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%'e calculate the ultraviolet divergences of the nonlinear o and Gross-Neveu models in the 1/N
expansion near two dimensions (d =2—e). Beyond the leading order the theories develop logarith-
mic as well as pole singularities in e. Identical divergences occur when the renormalization con-
stants calculated in perturbation theory are expanded in powers of 1/X Iather than in powers of the
coupling constants. The necessary infinite renormalizations of the 1/X expansions are completely
determined by the two-loop P functions aud one-loop anomalous dimensions of perturbation theory.
These results can be extended to non-Abelian gauge theories in four dimensions which admit 1/N
exp aI1sioIls.

I. INTRODUCTION

We have considered in some detail the nature of the ul-
traviolet singularities and the behavior of the renormaliza-
tion constants of quantum field theories with I!N expan-
sions. ' In particular, we deal here with the nonlinear o.

model (NLSM) and the Gross-Neveu model (GNM). Of
course, a great deal is known already about these models
in two-dimensional space-time. They are exactly inte-
grable, renormalizable theories; their S matrices and spec-
tra have been calculated exactly. ' Since we are ultimate-

ly interested in applying our results and techniques to
four-dimensional theories, these properties are not what
directly concern us here. Rather, we concentrate on the
details of the renormalization procedure when the Green's
functions for the models are expanded in powers of I/N
(N is the number of components of the fields) and the
theory is regularized by dimensional continuation about
d =2.

Both of the models are asymptotically free in two di-
mensions. For d &2 they have a two-phase structure.
For' small coupling constant, g, there is a perturbative
phase in which the quanta are massless and a strong-
coupling phase in which a mass gap appears and no mass-
less states remain. In the NLSM, mass generation is asso-
ciated with the restoration of the O(N) symmetry ap-
parently violated by enforcing the constraint equation of
the model, and in the GNM dynamical mass generation is
accompanied by violation of a chiral symmetry of the La-
gl anglan.

As 0~2 the critical coupling constant which separates
the two phases approaches zero, and for d & 2 the theories
exist only in the massive phases. If one replaces d =2 by
d=4 and "massive phase" by "confining phase, " then
there is a close parallel between the behavior of these
models and the expected behavior of QCD or any unbro-
ken non-Abelian gauge theory in four dimensions.

The massive phases of the two-dimensional models are
readily realized if the coupling constants of the respective
remodels are replaced by g/V N and the Green's functions
arc expanded in powers of 1/X. In the case of non-
Abelian gauge theories in four dimensions the 1/X expan-

sion thus defined is consistent with confinement, but it
has not been proved that there exists a two-phase struc-
ture for which d =4 is the critical dimension.

Though general discussions of the renormalizability of
the 1/X expansions have appeared before, ' we are not
aware of any thorough discussions of the renoH11a11zatlon
constants which go beyond the leading order in I /N. In
carrying out the next-to-leading-order calculations using
the method of dimensional regularization, we have
discovered some new r'esults. Beyond the leading order
the dimensionally continued Green's functions develop
logarithmic as weil as pole singularities in @=2—d. (Note
that e & 0 for d & 2.) We have found also that these singu-
larities do not contradict the Laurent expansion in e of the
renortnalization constants found in perturbation theory
but are, in fact, predicted by expanding these renormaliza-
tion constants in powers of I/X rather than in powers of
the coupling constant. This reconciliation of the 1/% and
perturbative results leads to further predictions about the
ultraviolet singularities of the 1/X expansions for these
models. They are effective]y super-renormalizable. All
the divergences of the 1/X expansion are determined by
the one-loop anomalous dimension and the two-loop
Gell-Mann —Low —Callan —Symanzik P function of the
perturbative expansion. Some rcnorrnalization constants
have divergences to all orders in I/N while others have
divergences only to a finite order of 1/I|I or are in fact
finite. In all cases the results are predictable from the
low-order perturbation theory calculations.

In Sec. II we carry out explicit calculations for the
NLSM and GNM to demonstrate the emergence of the
in@ singularities. The consistency of our results with the
behavior of the renormalization constants calculated in
perturbation theory is demonstrated in Sec. III. Here we
also determine the general structure of the ultraviolet
singularities in the 1/N expansion and demonstrate the
super-renormalizable properties alluded to above. In the
concluding Sec. IV we discuss our results and, in particu-
lar, their generalizations to I /X expansion of four-
dimensional gauge theories. Some details of the proofs of
renormalizability of the NLSM and the GNM in the 1/N
cxpansiOn arc glvcn in thc two appcndlccs.
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II. CALCULATIONS

A. Nonlinear Sigma Model

The Lagrangian density for the O(N) NLSM is

Xexp i +J g

It is convenient to introduce an auxiliary field, I,, and

write a Fourier representation of the 5-function con-

straints, viz.

gg~ (x)—N/g )

d~
2

(4)

Making this substitution in Eq. (3) renders the exponent

quadratic in the r) field, and the corresponding Gaussian
functional integral can be evaluated. There results an ef-

fective nonlocal action for the auxiliary field, A, , and a

loop expansion of this effective action generates the 1/N
expansion. The result can be achieved directly by shifting

A, ~A, +m (the value of m will be determined later) and

writing the action as

S=~o+S
with

So —f —,'(g„.q„—mzqz)+ —f f A(x)E '(x,y)&(y),
2

(5)

Sz ——f (N/g g) ——f f A—,(x)E—'(x,y)A(y),
2 2

where E '(x,y), the effective wave operator for the A,

field, corresponds to the bubble diagram of Fig. 1 and is

given by

29@ Qp

with the constraint

r)z=g r)=N/g'.

We use the summation convention for repeated space-time
indices and a dot to indicate summation over internal spin
indices.

The generating functions for Green's functions can be
written in functional-integral form' as

Z(J)= f [dq]gS(q( ) ~q( ) —N/g')

i d~k 1

(2~) [(k+p)' —m'][k' —m']

e/2I'(1+e/2) 4n.

Sam m

XF(1,1+a/2; , ; —p—/4m ) .

The presence of E '(x,y) in the interaction term can-
cels the bubble diagrams (see Fig. 1) generated by the
three-point interaction. Therefore, the prescription for
calculation is to omit both E ' insertions and elementary
one-loop bubbles. As shown in Appendix A, two counter-
terms are required to renormalize graphs with only exter-
nal g lines,

a b X

Therefore, the Feynman rules are as given in Fig. 2.
The power in 1/N of a given graph can be found as fol-

lows. Remove all g lines connected directly to external g
particles. One now has a graph with E~ external A, lines
connected via closed g loops. Contract each g loop to a
point. Count the number of closed A. loops, Lz, of the re-
sulting reduced graph. The power in 1/N of the graph is

E~+L~ —1. Thus, only a finite number of graphs contri-
bute to each order in 1/¹ The renormalization con-
stants, therefore, can also be expanded in powers of 1/N,
1.e.,

Z= 1+ g z'J'/NJ .
j=0

2 4m 1

e gz I (1+@/2)
e/2X, &1+(z,-')'"]

4mp

The ultraviolet divergence at d =2 can be removed by the
minimal-pole subtraction

(zs -')'"=g'/2m' .

Then at d =2 the renormalized self-energy is

Both of the counterterms can be determined from the
self-energy corrections for the r) particles. To zeroth order
in 1/N the self-energy is given by the diagrams of Fig 3. .
There is no wave-function renormalization to this order.
Calculation of the diagrams gives

rr'"=m'

E '(x y)= {x)(—8 —m )
2

X(y)( 8 m) —')x—) .

In momentum space the inverse propagator can be written
as a hypergeometric function FIG. 1. Bubble diagram for A, wave operator.
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propagator i

p

i8..
lj

p —m

X propagator E( 2)
N

q tadpole

charge renormalization
counter term FIG. 4. (1/N) radiation corrections to q self-energy.

vvave function
counter term

2
ip a

FIG. 2. Feynman rules for 1/N expansion of nonlinear o
model.

'( —PE )= 1- 4r
16+m m

,
e/2

PE
4@i,

' 1+a/2
I (c/2)

PE

I (1—e/2) I (1/2)
I (I/2-~/Z)

II~ '=m [ 4n/g2—+In(p1/ynl)],

P 2=4~pie r, y =Euler's constant .

The parameter m is fixed to be the physical mass of the

g particles. Thus, we Iequire

II(m )=0,

Note also that

X[I+0(4m /F1)] .

I (1+c/2) 4m.

Smm m

(14)

which has the solutions
The contributions of Figs. 4(a) and 4(b) are

d"k E(k )

(2m) (k+p) —m

rn =P exp[ —(4~/g1)] .

The zero-mass solution is known to be physicaHy unac-
ceptable for d (2," and one adopts the dynamical mass
generation given by the second solution.

The diagrams which contribute to the self-energy to
O(1/N) aI'c show11 ln Flg. 4. To calclllatc tllc llltravlolc't
divergences of these diagrams we need the asymptotic
behavior of E ' for large Euclidean momentum. A stan-
dard result for hypergeometric functions' gives

{c)

E(0) d kd I E(ll )

2 (2~) [(k+&)2—m2](k2 —m2)'

Individually these two terms are quadratically diver™
gent, but their leading divergence cancel in agreement
with the power-counting results of Appendix A. To es-
tablish this we use the following result to factor II~&"..

d"k 1

(2') [(k+I) —m ](kl—m )1

1(3—d/2) 'd [ 2
( )Iq]gg2

2(4~)""

FIG. 3. (1/X) radiative corrections to q self-energy.
Integrating by parts, we can write I(l ) in terms of bubble

diag raIlls,
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&(l') =—~( I +e/2)
(m 2)d/2 —2+ (3 d ) d~[ 2

( 1 )l2]d/2 —2

(47r}" (l —4m ) 0

, [E '(0)+(3—d)E '(l')]
l —4m

(18')

We will refer to this formula as the cutting rule because of
its similarity to a result expressing a general one-loop
graph in two dimensions as a sum of bubble diagrams. '

Substituting this result in Eq. (17) gives

d l E(l )

(2~)d l —4m

—i(3—d)E(0) f . {19)
ddl 1

(2m. ) l —4m

Evaluating the second integral and combining II,"' and
rr'b" gives

I

We can write, therefore,

11,"+'b —[(4/d —1)p —3m ]in@

(1+e)2'+F(p 2, m, e), (24)

(1) 2 (1)II, =-p z„

47Tm

g I'(1+e'/2)

e/2
47Tp b(~)
m

(25)

where F is finite at @=0.
The counterterms of Figs. 4(c} and 4(d) are straightfor-

ward~

(2m) {l+p) —m

(1+e)(2)' .

E{l )
l —4m with

b«i=(. -')'"-[1+{;-')"']"„".
The wave-function renormalization insertion in the 1oop
of Fiu. 4(e) generates a mass counterterm:

+ finite terms .

(2n ) (l2 —4m 2)2

(21)

'TCI Iff

g I'(I+e/2) (z
—l)'LLJ IItulzl

Using the asymptotic form for E(l } from Eq. (14) the
divergent piece of the first integral can be evaluated as

E(l )J=i
(2m)d (l' —4m')

Since II' '=0 to O(1/N), we can drop the last term.
Then the full contribution to Il(" for @~0is

II(i)= (p2 —3m 2)lne+F(p2, m2) —4m 2/E+(m2 —p2)z(

1 ——ln(P /m ) (z ')'" .
2 g (28)

Xo —Cgf2—lnI"(1—e/2)I (1+@/2) C
(22) ~

where we have made a Wick rotation and set x =l, /4m .
xo is an infrared cutoff and

(&)
zq

~ sing lne,

(zs ')"'
~ »ns

— g /2~@ (g—/2~)lne—
(29)

The singular parts of the O(1/X) renormahzation con-
stants can then be identified as

C =I (1/2)I"(1—e/2)/I (1/2 —e/2)

= —(e/2)[ip(1) —%(2)]+O(e )

with

%(x}= lnI'(x) .d
dx

(23)

ol

2
Z -'=1+ g

2m

1Z =1+—1ne.

2 1 1
1 — ——lnE

N
(30)

Thus, we obtain'

J=in@+finite terms . (23)

In Sec. III we show that these results are consistent with
the (1/e) expansion of perturbation theory and complete
the renormalization of the self-energy.



B. Iofoss-Neveu Model

The Gross-Neveu model contains an X-component fer-
mion field with a chiral-invariant interaction

f Pl'OPQQQtOI'

W =pike+ -(gQ)

To derive the I/N expansion for the model, it is con-
venient to introduce an auxiliary field, 0, and write

W =giglg ——
2 o aftt—/.

2g
(32)

The I/X expansion can be generated as in the NLSM by

performing the Gaussian integral over the physical fields

and making a loop expansion of the resultant effective
nonlocal action for the auxiliary field, o. Equivalently,
one can shift the 0 field, o -+cr+m, and write the action

I'IG. 5. Fcyomao ru1cs for 1/X expansion Of QI-oss-Ncyeo
model.

So= J f(ill —m)g

+ O'(&), —

2 5(X —y)+b, (X,y) g(y),

(33)
+2(p —4m )Z '(p2) . (38)

Ã N
mar -crPg-

Qg
2

i(x,y ) js given by a onc-loop fermjon bllbblc, viz.

In addition, there are the countcrterms discussed in Ap-
pendix B. After translation of the c field, they can be
written as

WCT afiglg ——b(Np '/—2g )(cr +2mcr) .
The fermion loop is divergent in two dimensions, but

this ultraviolet singularity can be removed by a coupling
constant counterterm. The effective wave operator for the
0 field in the action of Eq. (33) is

X' '=mD(0) -+ -----ln(2m 2/P2) ' .I 1

g 2~

Thc condition ~(p=m )=0 leads to dynamical mass gen-
eration via the relation

(39)

The Feynman mles are given in Fig. 5. The power of
I/X of a given graph is determined in dose analogy to the

Erase thc fcrmjonjc lines connected directly to
external fe~ions, and contract the internal fe~lon loops
to poiilt vertices. The resultjng djagram has E
lines and L loops. Its power in I/N is E +L 1. —

To zeroth order in I/N the fermion self-energy is given
by the graphs of Fig. 6. Using the value of b' ' from
above, their combined contribution at c =0 is

m =(P /2)exp( —2~/g2) . (40)

This dimensional transmutation relation, extend& to
6+0, implies that

y,
' 2 I"(c/2) 2

g2 (4 )d/2

(41)

+2lf/2(p2 4m 2)+ —1(p2) (36)

The singularity of the second term can be canceled by jn-
cluding the b rr counterterm in the wave operator.
pole IS canccIcd bf 3{:ttjQI

Then at d =2 the renormalized one-loop w ave operator is FIG. 6. . (1/N)0 radiative corrections to P self-energy.
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The O(1/N) contributions to the fermion self-energy
are given by the diagrams of Fig. 7 as follows:

d»kd 1
g,")=D(0) tr, D(I') .

(2m )'" (I(r+l m—)(k' m—)'

(42)

Evaluating the trace and using the cutting rule of Eq. (18')
leads to

d»l
r("=mD(0)2(d —1)I J (2~)" I —4m

' —e/2

=mD(0) I (c/2)
2m

—m /e+ finite terms,

d k D(k )

(2~)» (lg+P —m)

X,'"= mD(0)b("p '/g

y( I ) pg (I )

(48)

(49)

1 2I (1—d/2)
( I)»/z

L

As noted above we can set a("=0 and, therefore, drop
X»" and X,'". For d=2, D(0)= —mo. Thus, the only
necessary counterterm of O(1/N) is

2 2
b ( I) (z —) )(1)

2 lT'

1 1 g1 ———+ — inc

But this does not diverge at e=O and does not require a
wave-function 1cIlomlah, zatlon countcrtcrID. FoI' thc
IDass counterterm %'c obta1n by s10111ar IDRIllpulat10Il

8= —,
' Inc+ finite terms .

Thc countcrtcIm coQtribut1ons ale

Zy= 1

III. RENORMALIZATION-GROUP ANALYSIS

~( z) .
y

d k (1+@k/JI )D(kl)
(2~)" (p+ k )'—m '

~( z) . d"k D(kI)
(2~) (@+k)'—m I

(44)

Expanding the denominators of A and 8 in powers of p
gives

2 dk D(k)A=1 1——
z

+finite terms .
(2Ir)» kI —4m'

The most singular part of the integral can be evaluated
uslllg tllc lllcthod of Scc. IIA to obtalll

We will show that the singularities calculated in Sec. II
are consistent with those found in perturbation theory and
are, in fact, predicted when the renormalization constants
calculated by miniIDal-pole subtraction are reexpanded in
powers of 1/N Moreove. r, only the one- and two-loop
contributions to the perturbative renormalization effects
glvc risc to slngularltlcs 111 thc 1/N cxpaIlsloll.

The renormalization-group P function and the
RIloIDalous diQ1cnsion have bccn calculated to tllI'cc-loop
order for the nonlinear cr model. ' The results expressed
in terms of a=g /2n. are

2

P(a) = — 1 ——a 1+—+02 g A CE

A sj~s lnE' ~

2
(46) y„(II)= +O

From the definitions of the Z factors in Eq. (A21) dif-
ferentiation with respect to )M gives the differential equa-
t1OQS

FIG. 7. (t/X) radlat1vc corrcct10118 to fp self-cllcl'gy.

i3(a)+[p((I)—ea]a lnZ =0,

ys(a) = ,
' [P(a) ca] —lnZ„.—

BA

These can be solved for Z and Z„as
P(x)/x

[—c+P(x)/x ]

y„(x)lnz„=2 f ", ,
dx.

(54)
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First, let us integrate to find Z~ using the two-loop P
function. Actually, it is convenient to use the modified

P(a)= —aa2[l+bu+a h(a)] (63)

P(a) = —aa /(1 —ba),

which differs from the two-loop answer only in higher or-

ders. We will see that the divergences of Z~ are insensi-

tive to the higher-order contributions, and the approxima-
tion of Eq. (56) gives a simpler answer after integration.

—1

ln 1+ a . (57)
E

lnZ '= 1—
Q

1 ba
o J 6'+QQ'

If one now takes the limit @~0,we get

Z =1+ ba in@+ (co—nvergent terms),QO!

which agrees exactly with the calculations of Sec. II.
Taking the one-loop result for the anomalous dimension
in Eq. (55) and the P function from Eq. (56), we calculate
the wave-function renormalization constant as

c(1 bx)—
e+ (a be)x—

2c a a —be'
ln 1+ u —ba

be Ia —be —e
(61)

Expanding ill powel's of cx gives

lnz~
aa . ( —1)" a be—

A'

o n+1 E

which has the expected structure for lnZ as a sum of
poles in e. However, an expansion in powers of
b -O(1/N) gives the result

8

lnZ '= g ln 1+
m=0

(1+bx)[1+bx+x h(x)]

+O(e inc) . (65)

The difference vanishes as @~0 so that the full Z~
and the result of Eq. (60) differ only by the addition of

.finite and vanishing terms. Therefore, we can perform
finite multiplicative renormalizations and take the
coupling-constant renormalization factor to be

r

Z =1+ 1 —————in@
2 G CE

(66)
e X

Similarly, we have for the wave-function renormahza-
tion constant

Z(2) i~ 2 I~d g(x)( 1 +bx ) xch (x)—
a(1+bx)[1+bx ~xzh(x)]

+O(zine) .

Therefore, a finite rescaling enables us to set

1
Z& ——exp lne

J

(68)

The charge renormalization constant has divergent contri-
'butions only to O(1/X). While the wave-function renor-
malization has divergences to all orders in 1/N, the
higher-order terms are all determined by exponentiation
of the result given by low-order perturbation theory.

A similar analysis goes through for the Gross-Neveu
model. When expressed in terms of a=g /~„ the pertur-
bative renormalization-group functions calculated to two-
loop orders afe

y(a)=ca+a g(a),
where h(a) and g(a) are O(1/N) and finite at a=0. Us-
ing the superscript (2) to denote quantities calculated with
h(a) =g(a) =0, we find

Expanding in powers of 1/X and letting e-+0 gives

2c
lnZ = — in@+finite terms

Q

1
In@+finite terms,

which is also in agreement with the result of Sec. II.
Furthermore, we can show that the higher-order perturba-
tive contributions to P and y give only terms which do
not diverge as e—+0. Hence, these extra terms can be
scaled away by finite renormalizations and the forms
given in Eq. (60) and (62) are sufficient to render the
theory finite. To demonstrate this explicitly write

2
yg(~) =

SX

The charge renormalization constant with the minimal-

ly required divergent structure may be found by the same
procedure used for the NI.SM with the result

Z =1+ 1 ———+ inc . (70)
1 a a

N e 2(N —1)

The terms up to O(1/N) agree with the calculations in
Sec. II B. In this case we predict In@ divergences in Z~ to
all orders in 1/N, but the higher-order terms are all
predictable from the second-order perturbative results.
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Thc RnoIIlalous dlmcnslon ls second OI'dcr 1Q A. Thcrc-
fore, the wave-function renormalization constant should
bc f1111fc111 thc 1/X cxpallsioII Rs lndlcatcd below,

a yp(x)
1QZQ —2 —ex+ p(x)

x(1+bx)
e+(a+be)x
aa 1 bo,

{a+be)' 2 (a+b~)

m =E'p exp( —2a/a')

=E'p (a/ao) ' exp( —2a/a) .

K is a finite calculable number. The last expression for
m agrees with the two-loop result of perturbation theory
(Brezin and Zinn-Justin ).

In our 1/N renormalization scheme we found Z„ to be
coupling-constant independent and Z~ ——1, which implies
that there are no anomalous dimensions for the q or g
fields. An argument similar to that given above for the p
function shows that this does not contradict the usual ar-
gument that the form of the one-loop anomalous dimen-
s1on should bc scheme independent.

with a =(1—1/N), b =1/[2(X —1)],and c = —1/SN.
When expanded in powers of a, inZ~ has a pole struc-

ture in e, but when expanded in powers of 1/X, it is finite
as c~O. This is consistent with the results of Sec. IIB
where we found no divergent wave-function renormahza-
tion to 0(1/Ã). Therefore, no infinite wave-function re-
normalization should be required for the fermion fields in
the 1/N expansion of the GNM.

Using Eqs. (66) or (70) we can use the first line of Eq.
(54) to compute the p functions for the models in the 1/N
renormalization scheme. At e=0, we have the same form
for both models,

a'=a+ka +0(a ) . {73)

In the pI'esent case this expansion does not exist. Turning
the argument around one can compute the relation be-
trveen the coupling constants in two schemes by solving
the differential equation

I

P'(~') = P(Iz) .
8A

For example, if we take

p'(a') = —a (a')'

(74)

P(a) = —aa /(1 —ba)

as used in our calculations, then Eq. (74) gives

a'=a/[1+ha ln(a/ao)]

which docs Qot Rclm1t 8 power scIl.cs exp 8Ilslon Rbout
a=O."

The renormalized self-energy determines the dynamical
mass generation. Using our results to O(1/N) and the re-
lation of Eq. (76) leads to

p(a) = —aai

which Rgrccs %'1th thc oQc-loop Icsult 1Q pcItulbat1on
theory. Th1s appeals to contrad1ct 8 gcncI'Rl result that, 1Q

any mass-independent renormalization scheme, the form
of the p function is the same up to two-loop order. '

However, this result assumes that one can expand the cou-
pling constant in one scheme as 8 power series in the cou-
pling constant of another scheme to at least second order,
1.C.,

IV. DISCUSSIGN

The graphs of the 1/X expansions considered here can
be related to infinite sums of Feynman graphs in pertur-
bation theory. Our results show that many of the ultra-
violet divergences of perturbation theory are damped by
this resummation. The infinite renormalizations of the
1/X cxpa11sioIls Rlc dctcIT11111cd completely fl'0111 thc 011c-

loop anomalous dimensions and the two-loop p functions
of the perturbative expansions.

The only natural expansion parameter for the S ma-
trices and the spectra of the NI.SM and GNM is 1/N.
The same may be true as well for unbroken non-Abelian
gauge fields in four dimensions. For QCD the most im-
portant point is not whether —,

' is a small expansion pa-
rameter but whether the 1/X expansion starts out in the
correct (confining) phase.

We have seen that the ultraviolet singularities of the
field theories are less severe in the 1/N expansion than in
ordinary perturbation theory. The simplification of the
renormalization constants has, however, the corollary that
the 1/N method tells us less about the detailed behavior
of the renormalized theory at short distances than does
pcrtulbat1on theory.

It 1s ilot yct clcRr wllcthcr it is possible to ca11y oilt RI1

operator-product expansion in the 1/X. Therefore, it may
turn out that while the 1/N expansion is well suited to
studying the on-shell behavior of asymptotically free
theor1cs» thc- short-dlstRncc Rnd 11ght-coIlc behavior
plobcd by such pI'occsscs Rs deep-1nclastlc lepton scRttcr-
ing and the production of high-mass muon pairs are better
cxplaincd v18 perturbation theory.

There is a possible further restriction implied by the
1/N scheme. Because of the inc singularities there are
branch points of the amplitudes at C=O, the critical di-
mension. ThcI'cfolc, 1t 18 Ilot clear that wc caIl cont1nuc
the amplitudes calculated beyond the leading order in 1/N
and rcnormalized by ouI' method to higher dimensions. It
is above the critical dimension that the iwo-phase struc-
tures manifest themselves. In QCD, however, one would
ccrta1nly bc w1111ng to pay thc pr1ce of los1ng this 1IlfoI'-
mation in exchange for real understanding of the physical
content of the theory at the critical dimension d =4.

Our conclusions about the nature of the ultraviolet
singularities deduced from the behavior of the
renormalization-group functions in Sec. III do not depend
UpoQ thc dcta11cd cRlculat1ons of Scc. II. These cxpl1c1t
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and

1 11

8&
2'
3N

examples, however, are important to convince us that
there are no additional singularities or other problems
lurking in the summation of an infinite set of perturbative
Feynman diagrams implicit in each order of the 1/N ex-

pansion (not to mention the fact that this is also the route

by which we first discovered this behavior).
At this point, however, we can use the renormaliz-

ation-group approach in theories for which explicit calcu-
lation in the 1/N approach is not tractable. We have in
mind particularly non-Abelian gauge theories in four di-
mensions. For an SU(N) theory with Nf flavors of fer-
mions in the fundamental representation and with the
gauge constant written as g =a/N the two-loop P func-
tion is

P(a) = Boa'—+B,a',
(78)

APPENDIX A

D=2(1—A,, ) . (Al)

Therefore, we initially require counterterms with zero
or one A, field and any number of i) fields. The general
form of the counterterms can be written as

~cr= i(ni n„) g ak( )i')"+—g bk(i)')"
k=p k=p

In this appendix we combine functional integration
techniques with power counting to show that if the 1/N
expansion of the nonlinear o model can be renormalized

by local counterterms, then just two counterterms are re-
quired to renormalize graphs with external g lines only.

First, consider a vertex function with rl, external iI
lines and A,, external i(, lines. Using the Feynman rules
for the 1/N expansion derived in Sec. II, standard power
counting gives the superficial degree of divergence of such
a vertex as

Bpo. Bi
Z~ '=1+ + aine .

e Bp
(79)

This technique can also be used to treat anomalous dimen-

sions and their associated renormalization constants in

gauge theories. The inc singularity enters at the zeroth
order of 1/N rather than at the first order as in the two-

dimensional models. This is not surprising since the
lowest-order contributions for the NLSM and GNM are
sums of an infinite set of bubble graphs, which require

only single-pole renormalizations, while the lowest-order
terms for gauge theories consist of all planar graphs
which have more complicated ultraviolet divergences.
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This P function can be written in the form of Eq. (56)
with a =Bo and b = —Bi/Bo. In this case b =O(1), but
the singular part of Z ' is still given by Eq. (60) as

+(g.gq)(g re) g ck(rl }"
k=p

+m g dk(rl )" .
k=1

(A2)

If all these terms were really needed, the counterterm La-
grangian would be nonlocal. However, for graphs without
external A, lines only the ao and bo terms are required.
Essentially, it is rescaling of A, and the constraint equation

r) =N/g

ak =O(1/N" +'), b =O(1/N"}

ci, =O(1/N + ), di, =O(1/N") .
(A3)

which allow us to eliminate all the other terms.
In the 1/N expansion the lowest-order graphs contri-

buting divergent terms of these forms determine that

This work we supported in part by National Science
Foundation Grant No. PHY 81-09110A-01.

Green's functions for rl particles are generated by adding
to the Lagrangian a source term for the g fields, viz.

T

Z(J)= f [di) dA, ]exp i f (J i)+W+Wcr)
L

= f [dydee]exp i f J g+ ,'(q& g&)gak(q —)"+(qq„) hack(g )"+m gdk(q )"
1 p I

+ —g bk(g2)" + —,'(1+a)(g& rl&) —,
' m rl ——[r—l —(1+b)N/g ]

1

(A4)

A, '=A(l bi) . — (A5)

We have made obvious definitions of a and b in terms of
ap and bp, respectively. Since A, is a dummy integration
variable, we can rescale and define

The Jacobian of this transformation can be absorbed in
the overall normalization of the functional integral. The
bk counterterms have the same form as before when writ-
ten in terms of A,

' and bk with
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bk bk/(1

In the 1/N expansion we write

1/(1 b—i) =1+bi+(bi) +

(A6)

(A7)

(1+b)A, = (1+b)[A,'+A, 'b
pg +&'(big ) + ' ' ] .

g 2 g
2

(A12)

Z(J)= f [dydee, ]exp i f J.g+ +—gbk(q )"
2 3

——g (1 big—)
A 2 2

2

, (1+b)A, (AS)

with bq-O(1/N ).
Next we set

so that we still have

bk O(1/N ),
except that the b& counterterm has disappeared. We can
now write (dropping primes)

Dropping primes, we have a new A,g term on the right-
hand side of Eq. (A12) which again can be removed by a c
number rescaling of A, . Since bz-O(1/N ), the coeffi-
cient of A,(g } which was originally O(1/N ) has been re-

duced to O(1/N ) by the change of variable in Eq. (A9).
By repeating this process we have an inductive proof that
the A,(g ) counterterm can be removed to all orders of
1/N.

Next we prove inductively that all A,(g ) counterterms
can be removed. Assume that all such terms up to k =m

have been transformed away. We have
T

Z(J)= f [dA, dg]exp i f J ri+ .

—2n'[I —b +i(n'} ]

A, '=A, l1 —
imari ) .

The Jacobian of this transformation is

g [1—bzq (x)]=exp gin[1 —bzri (x)]

(A9)

Define

A, '=A, [1 b+i(q—) ] .

, (1+b)A,
2g

(A13)

r

=exp 5'"'(0) f dx in[1 —big (x)]

(A10}

With dimensional regularization the Jacobian is unity as
in the previous case. The term in A, alone transforms as

(1+b)A,= (1+b)A,'[ 1+b +i(v] )
2g

with (A 1 1)

bk -O(1/N"), k & 3 .

The term in the action involving the A, field only
transforms as

Since 5' '(0}=0 in dimensional regularization, the Jacobi-
an can be set equal to 1.

For the bk counterterms, substituting Eq. (A9) into Eq.
(AS) and expanding 1/(1 bing ) as a —geometric series
gives

Q b„A(q )"=g bk A, '(ri )"
3 3

2(~2)ZING+. . . ]

(A14)

By our inductive hypothesis the A,(g } term is removable.
For m) 1, higher-order terms in the expansion corre-
spond to counterterms with powers of (g ) greater than
m+1. The redefinition of A, has removed the A,(g } +'
term and redefined the bk's for k & m +1. By repetition
of this procedure all the A,(ri )" counterterms can be elim-
inated to any order in 1/N.

Next we consider the (g.g&)(g riz}(q )" counterterms.
We can use the relation

5 (A15)

where S is the action with only the a and b counterterms,
to write

Z(J)= f [dn dA]exp i f J, g+ . . + $ck(ri ) (ri ri ) id 5
"5X(x)

-exp(iS) . (A16}

Since the only A, dependence is now in S, ordinary and functional integrations by parts set the coefficient of the ck s to
zero.

Finally, for the ak and dk terms we use

(ri )= 2i + z (1+b) S
5A, x gz

(A17)
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and functional integration by parts to obtain
r

Z(J)= f [dridA]e, xp i f J g+ ,'(r—i& ri&) 1+a+ gak 2(1+b) —
2 m 'ri' ——[n' —(1+b )N/g'1

+ —,
'

m g dk [(1+b )N/g ]
1

(A18)

The m term is an irrelevant phase factor which can be absorbed into the implicit normalization. With an obvious

redefinition of the coefficient of the kinetic energy term, we have the desired result
T

Z(J)= f [dridA]exp i f —,
' (1+a)(ri&.ri&) —,'m —ri —[r—i —(1+b)N/g ]+J ri

2
(A19)

Writing the Lagrangian in terms of unrenorrnalized quan-
tities as

rio=+z„ri, Zq ——1+a,
mo ——m'/'Z„,2

(A21)

A,o
——k/Zq,

go ——g p Z&, Z& Z& —l+
We have explicitly restored the factor p' required to keep

g dimensionless for arbitrary dimension.

APPENDIX 8

In this appendix we show that if the 1!N expansion of
the Gross-Neveu model can be renormalized by local
counterterms, then only two counterterms are required for

,' (rip r—i~)
.—,mo—rio — [(go.v]0) —N/go ], (A20)

2

we see that renormalization is achieved by a multiplicative
scaling

graphs with external fermion lines. For a general graph
let E and Ep denote the number of external o and fer-
mion lines, respectively. From the Feynman rules of Sec.
I the superficial degree of divergence of such a graph is

D=2 E E—p/2 . — (81)

This implies that the theory requires the counterterms
given by

Wc~ ——ao+ bcr +cd 9g+dm gg
2g

+cog/+ f(g'/2N)(fg)' .

As shown by Schonfeld, the only counterterm needed
for the four-point function is (1itg) . In the symmetric
phase, invariance under g~yyfi and o~—o guarantees
that the a and d terms are absent. If we restrict ourselves
to graphs with only external fermion lines, then we can re-
scale cr at will in the functional integral to eliminate the e
term. The generating functional for fermion graphs takes
the form

Z(g, r7)= f [dPdfdo]exp i f Pi el/ — cr crPP+ — bo cubi Qg+f—(g /2N)(gg) +riP+Pr/
2g 2g

(83)

The exponent in the integral can be written as

Pi Qgz~+(g /2N)(gg) [f+1/(1 b)]— Z(g, g)= f [dgdgdo]exp i f [fi Qgz) oPg—
I

(N/2g )o Z2—

(N/2g )f&1 b—o+(g'/N)(1/—&1 b)(Pg)]' . — + %+4~] (86)

By rescaling and translation of the integration variable o.

we can let

V'I —b o+(g /N)(1/v'1 b)(PP)—
Z, '"o+Z, '"(g'/N)(qy), -(8S)

Z2 ' f+1/(1 b) . —— —
Then we can write

Therefore, the theory is renormalized by two constants
which can be written in terms of multiplicative constants

go= v zggs zf ZI

(To= cT/z]

go =g p Zs, Z2 = I /(Zsz( ) .

At the last step we have inserted the factor p' required to
keep g dimensionless.
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