective-coordinate methods and quark models.

II. SEMICLASSICAL APPROACH REVISITED

In order to facilitate the forthcoming discussion it is
useful to review the essential features of the semiclassical
approach by looking at simple field-theory models. First
consider a two-dimensional theory with a spin-zero field
P(x, t) and a Lagrangian density

, V[PP(x, t)] . (2.1)
1 84 1 BP 1

2 dt 2 Bx pz

The coupling constant P has been defined ( V is a function

30 1795 Q~1984 The American Physical Society



J.-I.. GERVAIS AND B. SAKITA

of one variable) in such a way that the semiclassical ex-
pansioil paiaillctci is A p . Thc stRtic sohton solutioil, if
it exists, has the form P, =(1/P)$0 with ([[0 independent of
P. Its energy,

+~ o
1 1 ddo

(2.2)
P2 2 x

is of order P . It is equal to the mass of the quantized
soliton to leading order in P '. For small P, the quantum
theory dcscribcs 8 very Inass1vc particle, the solltoIl, coU-
pled to the particle with mass of order 1 (say a meson of
mass m) associated with P. To leading order in P ' one
has13, 14

&p'
~
y(0)

~ p & —f—dx e '&-&'~"-y, (x)

1/2

+g g fdsx p(x)p~ (2.7)

g(x)=gu u(x), g(U )2=1,

is an isovector and p is a given c-number source func-
tion. We take it to depend on x only. For '.arge g the
power counting is the saIne as in the above typical soliton
model if we let g-1/P, and the theory can indeed be
solved by cxpans1on around the class1cal solUtlGIl

=——I ((p —p')'), (2.3) ( m —V' )u (x)=p(x) .

where ~p) and ~p') are quantum soliton states. The
so11ton-meson coupl1ng constant

lim (q2+m )I (q2)— (2.4)

is of order P '. One can indeed verify that, quite general-
ly, ' the Fourier transform I of (t, has a pole at

= —m so 'tliat W is Iiot trivially zci'0. Foi sinR11 p flic
meson-soliton coupling is strong. On the other hand, the
so11toIl 1s very mRss1vc Rnd Its Iccoll 1s small. Hcncc thc
meson-soliton interaction can be described by the Qonrela-
tivistic kinematics. In particular it has been shown' that
to leading order in 1/P the meson-soliton elastic scatter-
1ng aIDplltudc W has thc Born terms

1

P co —M, +Ez
(2.5)

which correspond to the two possible one-soliton inter-
mediate states. p, k and p', k' are the initial and fmal
so11ton Rnd IIlcsoIl momcnta. MGI cover

co=(k' +m )'i E =(p' +M )'/ (2.6)

More generally one can show' ' that the reaction n

mesons+ sollton~ Pl IDcsons+ so11toIl has 8 conncctcd
scattering amplitude of order P +" at most. Hence
(2.5) is the dominant term for the two-body elastic ampli-
tude.

The above features are quite general and hold in any
sohton model. The only particular point of the above
model is that the soliton has no internal degrees of free-
dom since the theory has no internal symmetry. Since the
soliton is very heavy Rnd since its coupling with mesons is
strong, the situation is rem1niscent of the stat1c strong-
coUp11ng models. Thcsc IIlodcls have 1ndccd 1athcr simple
nontrivial classical solutions which one may regard as the
simplest examples of a soliton with internal degrees of
freedom.

We now turn to one such model which is the so-called'
static charge-symmetric scalar meson theoI'y described by
the Lagrangian

(2.9)

where the new field P satisfies

gpa[n j

g fd3x P (x,t)—
BQ n o

(2.10)

l denotes the results of applying a rotation in isospace
on P with parameters Q. The parameters are dynamical
variables and hence time dependent. This is consistent
since (2.10), which serves to eliminate the zero modes,
shows that P describes fewer degrees of freedom than P.
To leading order in g one can drop P and simply substi-
tute P~[ l, Q&0, in (2.7). One obtains

M +g2 & g(y~)2 y U[n 1 (2.11)

M, is the classical energy of the solution (2.7), it is of the
order of g2. Apart from this term, (2.11) describes the
free point particle of mass g on the unit sphere. The cor-
responding Hamiltonian is

(2.12)

where L is the usual isospin angular Inomcntum operator.
The Hamiltonian (2.12) acts on the space of square-
integrable functions itj[Qj on the unit sphere. The spec-
trum is obviously given by

'U 1s an Rrb1trary UQ1t vector. Thc RrbltI'Rr1ncss 1s to bc
llaIldlcd by collective coordinates Rs 1s well known by
now. In this connection, one may recall that when we in-
troduced collective coordinates in relativistic field
theory' we were inspired by previous treatments's'6 of
static strong-coupling models. In order to illustrate our
forthcoming discussion, it is useful to recall briefly the
highlights of the collective-coordinate method on the typi-
cal example (2.7).

One performs a change of dynamical variables by let-
ting Rt thc quantum lcvcl
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H
~

l m) = M + 2 ~

l m), 0&l & 00 .l(l+1)
2g

(2.13)

There is an infinite number of very massive states (the so-
called isobars) which become degenerate in the gazoo
limit.

The isobar-meson coupling is obtained in a way similar
to the previously discussed relativistic case, namely,

(p', l'm'[ P (0) [p, lm)= —fd3xe '~ I' '"(l'm'[ [P, (x)]
(
lm)—=—(l'm'

(
I

(
lm), (2.14)

(l'm'~r ~lm)
2

, fdn(U("))~I;. '*(n)r, (n)
m~ +q

(2.15)

where 0 are the quantum collective-coordinate operators.
By using the standard formulas

(0
~

Im ) = rr (0), L2
~

0 ) =0
~

0),
one obtains

cles of mass m=P . To leading order the elastic scatter-
ing of a light particle by a heavy particle occurs mostly in
the lowest possible partial wave Mjr, where I,J and a,P
characterize the initial and final states of the heavy and
light particles, respectively.

Assume further that the static coupling between two
heavy and one light particle is of order P ' and can thus
be written as (I/P)Wqq with Wgq independent of P to
leading order. The Born term to leading order is similar
to (2.5):

and the meson-isobar coupling constants read

(1'm'( M
~
lm)-p( —m )(l'm'

~

(U ))
~
lm) . (2.16)

g)~ 1 ~ JL LI~ JI p2 L ++Mr —ML

~JI.~LIa P

u —MJ+ML
(3.1)

From this formula it is clear that M is diagonal in the
basis where the operator 0 is diagonal and one can write

W )n&=(WIn') ~n&, (2.17)

where Mo is proportional to v. Formula (2.17) shows
that, considered as operators on the isobar internal space,
the coupling operators M commute, namely,

[M,W~] =0 . (2.18)

This example is typical of the general case of solitons in
theories with internal symmetries. One obtains infinite
towers of very heavy particles which are degenerate to
leading order. The internal space of solitons is described
by square-integrable functions of the collective coordi-
nates, associated with the internal symmetries of the
theory which are broken by the classical solution. Formu-
las (2.17) and (2.18) hold in the corresponding Hilbert
spaces.

III. THE ALGEBRAIC METHOD

In the previous section we have summarized the essen-
tial properties of a quantum theory where semiclassical
expansion around soliton solutions is at work.

In the strong-coupling theory of Goebel and its alge-
braic formulation one reverses the argument so that one
does not explicitly assume the existence of soliton solu-
tions. Although this formalism has already been fully
developed for the strong-coupling theory, we go through
the derivation again to make this paper reasonably self-
contained and to stress the relationship with semiclassical
techniques.

The basic idea of the algebraic method is simple and
applicable in any theory where the semiclassical power
counting holds. Consider a theory with a typical parame-
ter P such that for small P there exists a family of heavy
particles of mass M-1/P and a family of "light" parti-

where ML is the mass of the heavy particle with quantum
numbers I. Assume further that the reaction "1 heavy
particle +n light particles —+ 1 heavy particle +m light
particles" has a connected amplitude of order P +" '. It
then follows that (3.1) gives the dominant contribution
which is of order P . Such a term cannot be present,
however, since from unitarity W is bounded for arbitrary
P. Hence the two terms of (3.1) must cancel identically.
Therefore the mass differences between heavy particles
must vanish as P—+0. Moreover,

g (~JL ~LI ~JL ~LI ) (3.2)

+A/(P' 'tv"M[)]f'x') (3.3)

M[/] = fd3x p(x) P(x) . (3.4)

We study it in the Schrodinger representation where
P(x,0)—= P(x) is a c number. For a given such function
we introduce the two-component eigenvectors u+[P] of
o"M,

o"Mu' —+'=+(M )' u'+-' . (3.5)

Hence the P power counting and unitarity alone ensure
that the coupling constants W considered as matrices in
the heavy-particle internal space commute as was already
found by explicit computation in the standard soliton
case. A typical situation where the P power counting
holds in the absence of a true classical solution is when
the heavy particles can be associated with minima of ef-
fective actions with typical parameter P . We now brief-
ly describe an example of this situation. Consider a model
of an isovector P field interacting with N static isospinor
quarks P' '. The Hamiltonian reads

H= —,
' fd3x[n +(Vp) +p p ]
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After expanding f' ' in terms of u,

.(,(&) ~ (E) (a)=~Ca ~g

the interaction Hamiltonian becomes

(3.6)

The lowest-energy eigenstates have a quark 'part of the
form Qz(q' '

)
~
0) and, applied on this state, HI takes

the form

[M,W'] =iD (a)IMP,

[M M~]=0 .

(3.8)

The power of these equations lies in their Lie algebra
structure. Indeed they show that W' and M generate the
algebra of the noncompact group K&T, the semidirect
product of K by the Abelian group T generated by it. As
the above argument shows, (3.8) is a consequence of uni-
tarity and small-p behavior alone. As is clear from Sec.
II, Eq. (3.8) holds in the case of solitons. In @CD,
Witten's analysis of the large-X limit shows that we can
apply the above discussion if we replace P by 1/V N.

The algebra (3.8) is similar to the Poincare algebra, the
coupling constant W playing the role of the translations.
One can thus apply the theory of induced representa-
tions"' where one diagonalizes the Abelian part M .
For the soliton case, this corresponds to the basis where
the collective-coordinate operators are diagonal [see
(2.17)], a semiclassical expansion around c-number classi-
cal soluti'ons. There, however, the internal-symmetry-
group properties of the heavy particle are not exphcit.
These become transparent only if we expand the diagonal
state in terms of irreducible representations of K. For the
static model of Sec. II this was done by expanding in
terms of spherical harmonics [see (2.15)]. In general there
appears an infinite tower of irreducible representations.

This problem can also be solved in all practical cases by
the method of group contraction ' which we now recall.
First we note that in Eq. (3.8) we have to specify the rep-
resentation generated by D (a) in order to set up the prob-
lem. Physically this means that we have to specify the
internal quantum numbers of the light particle. %"e shall

= —XA, J d xpP g(q' '
) iO) . (3.7)

K

We recover the model (2.7) with g =%A,. For X—+ cc this
effective theory has true semiclassical solitons as we re-
called in Sec. II.

Going back to the general discussion we introduce the
internal symmetry group K of M. I.et W' and D(a)ii
denote the infinitesimal generators of the representations
spanned by the heavy- and light-particle multiplets. The
content of the algebraic method is finally summarized by
the equati. ons

[~a ~b] fabc~c

Ja . and M generate the algebra (3.8) of (SU&S SUa ) X T
and have finite matrix elements for e~O. There are ex-
tensive discussions of the above procedure in the litera-
ture. ' For the physical problem at hand, one particular
representation which we call the quark representation is
especially appealing. Indeed, consider the case of QCD
where we can take the light particle to be the pseudoscalar
mesons. The elastic scattering amplitude WJI is then a P
wave and the meson-hadron coupling is derivative. Hence
(3.2) is to be replaced by

g[(k'4fgj )(k'ML'I ) (k'M~I )(k'JW—L~JI )]=0,

where the sUm over L also includes the sum over the had-

ron spin. Since the meson momenta k, k' are arbitrary,
we get again (3.8) where W is replaced by M ' and where

K = (SU2),p,„col (SU„)fi,„„. (3.10)

Taking n =3 we see that (3.8) is obtained from the con-
traction of SU6. The representations of SU6 are charac-
terized by five integers A. i, . . . , A, q. Consider the com-
pletely symmetric representation (A, ,O, O, O, O). For fixed A,

it is made up with all the symmetric states of X quarks,
and if we identify A, with the number X of color we recov-
er the nonrelativistic SU6 quark model. For N —+op this
representation becomes a representation of (SUzI3|SU3)
)& T. This will be shown in detail in the next section.

IV. QUARK REPRESENTATION

The idea of induced representations of strong-coupling
groups was described in the previous section and for the

discuss only the most common case where K is the group
SU~83 SU~ and D (a) is in the direct product of adjoint
representation of SU& and that of SUq. This covers most
of the practical cases. With this choice, the number of

operators is (p —1)(q —1) and the algebra (3.8) in-
volves altogether

(p —1)(q —1)+(p —1)+(q —1)=(pq) —1 operators .

This is the same number as for the SU~ algebra and solu-
tion oi (3.8) can be obtained by the method of group con-
traction of SU&q. The general idea is as follows. Consider
a representation of SU&~ where the generators of the
SU~SU~ subgroup are J '. Denoting by A the other
generators, we can write

[~a ~b] &fabc'

[A,W'] =iD (a )p& ~, (3.9)

[A A ]=i(C A +C Jc')
-aP

where C~, C, are structure constants. The representa-
tions of (SU&SU&) X T are derived from representations
of SU~ as follows. Consider a family of representations
of SU~ depending on a parameter e and such that for
e~O the matrix elements of A are of order e ' at most.
If we write
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readers who are not familiar with this subject we shall re-
view the content of Ref. 11 in the Appendix. In this sec-
tion we assume that the reader has some familiarity with
induced representations and proceed with the discussions
on the quark representation introduced at the end of the
previous section.

According to the induced-representation theory, ' each
irreducible unitary representation of 6=K && T, the semi-
direct product of a compact group E by a translation
group T, is characterized by an orbit of the vectors W;,
eigenvalues of T, and an irreducible unitary representation
of the little group associated with the orbit.

In general the orbits are specified by the values of in-
variants. For example, in the case of K =SU2 and T= T3
(i.e., 6 =E3, the Euclidean group in three dimensions) the
invariant is given by A; . For Inore complex cases there
are several invariants and the most general orbits are
described by a set of uncorrelated values of these invari-
ants. The little group associated with these general orbits
is in general uniquely determined. However, for a certain
special orbit which is specified by a set of specifically
correlated values of invariants the corresponding little
group is larger than the general case.

Let us take an example of K=SU2(8 SU2 and T= T9,
which are generated by 2; (i =1,2, 3 and a=1,2, 3). The
invariants are given by

if we specify a representation for SU(2) we obtain an in-
duced representation of the strong-coupling group
SU(2)SSV(2) X T9. If we choose the identity representa-
tion for the little group, we obtain the J=I series of iso-
bars. Since this representation is obtained from a sym-
metric quark representation of SU(4) by contraction, we
call it the quark representation.

Let us denote by qz' ' a creation operator of a static
quark. We use K for color index and A for spin and iso-
spin. The symmetric color-singlet state of N quarks is
given by

(I(:I)t (&2)f (&~)f
e . . . q„' q

'
q 10&. (4.6)

0

This is a symmetric state of X indices and it contains
( —,, —, ), ( —,, —, ), . . . , (N/2, N/2) series of SU(2)SU(2)
states for odd N.

Let us multiply g„g„. gz to (4.6) and define

1$&=c)v(q "'g)(q "'g) . (q ' 'g)10&, (4.7)

where C)v is a normalization constant to be fixed later.
The matrix elements of SU(4) generators defined by

')(K)
q

(K) I yq
f(K)~~ (E)

E K2 AiaAia~ 3 ~ij k~apyAiaAj sky ~

4
—— i~AipA jp j(, .

(4.1) gq t()r)~ r~ ()r)
(4 g)

The general orbits are therefore specified by three un-
correlated real numbers: %2, %3, and H4. The little
group in this case is trivial, i.e., identity. One of the spe-
cial orbits is the orbit given by

are then given by

(4.9)
%2=&4——1, (4.2)

H2 ——H4 ——3, H3 ——6, (4.3)

This orbit contains a point A;~=6;I5~I and the little
group associated with it is U(I)I3)U(1). Another interest-
ing orbit is given by

for normalized g and g', i.e.,

A=4' O'= I

14"41 & 1 .
(4.10)

(4.11)
0

which contains a point A; =6; . The little group in this
case is SU(2), which is generated by I;+A; I .

Another interesting way to specify these special orbits
is to express M in terms of other commuting group
operators of fewer degrees of freedom. For the case of
SUp(3) SU2& T9 we set

A; =g+o;r g, (4.4)

are invariant by SU2(3SU2, they define an orbit. It is not
difficult to prove that (4.4) and (4.5) together with the
normalization g g= 1 lead to (4.3).

For the orbit (4.3) the little group is SU(2). Therefore,

where g transforms as a spinor by SU(2)(8) SU(2) and g is
a conjugate of g. We assume g and g are commuting
operators. Equation (4.4) is a construction of SU2SU2
)C T9 algebra from an algebra generated by SU2@SU2 gen-
erators and commuting g and g . Since the conditions

g o;/=0, g r /=0, i =1,2, 3, a=1,2, 3, . (4.5)

Therefore, in the large-N limit the matrix elements (4.9)
are nonzero only when g' is a rieighbor of g.

At this point we choose g which satisfies (4.5). Then, g
is specified by the coset parameters, which we simply
denote by Q. So from now on we write g and g' as' g(Q)
and g'(Q'), and further 1g'& and 1g'& by 1Q& and 1Q'&,
respectively.

We shall prove later that the normalization constant
can be chosen such that

lim [gt(Q')g'(Q)] C)v =5(Q', Q),N~ oo
(4.12)

where 5(Q', Q) is a 5 function in the coset space with
Haar measure (see Appendix). A simple proof will be
given by considering the integral

Jd Q'E(Q') [gt(Q')g(Q) ) (4.13)

and evaluating it for large X by the standard saddle-point
approximation. We simply mention that at this point the
conditions (4.5) are crucial for the proof.
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Using (4.12) we obtain

(n in) =-s(n, n),
(Q'

i J; i
Q) =id;5(n', Q),

(n' iI. i
n) =i.a.gn, n),

(Q'
i B; i

Q) -=N[gt(n); g(n)]5(n', Q),

(4.14)

(4.15a)

(4.15b)

(4.15c)

where 6; and 6 are Lie derivatives acting on Q. These
expressions nicely exhibit the contraction and the induced
representation for the quark representation. Indeed, be-
cause of the well-known properties of Lie derivatives
(4.15a} and (4.15b) show that J;, S are represented by dif-
ferential operators acting on Q which satisfy the
SU2(SSU2 algebra and B transforms as a vector under
each SU2. Moreover it follows from (4.15c) that if we de-
fine

for all generators of E.
Next, the second derivatives

(Qi
i n) (~ei(0 0 )—/2+'p i(0—0 )—/2}'N (4.20)

in[gtd (Q)g] = —(/AX, Xbg)
a b

are negative definite so that the saddle-point method ap-
plies and (4.18) holds. Condition (4.19) is sufficient for
any group X which is such that the group-contraction
method applies.

Consider, for illustration, the case of K= U),
G= Ui XT2 which is obtained by group contraction of
SU2. One has, in this case,

Q)g(eQ/ gqx t +e0/ gq t
)

i
0)

K

1
~ia = ~ia ~

we have indeed for N ~oo

A; i
n) =[gt(n)o;7$(n. )] i

Q) .

(4.16)

(4.17)

&=14+ I'* &= l4- I'.
By standard asymptotic evaluations of binomial coeffi-
cients one obtains

(n~
i
n ) &(i/2)(0 0 )N—(a 'p)e (0——0 )2(—N/'2)ap

N~ oo

The formula to be proven reduces to

lim CN' fdn[gtd(n)g]NF(n) =F(0), (4.18)

where I' is an arbitrary function on the coset space
SU&SU»/SU&. One uses saddle-point methods around
Q=0 where

i [g d (Q)g] i
is maximum. We recall that d

being unitary
i [g d (Q)g] i

(1. From the very definition
of the infinitesimal generators it follows that

i ln [estd ( Q )g'] j =i(g X,g),
Q=O

where X is the relevant linear combination of A, and A, .
Hence, in general even though

i g d (Q)g
i

is maximum at
0=0, its phase is not stationary. For stationarity, we im-
pose that (g X,g) =0 for all infinitesimal directions in the
group space corresponding to (SU~SU»)/H. This also
holds trivially in H, however, since H leaves g invariant.
Hence we have the general condition

(g X,g)=0 (4.19)

This completes the derivation of the induced representa-
tion for the (SU2SU2) X T» group.

We finally comment about the general case of
K=SU&(8)SU» (p(q). The construction proceeds along
the same path, taking g in the fundamental representa-
tions of each group, and (4.9) holds if we replace cr~ and

by the matrix )(, and I, of SU~ and SU». Q now
denotes the parameters of (SU~(N SU» )/H with H the little
group of g (i.e., SU& if p (q). To complete the argument
we now give the derivation of Eq. (4.12) suitably general-
ized. From unitarity we can write

fk'«'4(»] =[A«"4]
where d is the matrix of the fundamental representation
of SU&SU» and

d (Q")=d (n')d(Q) .

and, unless u=P, the stationary point is complex. This
last condition is an immediate consequence of (4.19).

One interesting point of our construction is that for fi-
nite N the states

i
Q) for different Q are not all linearly

independent since they are vectors in a finite-dimensional
space. For N woo, how—ever, the states

i
Q) do become

linearly independent and span the infinite-dimensional
Hilbert space of the induced representation.

Going back to the beginning of the section we see that
(4.19) specifies in general the orbit of the induced repre-
sentation. Let us look at practical examples. For
SU2(3) SU2 it is convenient to rewrite (4.5) as

tr[gt~;g] = tr[gtg~ ]=0, (4.21}

where now the two SU2 groups act on g from the left and
from the right, respectively. From this condition one ob-
tains

(4.22}

Therefore g is a unitary matrix and the set of g is iso-
morphic to the sphere S3. This is indeed the coset space
(SU2(8) SU2)/SU2. The orbit specified by (4.21) can be best
viewed as follows. As expected, this condition is
SU2SU2 invariant. By a suitable SU2SU2 transforma-
tion we can always replace g by the unit matrix. In the
physical problem where the two SU2 groups correspond to
spin and isospin, respectively, this orbit thus gives back
the well-known nontrivial mixing between rotations in
space and internal space which is the key to nontrivial
classical solutions. More generally, that is for SU2(8)SU„,
one satisfies (4.19}by similarly linking the SU2 group in-
dices with those of an SU2 subgroup of SU„.

The reader should be pretty much convinced by now
that the Lie algebra relations of S(. X T are a powerful tool.
Once a particular representation is chosen, the spectrum
and topological properties of the heavy particle (the
would-be soliton) are completely specified to leading or-
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a =ao+al,
Ho= fdsx(

I
~ I'+

I ~A
I

'+V'l 0 I')

HI ——Ag Jd3x P(x)g' 'to+/' '+H c.
K

(4.23)

Here the internal-symmetry group K is U~ and there are
two mesons. Hence we expect the noncompact algebra to
be Ui XT2 which is a contraction of SU2. Looking at
(4.20), we see that we can simply identify gI

' with q'+ '.
If we apply HI to the state

~

0 ) given by (4.20), it will be-
come diagonal to leading order in X since it is proportion-
al to that part of the SU& algebra which reduces to
translations in the contraction. Hence we have

der. We now present a criterion to specify the choice of
representation. As we explained at the beginning, there
are several classes of orbits. For the general orbits, the
values of the invariants are arbitrary and hence can vary
continuously. For the special orbits, on the contrary,
these invariants only take special values [see, e.g. , (4.2)
and (4.3)]. According to Michel and Radicati, '9 the mini-
ma of the potential occur at the exceptional orbits if the
potential is solely a function of M . Soliton solutions are
minima of an effective potential and although the poten-
tial is a function of other variables as well as M, it is
likely the minima occur at the exceptional orbits. There-
fore, it is reasonable to propose as a likely practice that
one would keep only the representations of KX T which
are characterized by exceptional orbits. This is the alge-
braic version of the topological stability arguments for
classical solutions. As the above discussion shows, the
quark representation does correspond to an exceptional
orbit and hence satisfies the general stability criterion we
just discussed.

The quark language used in the present study of the
algebraic equations should be of special value in theories
where the collective object is made up of fermion constitu-
ents. As an example we consider a static model of a com-
plex P field interacting with N very massive static isospi-
nor quarks. The Hamiltonian reads

S(q) = Jd y e ' " q S(y),

S(y)=exp i fdt—g(y, t) (5.2)

q =p —p', A=Am/MP' . (5.3)

From this one can easily compute the p expectation value
between heavy-particle states, to which one associates a
fundamental field P. The following discussion was in-
spired by an earlier work of Manton.

Consider first the case of two-dimensional solitons. Re-
place the action (2.1) by

~= —,
'
[—(B„P) —(B„g)'—M21t ']

tion of the classical field equations. Clearly the small-P
behavior will also be realized if the heavy particle is asso-
ciated with a nontrivial minimum of an effective action
which for P~O is of order P . In this case the form fac-
tor is the Fourier transform of the corresponding classical
solution. This is the situation with the Skyrme-soliton
picture of hadrons.

Gn the other hand, we believe that hadrons are made
out of constituent quarks. Our algebraic discussion shows
that the spectrum of large-N baryons is indeed in agree-
ment with the quark model. However in the Skyrme-
soliton picture of hadrons, the quarks seem to remain only
as "algebraic spirits" not physical constituents. At this
point one wonders whether our discussion of large N is
strictly equivalent to Skyrme solitons. More generally the
question is the following: If the basic hypothesis of the
small-P behavior is satisfied, does there always exist a
unique action, effective or not, and an associated c-
number solution~ We now show that the answer to this
question is negative. The sum of all the diagrams of Fig.
1 can be written compactly as a functional of the field P
taken as an external field. One gets

HI
i
II) = AN Jd3x P(x)(g+o.+g )e

N —+ 00 +, &(Pp)+ —p'p

+H.c. iQ) . (4.24)

The crucial point is that the vectors
~

0) diagonalize the
interaction term to leading order in X. This is a general
feature which we shall further develop in the next section.
In the present model one sees on (4.24) that one has again
reduced the problem to a strong-coupling model of the
type shown in Sec. II. However, a word of caution is
needed here. We are not saying that all eigenstates of H
are given by the quark representation at K~ao. The
algebraic method certainly is applicable here but the rep-
resentation may be reducible, one irreducible component is
the quark representation.

V. ARE SOLITONLIKE SOLUTIONS
THE CxENERAL ANSWER?

There is now a fundamental field g with mass M-P
and strongly coupled to P. Note that we set this coupling
to be A/P because it is the relativistic coupling. The non-
relativistic coupling will indeed be of order P '. For
small p, the 1(t particle is very heavy and one can treat the
emission of the P particle by an eikonal approximation.
The result is

As we recall in Sec. II, in the case of semiclassical soli-
tons the form factor is the Fourier transform of the solu- FIG. 1. Soft meson emission.
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(p'
~
P(0)

~ p &
= I [q] ~ fdy e'~f&P P(0,0)exp i S[P]+—f dt y(y, t)

Using translation invariance we can rewrite the formula as
r

I[q]= fdye '~I(y), I(y)= f&PP(y, O)exp i S[P]+—fdtIt(O, t) (5.4)

where P, satisfies

B„P,+ +—5(x)=0 .1 BV
(5.6)

We find the classical equations with a source term.
Away from x =0 we have the homogeneous equations

with two general soliton solutions P,
—(x —X) where X is

an arbitrary constant and where P,
—can be defined so that

P, ( —x) = —Ps+ (x ). We can satisfy (5.6) by suitably
choosing two di fferent solutions of the homogeneous
equation for x & 0 and x (0. Since the heavy particle has
its own fundamental field we must take the soliton num-
ber of the solution to be zero. Therefore we select the
same vacuum at x = —00 and x =+ oo. Hence P, is typi-
cally of the form

P, =8(x)P+(x —X)+8(—x)P, (x +X) . (5.7)

On the other hand, it is well known that if we choose the
minima of V to be at V=O, we have

(5.8)

For small P, (5.4) is dominated by the minima of the com-
plete action including the source term and we get

(5.5)

where P, P is the usual chiral field

u=P +i/ r, (P ) +P =1, (5.11)

which is similar to (4.7). We treat g(x) as variational pa-
rameters. In this paper, we further restrict g(x) to be
nonzero only for the upper two components in a yo diago-
nal representation in order to keep the correct baryon
number (i.e., 1) for the trial state. ' It is easy to count the
baryon number of (5.12) by using the very massive quarks.
The baryon number is 1, since

(1—yo)/=0, fg (x)g(x)d3x =1 . (5.13)

and g' ', K= 1, . . . , N are the quark fields. Since
f ~ v N (see Ref. 2) the chiral action is of order N. Con-
trary to the standard bag theory in this model we treat
the spherical bag radius R as a parameter. We investigate
the system first by setting a trial state for quarks and then
by using the large-N semiclassical method. The trial state
we use is

N

I +tn., &
= g fd3x 0 ' '(x)Px)

I +0&
K=1

(5.12)

,x '' x e, =o,

Hence P, is a solution of (5.6) if we let

A, ={2V[P,+( —X)]I'~'+ t2V[P, (X)]I
' ' . (5.9)

If we evaluate the effective Lagrangian using this trial
state we obtain an effective Lagrangian identical to the
chiral Lagrangian with an additional source term

This equation has solutions only if A, lies in the finite
range of values taken by the right-hand side. Going back
to the form factor I z one sees that in general its residue
on the meson mass shell is not equal to A.. The coupling
constant has been renormalized. On the other hand, the
basic hypotheses of the algebraic method certainly hold.
They are thus more general than the soliton picture
described in Sec. III. We now point out this latter is the
limit of bare coupling constant A, =O. In this case g
decouples. Equation (5.8) gives X=+ 00. The soliton
emerges by pulling apart a soliton-antisoliton pair.

Finally we exhibit a similar phenomenon on a chiral-
invariant large-X theory which is conceived as a
phenomenological model of large-N QCD. The model is
a slight modification of the chiral bag model. The
dynamics are specified by the action

S=fdt f, ,d xg ,'(f' 'y„B„Q' ')—
K

Nf d ~0 (5.14)

(5.15)

and the action becomes
r

2

S= fdt f "dr
2

r F +2sin F
dr

+ 5(r —R)—cosFN
2

(5.16)

The classical equation is now

d 2dFr +sin(2F) —5(r —R)A, sinF =0,
dP c&

21'
2

(5.17)

We now look for radial-like solutions with the standard
ansatz

2

fd4x tr(B„uB„u ),
16

(5.10)
At this point the discussion proceeds in a way similar to
the previous two-dimensional soliton case. For r&R we
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have the homogeneous equation

r F"+2rE'=sin(2F), (5.18)

which is invariant by scale transforination r~pr. Hence
we can solve (5.17) by combining two different solutions
with different scales. Denote by F+th-e two solutions of
(5.18) such that

F+(0)=0, F+( ao ) =m,

E (0)=ir, F ( oa)=0.

(5.19)

(5.20)

are the two Skyrme solitons which describe the
baryons and antibaryons, respectively, in the soliton pic-
ture. Indeed the baryonic number of soliton is

dB„i;„„———— dr (F—sinF cosF) .
dr

(5.21)

In I'" —+ we pick up a particular scale. The relevant solu-
tion of (5.16) is of the form

F=8(r R)F (IJ—ir)+8(R r)F+(p—2r) . (5.22)

(5.23)

It is a function of R. This is a picture analogous to the
standard chiral-bag situation.

We may recover the purely soliton picture of baryons
by considering the limit where pqR~O. Then F+(pzR)
=m. and the source terin sinF5(r —R) disappears. More-
over, from (5.23) 8;„,~0 and the constituent-quarks
baryon number canceled with the soliton baryon number
inside the bag. Hence the Skyrme-soliton picture of had-
rons seems to be a limiting case. The algebraic equa-
tions are thus more general. Only a more detailed study
of the physical properties will decide which particular
dynamical realization underlies the algebraic structure of
@CD we have just put forward.

We can adjust pq, pz such that I' is continuous at R and
such that its derivative has a discontinuity equal to
—A, sinF. Since (5.22) is continuous at r =R and since
F(0)=E(00)=0, the total baryon number of solitons
(5.22) is zero. This is consistent since the constituent
quarks carry the baryon number 1. On the other hand,
the total baryon number (i.e., quarks+soliton) inside
r&R is

B;„,= 1 ——IE+(p2R) —sin[F+(p2R)]cos[E+(p2R)] I .1

(Al)

g:p~gp (gP) =O~p(g)p (A3)

One can draw orbits of K in the space of p. The orbits
are classified by a set of invariants constructed by p .
Consider a point on a given orbit and denote it by p~.
Then every point on the orbit is generated by gp. Ele-
ments of K which make p invariant form a subgroup,
which is called the "little group" and denoted by»:

0 0go&» goP=P . (A4)

Let us denote an element of the left coset K/H by Q.
Every element in K is then uniquely specified by

g=Qgo, g GK, QEK/H, go CH . (A5)

The p space in a given orbit is then specified by Q, so that
(A 1) can be expressed as

I
Q,p&=(Qp)

I
Q,p& . (A6)

One defines the Haar measure of K/H as a quotient of
Haar measure of K by that of H:

dg =dQ dgo .

One then defines the 5 function in K/H by

f(Q)= JdQ'f(Q')5(Q, Q') .

We normalize the vector
I
Q,p & in (4.6) as

(Q',p I
Q,p & =5(Q', Q) .

(A7)

(A8)

(A9)

Let us denote a unitary irreducible representation of the
little group H by

u(go) I
LM & =X~M M(go) I

LM'
& (A10)

Since» is a compact group the representation space V is
finite dimensional. The basis of V which we specified by

I
LM & is normalized as

The symmetry group K acts on M according to the alge-
bra (3.3), namely,

ut(g)W~u(g)=O p(g)M~,

where g EK and we assume 0 (g) is an orthogonal matrix.
Accordingly, E acts as a transforination group in the
space of p:

(LM
I
L'M'& =5I.L. '5MM' . (Al 1)
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Although we used the same notation as the angular
momentum of the rotation group, H will not necessarily
be O(3), of course.

The induced representations of G=E X T are defined
in the space of K/H V as in the following:

APPENDiX

In this appendix we review the induced representations
of the strong-coupling group, whose Lie algebra is defined
by (3.8). This appendix is an improved version of Ref. 11.

We first diagonalize all the commuting generators W
of T. Let us denote the eigenvalues by p:

I
Q,M;pL & =(Qp)

I Q,M;pL &,

u (g)
I
™&PL& +~M'M(go) I

Q&M'PL &

where Q' and go are given by

gQ'=Ago .

(A12)

(A13)
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The induced representation constructed in (A12) is known
to be irreducible.

In order to see the internal-symmetry properties of iso-
bars it is necessary to decompose the space of induced rep-
resentation into irreducible components of symmetry
group K. For this purpose we first set O'=0 in (A12),

u (g)
~

O,M;pL & =g&MM(go)
~
Q,M',pL & . (A14)

M'

Let us use LM for the irreducible representation, v for its
basis, and D~(g) for the unitary representation. An ir-
reducib1e tensor operator is then defined by

fD"„(g)'u (g)dg =X(pv
~

o ), (A15)

D(g'L'M')(ELM) (go ) ~//ALL'~M'M (go ) .L (A18)

Thus, setting o:ELM—we obtain the following expression
for (A17):

In order to evaluate the integral we must investigate how
H is contained in IC. The components of an irreducible
representation p of E has been specified by v (or o).
Since H is a subgroup of K the index v (or a) may be
written (ELM) where g specifies irreducible representa-
tions of a chain of subgroups of K; EDEi D DH.
Then the matrix D" (go) can be written

which has the property

u (g)X(pv
~

rJ) =QD~„(g)X(ljv'
~

o ) . (A16)
I l v pL(PM) & =Rig fd&D~rLM')(&)

~
&,M',pL & .

M'

Thus, one defines

I tv, pLtr &
—=X(pv

~

o.)
~

O,M;pL &

D~ gg g g OMpL

= fD".'(g)+~M M(go) I
& M'pL &dg

I C v;pP & =g fd &D~&'AM )(» I &,M',pL & . (A19)

The right-hand side is obviously independent of M, and
furthermore L =L so that the above expression can be
written as

=y f D„.'(n)
~

n, ,M',pL&dn

X fD"o (go)~M'M(go)dgo (A17)

From this expression one sees that the multiplicity of the
representation p is given by the number of different
values that g may take on the same L.
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