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of quantum electrodynamics

J. F. Cartier, * A. A. Broyles, R. M. Placido, ~ and H. S. Green&
Department ofPhysics, University ofFlorida, Gainesvi lie, Florida 32611

(Received 5 July 1983; revised manuscript received 3 May 1984}

An approximate solution to the unrenormalized Schwinger-Dyson equations of quantum electro-
dynamics is obtained for the vertex amplitude by using combined analytical and numerical tech-
niques. The photon propagator is approximated by its form near the mass shell. The four-point di-

agram appearing in the vertex equation is related to lower-order diagrams by a generalization of the
Ward identity. Under these approximations a functional form for the vertex function, I (p,p+k),
was obtained with a range of validity for all momenta extending from very near the mass shell to in-

definitely large asymptotic values. No infinities were subtracted to obtain the solution.

I. INTRODUCTION

A number of researchers' ' have investigated the pos-
sibility that the infinities which occur in the evaluation of
such physical observables as the Lamb shift and
anomalous magnetic moment of the electron are the result
of improper mathematical procedures rather than an in-
herent flaw in the theory of quantum electrodynamics.
This reasoning has led them to avoid the usual perturba-
tion techniques and look for alternative means of solving
the Schwinger-Dyson' equations for the electron and
photon propagators and their vertex function. One ap-
proach has been to make use of renormalization-group
methods' to obtain the asymptotic forms for the propa-
gators. A different approach, presented here, derives an
approximate solution to the Schwinger-Dyson equations
for the vertex amplitude with a range of validity for the
electron four-momentum extending from near the mass
shell to indefinitely large asymptotic values. In an earlier
work' we initiated this approach with a solution to the
electron propagator equation. In this paper we will
.describe how an extension of this method is used to evalu-
ate the vertex function. In each case we have obtained
solutions which are finite.

The discussion in this paper will be arranged in the fol-
lowing way. Section II will describe the general method
for the solution of the Schwinger-Dyson equations. Sec-
tion III will briefly review the results of that method as it
was applied to the electron propagator. Section IV will
describe the application of this procedure to the vertex
equation. Section V presents a simplified equation which
was used to give an initial solution to the more exact
equation. Section VI gives a description of the final solu-
tion to the vertex equation. Section VII contains conclud-
ing remarks.

II. GENERAL PROCEDURE
FOR A NONPERTURBATIVE SOLUTION

TO THE SCHWINCyER-DYSON EQUATIONS

The Schwinger-Dyson equations are stated here in the
momentum representation. The Fourier transform of the

photon propagator, D&„(k ), satisfies the equation

D„(k)=Do„„(k)+Do„„(k)II (k)Dp (k),
where

(2.1)

S '(p) =So '(p) —X(p),

where

(2.2)

&(p)= 4 IDqtt(k)y~S(p+k)I ~(p+k,p)d4k .
(2 )

The last equation involves the vertex,

I (p+k,p)=y +A (p+k,p), (2.3)

where A (p+k,p) represents the contributions of all
nodeless diagrams to which are connected two external
electron hnes and one external photon line. It satisfies an
equation containing a four-point diagram as we shall see.

The difficulty in obtaining a complete solution to the
Schwinger-Dyson equations is basically that we are seek-
ing to determine 16 scalar functions (two for the electron
propagator, two for the photon propagator, and twelve for
the vertex) through the simultaneous solution of three
nonlinear integral equations (out of an infinite hierarchy),
in a four-dimensional space. Furthermore, it is desirable
to avoid the substitution of bare quantities for dressed
quantities (a process that traditionally leads to infinities).

The procedure that we use to obtain a solution to these
equations has three components to it. The first is the
selection of an approximate photon propagator. The
second component is the use of a generalization of the
Ward identity for higher-order diagrams. These provide a
means for truncating the infinite hierarchy. The last

component consists of transforming the electron and ver-

i 4~co
II ~(k)= I Tr[y S(r)l p(r, r k)S(r ——k)]d r .

(2m. )

The subscript 0 follows all bare quantities, and bars over
letters indicate four-vectors. The Fourier transform of
the electron propagator, S(p), satisfies the second
Schwinger-Dyson equation,
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(qA, —pA, )1 (q W=S (q) —S (P) . (2.5)

This can be seen to determine the longitudinal com-
ponents of the vertex in terms of the electron propagator.
The differential form of the same identity,

tex integral equations into differential equations by the ac-
tion of the D'Alembertian on the photon propagator. We
will now take up each of these three components in
greateI' detail.

The first component, which approximates the photon
propagator, is justified by the following observations. The
vacuum polarization is known to make only a small con-
tribution to the Lamb Shift. Thus, our solution is not ex-

pected to be significantly altered by small misrepresenta-
tions in D„„(k). When the mass-shdl-limiting form is
used to approximate D„„(k), the substitution is most ac-
curate where k approaches zero. Where kl vanishes the
integrands in Eqs. (2.2) and (2.3) are at their largest.
Thus, this form is most accurate in the region of most im-
portance. In Ref. 12, it was proved that, if this form is
used, the Landau gauge must be selected if a solution to
the approximate equations for S(p) exists. Thus, we shall
choose I

D„„(k) =ZI ( g„„+k—„k„/k I )/k (2.4)

Finally, the approximation of D„(k) with Eq. (2A) was
additionally motivated by the results of earlier investiga-
t1OQS. '

The second element employs the Ward identity con-
sistently at all levels. At the first level we have

of Wards's identity for these higher-order n-point dia-
grams (Green' ). Just as we have Eq. (2.5) for the vertex
function, so we have for the four-point diagram an
equlvaleIlt relatlonshlp

(r~ q—~)E (r, q r—,p)=I (q,p) I—(r,p q+—r) .
(2.8)

Sllllllar I'clRtlollshlps cxlst fol tllc lclnRllllllg ll-polllt dlR-

grams. These identities exactly define the longitudinal
components of the n-point diagrams in terms of the
(n —1)-point diagrams. They can be used to truncate the
hierarchy of integral equations.

The last element in the procedure of reducing the
Schwinger-Dyson equations to a tractable form was to
convert the integral equations into a set of differential
equations with boundary conditions. This method was

developed in connection with the Bethe-Salpeter equation
(Green' ). lt was first used for a study of the Schwinger-

Dyson eguat1ons by Bose and 818was.
EquRtloll (2.4) fol' tllc pllofoll pl'opagatol CRI1 bc I'cstRt-

ed in the following way:

When the D'A. lembertian operator is applied to any in-

tegral over the photon propagator, we can make use of the
followlllg pl'opcrty:

(2.10)

(2.6) where

provides information about the complete vertex in the
limit of vanishing photon momentum.

Just as the Fourier transform of the two-point dia-

grams, D&„(k) and S(P), are related to the Fourier
transform of the three-point diagram, I (q,g7) (where

q=p+k), so the I (q,p) can be related to the Fourier
transform of a four-point diagram, E

Hp ——

dpa &p

This delta function can be us'ed to trivially evaluate in-
tegrals of the type

E 4R'eo
& (p)= f D „(r—p)y"E "(r)d r . (2.11)

(2~)4

PX(q p) yA, +AI,(q P) (2.7)
Using the definition eo Z& ——c and applying the operator
BCI~ to the above, we find

9~&~& (p)=(e'/Ir)[ —,'9~y + "(p)+(&/&p )+ "(p)],
i 4m'e

A (q,p)= f D il(q r)y S(r)I (r',p —q—+r)
(2~)4

)&S(p q r)I (Jp q+—r,p—)d r—
E 4&co+ f D~il(q r)y~S(r)—
(2~)4

&&E~ (r,q r,p)d r . —

The function E~ can be represented as the sum of all
nodeless diagrams connected externally to the two photon
lines, one 1ncom1ng electron line, and one outgoing dec-
tron line. Other equations can be constructed to relate I "
to higher-order amplitudes. ' However, the advantage of
Eq. (2.7) lies in the fact that there exists a generalization

(2.12)
where 9=y 8/Bp .
The solution to the integral Eq. (2.11) is equivalent to the
solution of the differential Eq. (2.12) when the appropri-
ate boundary conditions are satisfied.

In an earlier work, ' a description was presented of our
solution to the Schwinger-Dyson equations at the lowest
ieve»f approxlmatlon. It is usef» to summarize thc re-
sults of that paper. The photon propagator was taken to
have the form of Eq. (2.4). The vertex function was ap-
proximated through Ward's identity,

I""(p+k,p) =I "(p,p) =
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The electron equation was converted into a pair of dif-
ferential equations one the scalar coefficient of the unit
matrix, the other the scalar coefficient of p. These equa-
tions were solved through a combination of numerical and
analytical techniques which lead to the identification

and

p =pap

k=kk (4.2)

S '(p)=A(p')+p&(p ), (3.2)
p k

( 2)1/2(k2)1/2

where

A(p2) Ip2 1
I

r(P2 1—}lP~—

8(p )=1,
and

r 3
3 3', 3A

v ——+ +3 + t ~ 0

4 4m 4m

It was found that a finite solution for the electron propa-
gator existed only if the photon propagator is restricted to
Landau gauge and the bare mass is zero. These results
were in agreement with the findings of other researchers.
In addition, because the electron propagator had been
determined for all values of the momentum, it was possi-
ble to take the mass-shell-limit of the solution and evalu-
ate Zg. Z2 was found to be finite and equal to unity.
The success of this procedure encouraged us to attempt
the solution of the hierarchy at a higher level so that the
vertex function could be evaluated.

IV. THE VERTEX EQUATION

The vertex function is a matrix function and can be
written in terms of the Dirac y matrices, the four-
momentum of the electron, p, and the four-momentum of
photon, k. Its most general form is

PA(p+k p ) piF+ygG +pipG +pi JgG

+2icr~ p~kI3p Ho+2icr p~H&

+2io "k II,+e' i'&y'yik~iil

+ longitudinal(P +k ~P ) (4.1)

The scalar functions I'", Go, G~, Gq, H~, H2, and I are all
functions of p, k, and u, where

Equation (2.7) can be solved for the eight transverse
scalar functions after the following preparations. First
the four-point function, F. , is approximated by the dif-
ferential form of Eq. (2.8). Thus,

E (r,q r,p)= — —(r,p q+r) . — (4.4)
Bl'~

Second, we make use of the approximation

I (r,p q+r)S(p —q+r)l (p —q+r, p)—

-=I (r,p q+r)S(p —q+r)—
X I (p q+ r,p —q+ r ) . —

Finally, we employ the identity

I' (r,p q+r)S(p —q+r)1 (p —q+r,p —q+r)—
(4.5)

[I (r,p q+r)S(p q+—r)]—
I"a

XS(p —q+r) '+ (r,p q+r) . —
~~a

(4.6)

When Eqs. (4.4), (4.5), and (4.6) are substituted into Eq.
(2.7), the vertex equation becomes

The first eight functions in Eq. (4.1) define that part of
the vertex function which is transverse to the photon
momentum k~. The tilde over the I, indicates that the
longitudinal components have been subtracted out, such
that for instance,

pl, pA, kip ktt/J 2

The longitudinal part of I is exactly related to S(p) by
the Ward identity so that with our approximation,

kI l,„;,„d;„,l(p+k, p)= t A[(p+k) ]—A(p ) I—
k k

i4meo
I "(q,p)=y" 4 f D~p(—q r)y S(r) [I (r,p —q+r)S(p q+r)]S—(p q+r) —ti r . —

(2m ) Bp'~
(4.7)

+& + (p+kp)
~pv

(4.8)

By changing notation slightly and allowing q to be
represented by p+k, it can be seen that the rules given in
Eqs. (2.11) and (2.12) provide a formula for the action of
Bl,Hz on Eq. (4.7). By this mechanism, Eq. (4.7) can be
converted into the following differential equation for the
vertex;

2

QpClpI'"(p ~k,p) = — ,' y„grF "(p+k,p)—

I

where

I'(p+k, p) =S(P+k) [r'(p+k, p)S(p)]s(p)-'.

Since only the transverse functions are left to be deter-
mined, it is possible to subtract out the longitudinal parts
of Eq. (4.8). The transverse remainder then contains eight
linearly independent scalar equations which are coeffi-
cients of the matrices, y, p p, p Ig', io ~p kpp,
io p, icr"~kg, and e y y~k~il. Into these eight dif-
ferential equations were substituted Eq. (3.2) for the elec-
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tron propagator and Eq. (2.4) for the photon propagator.
The eight differential equations were written down with

the aid of a Fortran program designed to do the necessary
bookkeeping. Despite the apparent simplicity of the ma-
trix equation, Eq. (4.8), the eight scalar equations, expand-
ed completely in terms of the two electron propagator
functions and eight transverse vertex functions, are inordi-
nately lengthy. For this reason they are not presented
here. ' In the next section, as a preliminary to finding the
vertex function which satisfies Eq. (4.8), we consider
a simpler vertex equation "alled the mass-sheB
equation —and its solution.

Applying the D'Alembertian operator to Eq. (2.7) and
making use of Eq. (2.10) gives

Cl~ I (q,p )= —e( ,' y+" +—a„a 'F" ), (5.1)

Clz —— , Cl&Q =9=y, e=, q=p+k,a a ) ~ a e

ap~ ap ap~

S(q) ~ I (q,p) —I (q,p)S(p) S '(p) —y"

(5.4)
This expression vanishes if we neglect the derivative of I
and of A. We shall see that I is well approximated by

y over the entire range of momenta so that its derivatives
are small. In addition, A in Eq. (3.2) is slowly varying al-
most everywhere. Vfe shall obtain an approximate solu-
tion using the neglected-derivative (ND) expression in Eq.
(5.3) and test how well it solves Eq. (5.1}using Eq. (5.2).

In Ref. 12, the asymptotic forms of the solutions were
found by substituting the differential equations [Eqs.
(2.20) and (2.22}] into the integral equations [Eqs. (2.18)
and (2.19)] from which they were derived. This suggests
substituting Eqs. (5.1) and (5.2) above into the integral
equation (4.7). When this is done, it becomes clear that
I ~(p+ k,p) approaches [1+0(a)]y~ as p increases
without limit where a is the fine-structure constant.
Since I approaches Z2 'y in the vicinity of the mass
shell, and since Z2 is close to unity according to Ref. 12,
me are motivated to assume that

(5.5)

F'"=S(q) [I (q,p)S(p)]S '(p) .

This equation can be approximated by

F"~=S(q )I "(q,p )S(p )y' .

This amounts to neglecting

(5.2)

(5.3)

every&here.
We take, then, y to be our first approximation. It sat-

isfies the boundary conditions to order a and is consistent
with our assumption that the derivatives of I are negligi-
ble in deriving Eq. (5.3). Substituting y for I" in Eq.
(5.3) and this F"~ into Eq. (5.1) gives us a result equi-
valent to

6eAp

(q —A )(p —A )

[(A q.p )5„"+(q„+p„—)p —a„E~]
Up C@——2e

(q2 A 2)(p2 A 2)
(5.6b)

Clq Cp„——eA 5~k~ kq— 1

(q —A )(p —A )
(5.6c)

a &; a q.p, —p.q,
P ap P"P ap (q2 A 2)(P2 A 2)

@where

x
(qvpp pvqp)5p+(qppp —

ppqy, )5v

(q —A )(p —A )
(5.6d)

CUE =
P

(A' qp)5 +(q +p )p-
(q —A )(p —A )

tr[ PA, ] p
2 F

C„'= .'«[I'y„1=51.Go+—p PI Gi+P"kI G2

C„„=—,
' tr[ —2iI ~cr„„]

= 2(p p„k„pp„k„)Ho-
+2(5„p„5„p„)H) +2(5„k„—5„"k„)H2, —

(5.7a)

(5.7b)

(5.7c)

The tensor functions are defined and thereby related to
the eight scalar functions by the following:

C~.~= 4 "[~ '~-~y y ]X 5 0

=[ 5„(kpp k„pp)+5„(k„pp —kpp„)—
+5p(k„p„k„p„)]I. — (5.7d)

In the Appendix ther'e is presented a set of integral
transforms which can be employed to find approximate
analytic solutions to Eqs. (5.6) if the variation of A
is neglected. Once Eqs. (5.6) had been solved for the C,
Cz, C&„, and C&„& tensors, the determination of the eight
scalar functions followed through Eqs. (5.7).



CARTIER, BROYLES, PLACIDO, AND GREEN 30

VI. THE VERTEX SOLUTION

In order to use the transforms in the appendix to solve
Eq. (5.1), we find it necessary to ignore the variation of
A(p ). However, it is clear that both A(p ) and A(q )

will appear in Eq. (5.2), and the question arises as to
which one or what combination of the two should be used
for the constant value. To answer this question, we re-
turned to Eq. (4.8), programmed it on a computer, and
substituted the solutions into it. By comparing the nu-
merical values of the left-hand side, of Eq. (4.8) with
those obtained for the right-hand side, we found that the
linear combination

A = —,
' [A(p+ k)+A(p)], (6.1)

gave the best solution over the largest range of values of p
and E.

Table I summarizes our determination of the eight
transverse scalar vertex functions. These eight scalar
functions satisfy Eq. (4.8), with less than a 3% difference
between left- and right-hand sides over the following
range of variables p, k, and u. For any value of k, re-
strict p and u by

CS —1(—) TC —1 S 1( )

- CD„.(k)'C '=D„„(k)-,
also

(6.5)

(6.6)

I (p,q)= q F(q, k, uq)+y"Go

+q &G1 q"—O'G2 2—1o q~kpq Ho

+2icr q H, 2—io k H2 e—~y y~k qpI

+110.g1.d s1(p q) (6.3)

where p=q —k and where F, Go, 6&, 62, Ho, II&, H2,
and I are all functions of q, k, and

q k,
( 2)1/2(k2)1/2

The scalar functions of I (q,p) were defined in Eq. (4.1)
and can be evaluated by Table I.

A relationship between I (q,p) and I' (p, q) can be
demonstrated by considering the effect of charge conjuga-
tion on the vertex, the electron propagator and the photon
propagator:

( I 2(q P)T( —1 I 2( p
—

) (6.4)

k0&u & 10'
p

2

10
k

(6.2)

( yA. T( —1 yA,

where C=iy2y'.
From Eq. (6.5}we have

CX(p) C '=X( —p) .

(6.7)

(6.8)

Thus, this solution to the vertex equation has a range of
validity which extends from the vicinity of the mass shell
out to arbitrarily large values of the electron momentum
squared.

When the functions in Table I are evaluated in the re-
gion complementary to Eq. (6.2) we have difficulty per-
forming the numerical integrations accurately. Where the
ingoing electron momentum squared, p, is allowed to
grow smaller in magnitude than the photon momentum
squared, k, greater and greater precision is required. The
need for precision is exacerbated by the fact that in order
to test Eq. (4.8) we require not only an evaluation of the
eight functions but also an equally precise evaluation of
all:possible mixed derivatives (with respect to the variables

p and u) up to third order. An assortment of numerical
procedures of increasing complexity was applied to the
computation of the functions and their derivatives. Each
improvement in precision extended the region of validity
of the solution represented by Table I. Equation (6.2)
recognizes a practical limit.

It would be nice to be able to evaluate the functions in
the region complementary to Eq. (6.2) without having to
go to heroic lengths. Therefore, we observe that where the
vertex I (p, q ) has ingoing momentum q, such that

~ q ~

&10
~

k ~, then reversed order vertex, I (q,p),
with ingoing momentum p will be such that

~ p
=

~

k ~. Thus, where one cannot evaluate I (p, q), one
can evaluate I (q,p ). So, if there exists a relationship be-
tween the vertices, we could evaluate the scalar functions
of I (p, q) in terms of the available scalar functions of
I (q,p). The scalar functions of I' (p, q) are defined by

I

Thus,
'1ID„,(k)I'"(p,p+k)S(p+k)y"d4k C

= f D p(k)I ( —p, —p —k)S( —p —k)y~d4k .

(6.9)
This yields the relationship

D&„(k)y"S(q)I "(q,p)=D p(k)l (p, q)S(q)yi . (6.10)

2 —1 &10-'.
Pl

(6.11)

The limitation in Eq. (6.11) reflects back to our original
determination of the electron propagator functions, 3 and
8. Although these functions we11 represent the electron
propagator at the mass shell, their derivatives are loga-
rithmically divergent at the mass shell. Accordingly,
since the two vertex functions, F and 61, have the follow-
ing limiting behavior at the mass shell,

2 dA(p)
2 7

dp

G dB(p )+
dp

By inserting Eq. (6.3) and Eq. (4.1) into the above we can
solve for each of the scalar functions F(q,k, uq), etc., in
terms of the scalar functions F(p,k, u ), etc. In this way
a complete solution to Eq. (4.8) is obtained over the entire
range of momenta excluding only a small region at the
mass shell,
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TABLE I. The eight transverse scalar vertex functions.

=3 1F= 8 e(A)+Ay) I)dp,
1I=— I1d

4 —1

1 1

Go= 1+ IqdP ——CK —— I3dP,
4 —1 4 4 —1

1

G) ——— I3dp,
' 1/2

62 ———1+2u p
4 k2

1 1
'

~ 1

I3d + I4d —— I3d

1

Ho —— (A)+Ag) Ig dP,
16 —1

r

1. k'
Hg= (A)+Ay) —k Ig PdP 2(p )'~—(k )' u+ f IgdP

r

1 u k
(A +A ) f I",dp+ —f I dp+ (p )' (k')' '—+ Isd + Is d + 4k

where

and

u =. . . A&
——A((p+E) ), Aq=A(p~),

(p2)1/2(k2)1/2 ~

2

4

and where

Xp"ln1-
Xp Xp Pp

T

Pp k2 Xp
I2 —— 1 — — ln 1—

Xp 2Xp Pp

1
I3 ——(A I A2 —pp)

Xp

"'—11n 1 — '
Xp Pp

Xp
I4 ——(A1A2 —pp) ln 1—

Xp Pp

CE = 1 — ln 1 — + 1 — ln 1—A1A2 p1 A1A2 p2

p m p m

I3 ——(A1A2 —pp)

r

2Pp xp 1 Xp
3

ln 1 — + 2ln 1—
Xp pp Xp pp

2
2

Xp

Xp
I4 ——(A1A2 —pp) — ln 1—

Xp Pp PpXp 1—
Pp

Xp Pp XpIs=L2 + 1 — 1n-1—
Pp Xp Pp

dz
L,2(z) = — 1n(1 —z)—,

z

xIs ——

Pp

p p p
pp Xp pp Xp
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TABLE I. ( Continued).

+Pp2"
&p pp xp 1—

pp

pp
2xp Qp1—

pp

pp
2 7

Xp

I6—— »0 1—Xp

Xp Pp

xp =t'p+ z (P+ 1)k]

pj =A)A, ~ (1—P2)k2 .

they have the same ln(p /m —1) dependence. It is not
surprising to find that F and Gl fail to satisfy the vertex
cquRtlon 1n very close proximity to thc mass shell. Work
is currently underway to expand the vertex equation
around the mass shell in order to establish the correct lim-
iting behavior of F and Gl.

xp ——[p+(P+1)—,
' k]

pp
——m —~(1—P )k

Notice that where P= 1, xp ——p and where P= —1,
xp ——(p+k) =q . If

By the implementation of a generalization of the Ward
identity, we were able to truncate the infinite hierarchy of
1ntcgI'Rl cquat1ons Rt thc second lcvcl Rnd apply thc under-
standing gained at the previous level to facilitate the solu-
tion of the resulting equations. This procedure can be
generalized to allow truncation of any higher level. An
earlier paper suggested that the rcnormalization constant
of the electron propagator is approximately unity. Since
tllc I'cllollllallzatloll coIlstRIlts fol' tllc plopagRtol' Rnd tlM

vertex are the same when Ward's identity is satisfied, the
convergence of the vertex integral is guaranteed. Thus, by
maintaining Wards identity at all levels in the calcula-
tion, we guarantee that the vertex rcnormalization
remains finite. A complete solution to the vertex equation
has been found for all values of momenta more than a fin-
1tc distance froID thc IDass shell,

2 —»»o-'
Pl

Xp —Pl

Xp
1 — ln 1—

Xp m'

Xp
Ps ————, f ln 1 — dP.

~ Xp Pp

—P?2 2

ln
2 2

p
{q2 ~2)

I dP
(xp

—pp)

» I »

(q —m )(p —m )
—' (xp —pp)

(A2)

and correct up to second order in the coupling constant.
The solution ca'n be refined by repeating the procedure to
the next order in the coupling constant. This solution is
I'cpl'cscntcd. 111 Eq. (6.9) wltll tllc clgllt scRlal' fullctlolls de-
fined in Table I.

Encouraged by the success of the process to this point,
we look forward to returning to the initial assumption
which fixed the photon propagator in its near-the-mass-
shell form, feeding it into a general form, and using the
knowledge already acquired to make possible a sim. ultane-
ous solution to all three equations.

then

1 — ln 1 — dP.
Xp Pp

(A3)

1 Xp
Cl~gll ——f (m —pp)ln 1 — dP,

Xp pp

APPENDIX

The solution of Eqs. (5) and (6) is facilitated by the ob-
servation of the following general relationships. I.et

pD ———,
' f (m —pp) I.—1:pp

» — ln»—Pp Xp

Xp Pp
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where

X
L (x)= — —ln(1 —x )dx

o x

xL—(x) (x——1)ln(1 —x)+x .

G&C =3am a
t)px

q —m2 2

ln
p —m

q —p
(A5)

Using the definition of P, in Eq. (A3) and letting
P'(z) = (t)/Bz)P(z) we can conclude that

As an illustration of the procedure, we will show how
the above transformation rules will lead to a simple solu-
tion to Eqs. (5) and (6a). Equations (5) and (6a) can be
reexpressed as

C~ =3am
~P~

= —,amp —P'„dPXp
—1 Pp Pp

F= ~em ln 1 — + 1 dp.1 Pp &p

Xp Xp Pp
(A7)

The remaining seven scalar functions were determined by
a similar utilization of the integral transform rules. The
evaluation of the eight scalar functions was done by a nu-
merical integration over beta.

= —,'amp I ln 1 — +1 dP . (A6)-& Xp Xp Pp

Through Eqs. (5) and (7a) the identification of the first of
the eight scalar functions is shown to be
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