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We develop a Hamiltonian approach to the field-strength or dual formation of the Abelian gauge
theory in which the potential A~ is eliminated as a dynamical variable. Our work is based on the
covariant gauge x"A„(x)=0 which allows a simple elimination of 3"in terms of the field strengths
II'". We obtain complete results for the generating functional for the Green's functions of the

theory, Z =Z[ f, g], where 7 and g are nonlocal currents coupled to E and B, and illustrate some
unfamiliar aspects of the new formalism.

I. INTRODUCTION

It was pointed out by Halpern' that gauge field theories
can be written in a field-strength formulation in which the
usual gauge potentials A"(x) are eliminated in favor of
the field strengths F"'(x). This formulation has consider-
able potential advantages for the construction of confining
states in non-Abelian theories, the calculation of Wilson
loop integrals, and the study of monopole configurations.
In a recent paper, we red'erived and generalized the field-
strength formulation for gauge theories written initially in
the coordinate gauge' x"A& ——0. This choice leads to a
substantially simpler and more symmetrical formalism
than that obtained by, Halpern. Results similar to ours
have also been obtained by Itabashi.

In the present paper, we continue our investigation of
the field-strength formulation, rt;stricted this time to the
Abelian case, and develop the theory from a Hamiltonian
rather than Lagrangian point of view. This has the ad-
vantage of clarifying the constraints on the new canonical
variables, and providing (modified) canonical quantization
conditions. Not surprisingly, we obtain complete results
for the generating functional for the Green's functions of
the theory, Z=Z[f, g], where f and g are nonlocal
currents coupled to E and B. We illustrate the unfamiliar

aspects of the formalisin by using Z[ f, g] to obtain the
classical equations of motion and various Green's func-
tions for the field strengths.

II. THE HAMILTONIAN FORMALISM

A. The Lagrangian expression for Z [J]
The generating functional Z[J] for an Abelian gauge

theory with an external current J"(x) is given in the coor-
dinate gauge x"A„(x)=0 by the functional integral

Z[J]= f &A exp i f d~x( ,—F„„Fp'[A]+A„J—p)

&& +5(x„A"),

where we have suppressed an (infinite) overall normaliza-
tion constant. Here A "(x) is the gauge potential, and the
field strengths F" [A] are defined by

FP"[A]=auA" aAP . —

We showed in I that the potential AP for a coordinate-
gauge field can be expressed relatively simply in terms of
FI + by2, 6—9

1

A "[F]=f daax„F""(ax) . (3)
0

I

That is, Eq. (2) can be inverted. The inverse is unique for
potentials less singular than x ' on the line [O, x]. We
also showed that a tensor field F~"(x) is a coordinate-
gauge field strength if and only if F satisfies the identities

(4)

where

Fpi. = 2 &pi.a+aP

The conditions in Eq. (4) are just the restriction of the
usual Bianchi identities

8 ~*Fpg ——0

to the hypersurface orthogonal to x". If these conditions
are satisfied, A [F] is a potential for F and the remaining
Bianchi identity

x ()P"Fpt, =O

is satisfied automatically.
The results above may be used to eliminate A in terms

of F in Eq. (l), leading to an expression for Z [J] in terms
of the field strengths,

Z[J]= f &F&A, exp i f d x( ~F—&„F""+A„[F]J"

+A, (Y'Fp )

The functional integrations involve the six independent

30 1754 1984 The American Physical Society



30 FIEI.D-STRENGTH FORMULATION OF GAUGE THEORIES.

field strengths F""with v&p and four Lagrange multi-
plier fields A,

~ used to enforce the Bianchi constraints. In
fact„only the three constraints described by Eq. (4) need
to be enforced; the fourth Bianchi identity is then satisfied
automatically. The component of A, parallel to x is there-
fore superfluous, and we can impose the constraint
xi'A, „(x)=0 without changing the physical content of Eq.
(8). (This point is discussed in detail in I.) We will use
this freedom later.

B. The Hamiltomsn forms11sm

The action in the functional integral for Z[J] can be
written as

S[J]=f d x W[F, A,,J]
= —f d4x( ,'F„~"—'+,' J„„F"—"+A,K*Fp ),

procedure is the construction of a complete set of con-
straints and gauge conditions„and of modified (Dirac)
brackets for the remaining physical variables which are
consistent with the constraints. The constraints can then
be set strongly equal to zero (=0), and the theory ex-
pressed entirely in terms of the physical variables, the
Hamiltonian, and the Dirac bracket relations. The transi-
tion to the quantum theory is effected by replacing the
Dirac brackets by commutators.

The canonical Hamiltonian density

A, =~g 8—W

is independent of the weakly zero canonical momenta ~E
and m&, hence gives no information on E and p. Howev-
er, it can be generalized to another weakly equivalent
Hamiltonian by adding arbitrary multiples of ~@ and my.

where J~ is a noQlocal current density

J"'(x)= f dy yz[x "J"(yx)—x'J"(yx)] . (10)

= 1TIi '8 + 7T g ' ll + iTp U —W

= —,'(8 —E )—m. ii VXE+PV 8—f E+g 8
It will be convenient for our development of the Hamil-
tonian formalism (in which time plays a special role) to
introduce the noncovariant notation

Ai'=(p, A, ),
Ek y ko gk & ~Oijkyij

fk JkO k & OijkJijg ——~E 0

+ KE'U+KpU q

where the fields u and u coupled to nzand m..ji are to be
determined.

The equations of motion are easily determined using the
Hamiltonian

(20)

VA'th these conventions

S[J]=f d x[ —,(E —8 )—A, (BoB+V&&E)—pV' 8

Rnd the canonical Poisson biackets,

I 8 (x) 1Tjij(x ) j p, p= 5( x —x )5ij
(21)

+ f E—g.B], f JJ;(x),&,(x') j„p „,p [mg;(x), ng——;(x')j„p „.p ——0,
etc. The result is

and

f = f dy y [xJ (yx) xJ(y—x)],
.8+V~K=O,

4

Prli+8 —VP+ g =0,
(22a)

(22b)
g= yy I yx &x. (16)

To llltlodllce 'tile HaIIllltoilla11 forIIlallsi11, we 1111tlally

regard E, 8, A, , and P as canonical variables, and define
the canonical momenta as

0

m s(x) =5S/58(x) = —A, (x),

~E+E+V&& Prji+ f =0,
ap+ 7.8=0,

0

E—u 0 ~

(22c)

(22d)

(22e)

E(x)=5SI5.E(x)=0, subject to the constraints

m Ii(x) =5SI5P(x)=0 . (17c) (23a)

The vanishing of the momenta m~E and n.~ indicates that
the Lagrangian is singular: there is no unique solution for
the velocities in terms of the canonical coordinates and
momenta. To deal with this problem, we will use Dirac's
method for treating constrained Hamiltonian systems. ' '"
In this approach, Eqs. (17b) and (17c) appear as primary
constraints which restrict the solution space to a submani-
fold of the full phase space. The constraints are incompa-
tible with the canonical Poisson brackets, hence are said
to be only weakly zero (=0). The objective of Dirac's

(23b)

The constraints mE-0, mp-0 must hold at all times,
hence m.E-0 and mp-0, and those terms can be dropped
in Eqs. (22c) and (22d). The resulting equations are not
dynamical, but are simply new equations of constraint
(secondary constraints in Dirac's nomenclature ). In
particular, Eq. (22c) defines E in terms of m.~ and f. We
show in the Appendix that Eqs. (22a)—(22d) and the pri-
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mary constraints mE-O, m~-0 lead to the usual equa-
tions of electrodynamics.

C. Extra constraints or gauge conditions

In order to use Dirac's procedure to construct the modi-
fied (Dirac) brackets for our constrained system, we need
a complete set of constraints, each of which has a nonvan-
ishing Poisson bracket with at least one other. The con-
straint mp-0 has vanishing brackets with the other con-
straints determined so far. This means that the con-
straints which follow from the form of the Lagrangian
and Hamilton's equations are not complete and, not
surprisingly, must be supplemented by at least two in-
dependent gauge conditions (the total number of con-
straints must be even' ). We can, in fact, see quite easily
that there are still two redundant variables in our system.

The first redundant variable is simply the component
x&A,"of A&=(p, —

n E) parallel to x". As remarked above
and proved in I, it is necessary to enforce only the Bianchi
identities on the hypersurface perpendicular to x", Eq. (4).
The "reconstruction theorem" in I then shows that F can
be expressed in the standard way in terms of the potential
A [F],Eq. (3), and the last Bianchi identity is just that, an
identity rather than a constraint. Since the component of
Ai' parallel to x" appears in Eq. (8) as the Lagrange multi-
plier field which enforces the redundant Bianchi identity,
it is itself a redundant variable, and may be eliminated by
requiring that x&i/ =0.

The second degree of arbitrariness in the field X" is as-
sociated with the invariance of the action under the
transformation

(24)

This transformation is consistent with the gauge condition

x&A,&=0 provided the gauge function 7 is homogeneous
of degree zero, x„B"X=O. A second gauge condition is
therefore required.

We will choose our first gauge condition as

x„A,"=x mE+x p=O. (25)

For this condition to be consistent, its time derivative
must vanish,

x mE+p+x p=O. (26)

The function v =P which appears in A, Eq. (19), is so far
unspecified. We will choose v to correspond to the
Lorentz gauge condition B&Ai'=0, or in our present nota-
tion,

v =P=V ATE (27)

If we use this condition and Eq. (22f) to eliminate P and

m E, and note that x.g =0, Eq. (26) reduces to the condi-
tion

1

P—f da[ax. B(ax)—x V mE(ax)]=0
0

(29)

as our second gauge condition. This condition completely
fixes p. Equation (25) then fixes x nE.

It remains only for us to show that the second gauge
condition can be maintained at all times. Using Eqs.
(22a)—(22d) and (25), we find after some algebra that the
time derivative of the left-hand side of Eq. (29) is given by

(1+x.V)13+x V irE —x.8=0.
This equation can be solved for fields B, irE less singular
than x and x ' at the origin, that is, for fields con-
sistent with the coordinate gauge. We choose the solution

(30)

1

P—f da[a x'B(ax) —V. m. E(ax) —ax V m.E(ax)]
0

1

=V.m. E — da[ —ax VXE(ax) —V nE(ax)+ax V B(ax)—x V p(ax)+ax V.g(ax)]
1 1

=V.nE —(1+x V)V. f da irs~ax) f daa(x. V—X f+x V g)(ax) .
0 0

=a"f(ab) a"f(aa ), —(31)

and the first two terms therefore cancel. The last term
vanished by Eqs. (15) and (16). We therefore find that the
entire expression in Eq. (30) is weakly zero, and the con-
straint in Eq. (29) has a vanishing time derivative as re-
quired for consistency.

At this point we have the following set of constraints
on the dynamical variables:

The second term in the final expression can be reduced to
V.mE(x) by using the general relation

b
(n+x V) f daa" 'f(ax)

b= f da(na" '+a"x V )f (ax)

d= f da a"f(ax)
da

pi —1TE 0 (32a)

pg ——E+V X irE+ f =0,
P3

——mp=O,

p4
——x irE+x p=O,

(32b)

(32c)

(32d)

$5——V.8=0,
1

p6 ——p—f da[ax. B(ax)—x V. irE(ax)] =0 . (32f)
0

(32e)

This set is complete. The ten constraints reduce the num-
ber of degrees of freedom from fourteen (E, irE, B,

E,p, irIi) to th. e expected four. Furthermore, the con-
straints are all second class (that is, each constraint has a
vanishing Poisson bracket with at least one other con-
straint), and can therefore be used to construct the Dirac

, brackets for the system. ' '"
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D. The Dirac brackets

X I Pp(x '),8}, (33)

As emphasized above, the usual Poisson brackets I, }
which serve as the basis for the canonical quantization of
unconstrained Hamiltonian systems, are inconsistent with
the constraints in Eqs. (32). Dirac'0 showed, however,
that given a set of second class constraints, it is always

possible to construct a set of modified brackets I, j'
which are consistent with the constraints. These can be
used to quantize the system through the usual transition
to commutators, I,}'~—i[,].

The Dirac brackets are defined in terms of the ordinary
Poisson brackets by' '"
IA 8}'=IA 8}—g f 13x1 x'IA, P (x)}C 'Ngx x')

eP

are used. In effect, the modified brackets pick out the in-

dependent dynamical variables on the surface of con-
straint in phase space.

The matrix C(x, x') is not block symplectic for the
constraints in Eqs. (32), and is difficult to invert directly.
We will therefore make use of the "nesting" property of
the Dirac brackets, ' '" calculate modified brackets for a
subset of the constraints, and use those in the definition of
the modified brackets for the rest of the constraints.
(This is equivalent to setting the first set of constraints
strongly to zero in the remainder of the calculation. )

We begin by defining a matrix R (x, x ') of the Poisson
brackets of the eight constraints P(;, Pz, (I}3, P4, i = 1,2,3.
This matrix is block symplectic, with three repetitions of
the 2X 2 symplectic matrix

where
0

r(x, x')=
5(x —x ')

—5(x —x ')

C~p(x, x ')= I(I}~(x),(I)»(x ') j

g f d x"C~&(x,x")C '&p(x", x')=5~(s5(x —x') .

All brackets are calculated at equal times and the sums
run over all the constraints. The Dirac bracket of any of
the constraints with another variable vanishes by con-
struction, and the constraints may therefore be set strong-
ly to zero (=0) wherever they appear if the Dirac brackets

I

on the diagonal in the 1,2 (constraint) space, one for each
value of i, and x r(x, x') on the diagonal in the 3,4 space.
R '(x, x ') is obtained by replacing r( x, x '} by
—&(X,X ) and xo by xo

I 0
(x x')= — 0 ( r(x x'),

0 x
L

(37)

where I is the 3X3 unit matrix. The modified bracket

I, } which is consistent with setting the constraints P(,
P2, P3, and P4 strongly to zero is given by the construction
in Eq. (33),

I A,Bj = I A,B j —g f d x d x'
I A, P ( x ) }R

'
p( x, x ')

I (I}p(x '),8 j
eP

=IA,B}—f d'x IA, Q((x)} [Pq(x),8}—IA, P~(x)} IP((x),8}

+ o IA $3(x) j I/4(x)8 j —-0 IA, $4(x) j I(((3(x)8 j
1 (38)

It is useful to note that the R bracket and the ordinary Poisson bracket are equivalent for the fields 8 and m z since these
quantities have vanishing Poisson brackets with ()(, and (I(3, e.g.,

I 8; (x),n g; (x ') } 0 „,0 I 8;(x)——,~gJ (x ') j 0,0
——5( x —x '}51, etc.

The Poisson brackets of the remaining constraints $5 and (I}6 define a matrix S(x,x '),

S(x,x')=
x V' daa5(ax —x')

0

with the inverse

1—xoV2 da n5(x —ax ')
0

(40)

S '(x, x')=
1

4mxoi x —x'i

1—x.7
4~xo/ x —x'/

(41)

The Dirac brackets I, j' consistent with the strong vanishing of all constraints are now

I A,Bj*= I A,Bj
~ g f d'x d'x'I A, P—( x ) }"& '

p( x, x ')
I gp( x '),8 }

aP



where the sums run over a, P=5,6.
It is clear from the constraints m@ ——/ ~=0, ~p —$3=0 and the explicit expressions for E and P given by the condi-

tions $2——0, P4 ——0, that none of these quantities is a real dynamical variable. The only interesting Dirac brackets are

therefore those for 8 and m s,

I B((x),BJ(x')j*=0,
1

Ing;(x), my~(x')j*=( xVj —x) V;) + f dyy x;VJ —xJ'V;
4~xc/ x —x'/ ' 4'

/

x —yx') 4~x fyx —x')

(43a)

(43b)

I B;(x),n~~(x') j*=5J5(x —x ')+ V;VJ
4m

/

x —x'[
(43c'p

where all brackets are evaluated for x =x' . From these

equations, we observe that the transverse components of 8
and Prz satisfy the canonical bracket relations,

mI(x)= —V f d'x'
4m.

i
x —x'i

V mg(x'),

I B; (x),BJ (x') j'=0,
I m g~g(x), mg)(x') j' =0, (44b)

IB; (x),my~(x') j*=5J5(x—x')+V, V
4n fx —x'/

(44c)

(44a)

for x =x' where

8 (x)=8(x)+V f d'x' V'.8(x'), (45a)
4n.

i
x —x'

i

V m.g(x') .
4m

)
x —x'/

I

~ z(x) = m.~(x)+V f d x'

(45b)

The longitudinal part of 8 vanishes by Eq. (32c),

BL(x)=—V f d'x'
4m

i
x —x'[

V.B(x')=0,

as the constraint V.B=O can now be considered to hold

strongly. The longitudinal part of m. z is not an indepen-
dent dynamical variable, but is determined in principle by
the remaining equations,

where from Eqs. (28) and (32d)

xo — '2(1+x V)x.V '
V ~B x 8.—— .

x

Fortunately, ~ z is never needed.
To complete the transition to a canonical description of

the Abelian gauge theory, we rewrite the Hamiltonian us-

ing the constraints in Eqs. (32) to eliminate the dependent
variables in Pl, Eq. (19). The modified Hamiltonian is

H*= x B,m, , g

~ T~+ —~+ ~ ~+ ~+

where we have dropped the now-superfluous index B on
sr~. The theory is now completely specified by H* and

the Dirac brackets I, j' in Eqs. (44). E is simply an auxi-
liary variable defined by Eq. (32b). As expected, the

present form of the theory based on 8 and m. is dual in
the absence of currents to the usual form in which the

canonical variables are E and A .' ' Thus, for

f = g =0, m is a magnetic potential such that 8= —m.

E = —V&& n . However, the complete theory is more
general.

III. THE QUANTIZED THEORY

A. Calculation of Z[7, g]

The Dirac bracket relations derived above provide a basis for the canonical quantization of the (dual) theory through

the usual transition I, j'~ —i [,]. However, we will instead calculate the generating functional Z [ f, g] for the Green's

functions of the theory. This can be obtained in closed but unfamiliar form, and we will illustrate its use by calculating
the field-field Green's functions.

Z [ f, g] is defined in terms of the usual functional integral over the unconstrained phase space of the physical vari-

ables Q

Z[ f g]= f Wn &B exp i f d x[vr .8 —P (B,m, f g)]

= f 9'm O'Bexp i f d x[m. .B ——,'8 —
2 (VXP + f) —g .8 ] (50)
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The exponent in this expression is quadratic in m and 8, and the functional integrals can be performed completely.

Integration over B gives

Z[f, g]= f &m exp i f d x[—,'(m. "+g ) ——,'(VXm "+f) ]

exp i x —2m Clm' —m' g +V)& +2g (51)

Performing the final Gaussian integration using time-ordered boundary conditions for CI, we find that

Z[f, g]=exp i f d x —,'[g —f +(g +VX f ) C] '(g +VX f )]

=exp i f d x —,[g —f +(g + VX f )(x) f d y D+(x —y)(g +VX f )(y)] (52)

where

i 1
DF(x)=-

(2m ) x2 ie— (53)

B. Expectation values and field-strength propagators

Our explicit expression for Z[ f, g] allows us to calcu-
late the vacuum expectation values of the fields and the
field-strength Green's functions of the theory in the pres-
ence of external sources without any intermediate refer-
ence to the usual potential A. For example, B is coupled
directly to the source g in Eq. (50). Its vacuum expecta-
tion value is therefore given by the functional derivative
of Z [ f, g ] with respect to g

(0~8 (x) ~0)=Z ' f &n. &8 8 (x)e'

Z[f g]
5g (x)

= —g r(x)+ao f d4y DF(x —y)

X(g +VX f )(y). (54)

8 is of course identically zero. The expectation value of
E can be derived using the definition

E= —Vx~ —f, (55)

that is, the constraint on E on Eq. (32b), and differentiat-

ing Z [ f, g ] with respect to f,

(O~E(x) ~O)=Z-' f &2'&8'[ VX2 f](x)— —

Xe is [ B r, pr r, Y, g ]

V. f (x)= —J (x),

(f —Vxg)(x)= J(x), (58)

which are derived in the Appendix, Eqs. (A7) and (A9).
(We would emphasize, however, that we need not make
this connection. '

) Thus, integrating by parts and using
the relation CIDER(x —y)=5(x —y) in Eq. (54), we find
that

(0~8 (x) ~0)= f d Dp(x —y)[V g +VX f ](y)

= f d'yD~(x —y)[ —VX(VXg )

+V X f ](y)

=VX f d"yDF(x —y)[f —VXg ](y)

where the second step follows from Eq. (50).
It is straightforward using manipulations similar to

those in the Appendix to show that the expectation values
of 8 and E satisfy Maxwell's equations in the presence of
currents provided f and g are of the form in Eqs. (15)
and (16). We can also put the expectation values in more
familiar form by using the identities

iZ Z[—f, g]
5

5f(x) =VX f d'yDF(x —y) J(y) . (59)

= —f +V X f d'yDF(x —y)( g +V X f )(y),
(56)

(In the second step, we have used the facts that
VX f =VX f and V g =0.) Similarly,
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(OiE(x) iO)= —f+ f d'yD~(x —y)[VXg +VX(VX f)](y)

= —f + f d y DF(x —y)[V&( g —V' f+V(V f)](y)

=V f d"yDF(x —y)V f(y)+8 f d'yD„(x —y)[VXg —f](y)

= —V f d y D~(x —y)J (y) —8 f d y D~(x —y) J(y) .

Equations (59) and (60) are standard representations for the classical fields in terms of causal Green's functions.
As a second illustration of the use of Z [ f, g ], we will derive the free propagators for 8 and E. From Eq. (50),

(0
~
T(BJ. (x),Bk(x'))

~

0) =Z ' f &m &B T(BJ (x),Bk(x'))e' (B

(60)

=Z 'i r i T Z[f g]
5g, (x) 5gk (x') f =g=o

(61)

Using Eq. (54) and the relations

5gk (x')

5gJT(x)

aDF(x —y) =5(x —y),
vie obtain

5,k5( x —x ') —V,.Vk 5(xo—x'0),
A.

/

x —x'
f

(62)

(63)

(0
~
T(B, (x),B (x'))

~
0) =Z

5gJ (x)
—gk(x')+Bo f d4y D(x' y)g k(y—) Z

=i 5Jk[ —5(x x')+do D—F(x' x)]—
r

+ f d'y V Vk, [5(x'—y) —&O'D~(x' —y)],o „o4~[x—y [

=i(5 kV +VJVk)D~(x' x) . — (64)

This is identical to the result obtained as a derived quantity by quantizing the vector potential, but appears here as a pri-
mary result.

We can obtain the electric field propagator by a similar calculation using the definition in Eq. (55), but must be careful
when expressing the propagator in terms of functional derivatives because of the quadratic dependence of the exponent in

Z [ f, g] on f. This leads in the second functional derivative to an extra delta function contribution which is not part of
the propagator and must be removed. ' The proper result is

(0
~
T(EJ(x),Ek(x'))

~

0) =Z ' f M~ WB T(EJ(x),Ek(x'))e' (

—i5
5fj(x)

I', 5
Bf~(x)

, Z[f, g] ~ ~ i5jk5(x ——x')

fk(x')+&""f d y&,'DF(x' —y)(VX f);(y) Z - 5,k5(x —x')—

=i(5JkV +V~Vk)DF(x' x), — (65)

again in accord with the vector potential formulation. These results can of course be generalized to nonzero values for
the external sources f and g.

IV. SUMMARY

Our purpose in this paper has been to develop the
field-strength or dual formulation of the Abelian gauge

theory from a Hamiltonian point of view. We have based
our discussion on the form of the action obtained by elim-
inating the potential A& in the usual action in terms of
I'"" using the coordinate gauge x&A"=0. This replace-
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E= —V'Xm —f . (67)

This form for H* and the canonical bracket relations lead
to the equations of motion

ment requires that the Bianchi identities (homogeneous
Maxwell equations) be enforced as constraints, and leads

to extra terms in the action. We were. able to obtain a

complete Hamiltonian formulation of the theory with 8
and its conjugate momentum m as canonical variables
satisfying the Dirae bracket relations in Eqs. (43). The
unconstrained variables are just the transverse components

of 8 and m, which satisfy the canonical Poisson bracket
relations. In terms of these variables, the Hamiltonian of
the system is

H'= f 1 x[—,'8 + —,'(VXm. + f } —g 8 ]

where f and g are nonlocal currents and

APPENDIX

To derive Maxwell's equations, we start with the
dynamical equations

B+7&E=O, (Al)

F7+8 VP—+ g =0,
and the equations of constraint

(A2)

V B=O,

V.E= —V. f

E+VX~ii+ f =0,
where f and g are defined in Eqs. (15) and (16). Equa-
tions (Al) and (A3) are the homogeneous Maxwell equa-
tions. Equation (A4) gives

8 —VX(VX~ + f)=0,
~T+BT+~ T

O

while Eqs. (A2} and (A4) give

V'XB—E=f —VXg. (A6)

We remark that Eqs. (67) and (69) can be interpreted as

defining E and 8 in terms of f, g, and a dual (magnet-

ic} potential Aii ——r7. The results can clearly be general-
ized to incorporate magnetic as well as electric currents.

Because H* is quadratic, we were able to integrate the

functional integral for Z[ f, g] explicitly, and to calculate
the field-strength Green's functions of the theory by func-
tional differentiation. This provides an alternative to the
usual quantization scheme based on the potential A~, and
appears to be more natural when magnetic quantities are
to be emphasized.

We remark finally that the transition from the Hamil-
tonian form of the theory back to the Lagrangian form in

Eq. (8) can be accomplished by introducing auxiliary non-

canonical variables such as 8 and E, and appropriate
Lagrange multiplier fields to enforce the necessary con-

straints, e.g., V.B=O. The equivalence of the two forms
has been demonstrated elsewhere. '7 The situation is dif-
ferent for non-Abelian gauge theories. The Lagrangian
field-strength form of the non-Abelian theory was estab-
lished and studied in detail in I. However, the covariant
derivatives D="r}+[A, ] which appear are intrinsically
nonloeal in time for A in the (covariant) coordinate gauge
x"A& ——0, and prevent the use of Dirac's methods to es-

tablish a Hamiltonian formulation of the theory.
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We therefore need only to show that the right-hand sides
of Eqs. (A5) and (A6) are equal to the charge and current

densities J (x) and J(x), respectively.
From Eq. (15),

—V. f(x)= —f dyy V [xJ (yx) —x J(yx)]

= —f dyy [(3+x V)J (yx)+x c)oJ (yx)]

= —f ~y [y'~'(yx)]
dy

=J (x),

where we have used current conservation in the second
step,

BOJ (x)+V. J (x)=0 .

Similarly, from Eqs. (25) and (16),

f(x)—VXg(x)= f Zyy'IBO[xJ (yx) —x J(yx)]

+VX[xX J(yx)]I

= —f, &y y [3+x.V+x r) ]J(yx)

= —f &y [y J(yx)]
1 gy

= J(x),

where we have again used current conservation. Equa-
tions (A7) and (A9) are the identities needed above, and
Maxwell's equations hold.
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