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Electroweak gauge theories are discussed, using charge commutation relations and asymptotic
symmetry. The mass of the second Z boson (m;,) in the SU(2), X U(1); X U(1), models is predicted
using the W- and first- Z-boson masses (my and m;) to be m>={3—r+[(3—r)+4(r—1)2—r)/
(1—ce’r)1'?}my?/2, where r=(m;/my)* with 1<r<2 and cg®=1—s42 with s4°=(37.2
GeV/my)? defined at zero-four-momentum-transfer-squared limit. At present, m, is bounded as
my > (1.6—1.7)my by the recent data on s¢ and r from the pp collider experiments.

I. INTRODUCTION

After the great success of low-energy phenomenology
of the Glashow-Weinberg-Salam (GWS) electroweak
model based on the SU(2), X U(1)y gauge group,' the
weak bosons have finally been discovered at the pp collid-
er at CERN.? The masses of the W boson (my ) and the
Z boson (my) are reported by UA1 (UA2) as®* my ~80
GeV (~81 GeV) and mz~95 GeV (~91 GeV) in good
agreement with the predictions of the GWS model. The
next experiments at higher energies may disclose how
many weak bosons there are in nature. It is, therefore,
important to try to predict the masses of the extra weak
bosons if they exist. Various alternative gauge models
beyond the GWS model with extra weak bosons have been
proposed and discussed.>~'* Among them, the minimal
extension of GWS based on SU(2); X U(1); XU(1), (Refs.
6—10, 13, 14) is known to imply a light second neutral
weak boson. However, its mass has not been predicted be-
cause of the complexity due to the Higgs scalars. To get
around this problem, we propose the use of charge com-
mutation relations (CR’s) present in gauge theories.

A fresh approach using the CR’s is carried out by real-
izing that (1) the breaking of an underlying gauge symme-
try such as SU(2); X U(1)y can be expressed by the CR’s
involving the time derivatives of the charges, and (2) the
usual Higgs mechanism of spontaneous symmetry break-
ing permits us to have asymptotic symmetry in the sense
that the linearity of the transformation under the gauge
group is preserved in the asymptotic limit.!> The latter is
compatible with the notion of gauge hierarchy.!® As to
(1), the use of SU(2); -doublet Higgs scalar will be shown
in the GWS model to be equivalent to imposing the CR
[Vi,V,]1=0, where V =V, +iV, and V; (i=1,2,3)
are the generators of SU(2),. In the SU(Q), xU(1)
X U(1); model, the constraint [V .,V ]1=0 together with

[V*V,]1=0 is able to predict the mass of the second Z
boson (m,) as

(3—r?+
1—0927

4r —1)2—r) ]1/2]

(1.1)

where r =(m,/my)? with 1 <r <2 and cg’=1—s,2 with
592=(37.2 GeV/my )®. The masses of the W boson and
first Z boson (corresponding to the Z boson) are denoted
by my and m, respectively. It should be noted that the
CR’s are always present in models but their realization de-
pends crucially on the spectra of physical particles con-
tained in the models.

The two points (1) and.(2) mentioned above will be
shown to be satisfied in the GWS model. However, the
proposed method is also useful in the technicolor and
preon model with dynamically broken gauge symme-
try,'”1® since CR’s do not depend on the detail of models.
This CR approach has already been shown!® to give a
good description of hadron masses and couplings. The
difference between hadron physics and electroweak phys-
ics thus seems to lie only in the choice of underlying
group.

This paper is organized as follows: In Sec. II, the main
ingredients of our approach are explained in the GWS
model. The SU(2), X U(1);XU(1), model is then studied
and the mass of the second Z boson is expressed in terms
of the masses of the W and first Z bosons. Low-energy
phenomenology of the SU(2); XU(1); X U(1), model is
studied in addition in Sec. III. The final section is devot-
ed to a summary.

II. CHARGE-COMMUTATION-RELATION
APPROACH TO SU(2), X U(1);xXU(1),

A. Basic ingredients and SU(2), XU(1)y

Asymptotic symmetry'® applied to SU(2),, is as follows.
The transformation of the annihilation operator a,(k,A),
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of the fhysical boson with momentum Kk, helicity A, and
a=W=+,Z,y, ..., under the SU(2); generator ¥; can be
expressed (suppressing A) by

[Viaa(K)]=i3 tiqp(K)ag(K)+8u(K); . 2.1)
B

On the right-hand side of Eq. (2.1), the first term picks
up, in principle, all the terms linear in the operators ag of
the physical 1~ mesons contained in the models, and the
remainder is amalgamated into the term &u. Strictly
speaking, ag should thus involve the 1~ gg meson opera-
tors as well since, in broken SU(2);, mixing could arise,
though small, even between the 1~ ¢ mesons and the 1~
weak bosons.

Asymptotic symmetry'> proposes in broken symmetry
that as E——»oo, then du(k)—>0 faster than 1/ E[, ie.,
the physical operators aa(E)’s form a linear realization of
broken SU(2); as K— 0. Thus, for K> aﬁ(fg) can be
related'’ linearly to the hypothetical representation opera-
tors of SU(2),, aj(E) (7=1,2,3, and 0, etc.) by (neglecting
the mixings between the weak bosons and the 1~ gg
mesons etc.)

ag(K)=3Cgia;(K), K- , (22)
J
where Cpg; defines the mixing parameters. Since mass pa-
rameters present in the theory can be neglected in this
limit, the four-momentum squared k2 of a( K) can be tak-
en to vanish. Therefore, the mixing parameters are de-
fined at the massless limit (k2=0).

The above relations are satisfied by electroweak gauge
models. In fact, the mixing and diagonalization of the
SU(2) triplet W,(f " and singlet B,, fields considered in the
GWS model

A, (x)=sinfy W (x)+cosy B, (x) (2.32)

Z,(x)=cosOy W}, (x)—sinfy B, (x) (2.3b)
can be shown to be equivalent to

a,(K)=sinfyas(K)+cosbpay(K) , (2.4a)

K
az(K)=coshA(K,mz)[cosOyasl K)—sinfyay(k)]

—sinhA( E,mz)[cosewag( —K)

—sinfyal(—K)], (2.4b)
with
— 1/2 — 172
cosh?L(l_{,m):l [ "—““—m(}f’o) —"w(l:’m) I )
2 | | w(K,m) w(K,0)
(2.5a)
1 — 172 — 172
sinhA(K,m)=~ | |-2(k.0) olk,m) ]
2 | | w(K,m) w(k,0)
(2.5b)

where a;(k)(i =0,3) are for the original massless B (i =0)
and W; (i=3) fields® and w(k,m)=(|k|2+m?)!72,
Similarly for W'#),

a7 (K) =coshA( E,mw)aliiz(k)

—sinhA(K,mp)a}4(—K) . (2.6)
From these relations, we find that Eq. (2.2) is recovered as
mw?/|k|? and mz?/|k|?* >0 (K—>w) because
coshA(k,m)—1, and

sinhA(K,m)——m?2/4|K | 2>0 ,
where m =my or mz. Therefore, in this limit, we obtain

az(l—f)=cosewa3(f)—sinGWaO(E) s (2.7a)

(2.7b)

The CR’s of Eq. (2.1) thus exhibit the required property
Su(K)—0 as K—> oo since du(K) always contain the terms
proportional to sinh (k,m) which vanishes in this limit as

K|~2
| Tlhe procedure (2.2) expresses the gauge hierarchy'® in
terms of a slightly different language—asymptotic sym-
metry. The linear SU(2); X U(1)y symmetry is restored
(in the sense that 6u —0) above the energy scale m .

As to the SU(2); breaking, we only assume that the
breaking interaction belongs to an SU(2); triplet, which is
true in the GWS model with the SU(2); -doublet Higgs
scalar. Then the “exotic” CR [V+,V+]=O mentioned
before holds for I'/,where V=i [H,V]. Since we assume,
as in the GWS model, that only the mixing between W,
and B is important in Eq. (2.2), we have Egs. (2.7a) and
(2.7b) for A4 and Z for kK— . By realizing the CR
[ Vi,Vj]=i€;u Vy in the asymptotic limit using asymptotic
SU(2);,, we obtain, for example,

(Z(K) |V, | W= (K))=2m)38(K—K ")V2 cosOy

aA(E)=Sin9Wa3(E)+COSGWaO(E) .

for K—> 0. The matrix element is evaluated at the zero-
four-momentum-transfer-squared limit g 2= 0,i.e.,

?=(K—K "2 (mp>—mz22/4| K | 2>0
as | l_{l — o. Therefore, our sin?Qy, is the one evaluated
2__
at ¢°=0
We now sandwich [V, ,V,]=0 between (W*(K)|
and | W~ (k)) with k— o and obtain

S(WH |V, IMM|V, |W)—(V, <V, ,)=0,
M

(2.8)

.
kK— oo .

Under the present approximation M =Z and A4 only, we
obtain the first sum rule,

cos?Op (my?—mz2) +sin®0y (my*—m,2)=0. (2.9)

With the physical photon mass m =0, Eq. (2.9) becomes

myt=mz*0y , (2.10)

which is precisely the result of using the SU(2); doublet
Higgs scalars.

However, we realize that the model actually possesses
an infinite number of constraints



176 M. YASUE, S. ONEDA, AND MILTON D. SLAUGHTER 30

v,

[V(ﬂ{'),V+]-——O, where V(f)z o

, n=1,23,....
(2.11)
If we repeat the same realization for the CR’s in Eq.

(2.11), we find that it is automatically satisfied for n=
even. For n= odd we obtain, including Eq. (2.9),

2 _my?) +sin® 0y (mp?—m 2)"=0,

n=13,5....

cos? Oy (my
(2.12)

Combining the n =1 and 3 sum rules, we find a nontrivial
solution called the “ideal” solution with m 4 =0,

mz*=2my? and cosOy =+ . (2.13)

In fact, all the constraints in Eq. (2.12) are satisfied by
Eq. (2.13).

The experimental value of 8y is (cosZOW)expt=O.77
—0.80. So something is amiss. However, we have to real-
ize that the diagonalization, Egs. (2.3a) and (2.3b), is still
an approximate one as mentioned just before Eq. (2.2).
We have to notice that the effect of the contributions of
the neglected states in the intermediate states M in Eq.
(2.8) is greatly enhanced as n increases. They take the
form y2(my*—my?)", where y denotes the W; com-
ponent contained in the intermediate physical state M

with K—>w. Because of the kinematical factor
(my?—my?)", even the contributions of the 1~ g7
mesons could become non-negligible for n =3. At this
point we have two possibilities: (a) If the minimal model
is valid up to the energy scale, say 1 TeV, the above-
mentioned mixing between the gauge bosons and 1~ ¢gg
mesons should already be important at » =3, although
their effect is certainly negligible at n =1 (at most, of or-
der a). (b) If this effect were not still very important at
n =3, Eq. (2.13) suggests the presence of at least one more
weak neutral boson, which can appreciably mix with W
and B. This case corresponds to the various alternative
gauge models beyond the GWS model with extra weak bo-
sons mentioned before. Present experiments do not ex-
clude this possibility. To pursue the second possibility, we
go beyond the GWS model.

B. SU2). xXU(1);xXU(1),

We thus proceed to an SUQ), XU(1);XU(1), elec-
troweak model®~'>1314 which contains W} (=B;),
B, and B, as neutral members in the symmetry limit.
According to Eq. (2.2), physical states (with k— o) can

be expressed as (cg=cosf, sp=sinf, typ=tan6,
cw =cosOy, etc.)
Zl Ca,Sa,O CQWI(‘3)—S9C¢B1—S9S¢B2
Z) | = | —54,Ca,0 —s¢B+cyB;
A 0,0,l S3W£3)+09C¢B1+C9S¢B2
2 Cy;B;
J
= |3 Cy;B; (2.14)
j
2 CyB;
j

Two of the three mixing angles («,0,¢) are specified by
three gauge couplings, g; of SU(2), and g; of U(1);
(i=1,2), as

8L56=81CoCy =82C9S¢ =€. (2.15)

Asymptotic realization of Eq. (2.11) in terms of only these
weak boson yields using Cj; defined in Eq. (2.14),

(C13)Z(mWZ_m12)n+(C23)2(mW2_m22)n

+(C33 )sz2n=0 5 (2.16)

with

3

> (Cy)P=1. (2.17)
j=1

The ideal-like solutions of Eq. (2.16) for all values of n
are, corresponding to Eq. (2.13), (a) m>=m,>=2my?
with sg’=7, (b) m2=m,>=my? with s4*=0, and (c)
M*=my? and m,*=2my? with s,2=t,%. However, we
take a more realistic point of view that only » =1 and 3
sum rules are trustworthy when we neglect the mixing be-
tween the weak bosons and 1~ gg mesons.

From these (n =1,3) we now obtain
X

(C13)2=mW mWZ—mzz)(ZmWZ—mzz)

X [mAm 2 —my?)Bmy—m 2 —m,»)] 7!,

(Cy3)P=mpmy?—m®)2my?—m,?)

><[mzz(mzz——mlz)(3mW2—m12—m22)]”1 N
(2.18)
(C33 )2=(mW2—m12)(mW2—m22)(2mW2—m12—m22)

X[m*m*Bmy?—m 2 —m,»)] !,
with (Cp3)%=(cgca)? (Cy3)?=(cgsy)? and (Cs3)>=s4%.
Thus, 6 and a are determined by the weak-boson masses.

Since 0<(C;3)*<1 (i =1,2,3), the masses must, in gen-
eral, satisfy

(2.19)

which is compatible with the result of Ref. 9 and 12. Two
different domains are allowed (see Fig. 1):

mxzﬁ(mW/Ce)Zszz »

(A) mW2§m1232mW2§m22 s (2.20a)
(B) m2<myp?, my?<my*<2my?
with 2mp2<m2+my2<3my?. (2.20b)

The GWS model corresponds to the limit of m;— 0.
The connection between the physical domains (A) and (B)
and the ideal-like configurations is illustrated in Fig. 1:
(a) is continued to domain (A), (b) to domain (B), and (c) is
the transition point from (A) to (B). In Fig. 1, the relation
between m, and m, for given values of s4° is shown. The
domain (B) is already excluded by the present experi-
ments.

It should be emphasized that the second-weak-boson
mass is predicted by my and m; (and 6) as from (Cs3)?
of Eq. (2.18)
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FIG. 1. Relation between m; and m, for given values of
5¢°=0.198, 0.211, 0.244, and 0.240. The numbers in the brack-
ets denote the values of (m;/my)? for my— . The experi-
mental data of (m,/my )? are denoted by UA1 and UA2.2 Two
shaded areas represent the two domains (A) and (B). The pas-
sage from “ideal” to real situations is also illustrated.

2
mj

my

3—r+4 [3—r+

1
2 l1—cg’r

4r —1)2—r) ’1/2’

(2.21)

where r=(m,/my)* and 1<r <2 [domain (B)]. There-
fore , in principle, by measuring m; and my,, m, can be
predicted since sg® is related to my as my=(37.2
GeV/sg). Our sg’ is evaluated at g2>=0 and the observed
value of 5,2 is related to sy” evaluated at g>=my % The
relation is given by

sin29(mwz)zaEM(m WZ)SIIIZO(O)/C!EM(O)
=1.070sin%6(0) , (2.22)

for app(mp?)=(128)"1,2! which gives my =[38.5 GeV/
se(my?)]. At present, experiments by UA1 (UA2) indi-
cate sg%(my?)=0.226+0.011 (0.014) which leads to

52=5%0)=0.211%0.010 (0.013) (2.23a)
(m;/my)*=1.385+0.088 (1.268+0.084) .  (2.23b)

These data are also shown in Fig. 1. From the UA2 data,
the mass of Z, is bounded as

my>(1.6—1.7)my (2.24)

within one standard deviation. With the precise measur-
ment of the masses of W and Z,, we are in a position to
predict the mass of Z,.

In the next section, we will demonstrate that the first
sum rule (n =1) of Eq. (2.16) is equivalent to choosing
the SU(2), -singlet and -doublet Higgs scalars by only ex-

amining the effective Lagrangian for small-momentum-
transfer interactions. Also discussed is low-energy
phenomenology of the SU(2); X U(1); X U(1), electroweak
gauge model, which also gives a lower bound on m,.

III. LOW-ENERGY PHENOMENOLOGY
OF SUR): X U(1),xU(1),

To discuss low-energy phenomenology, we have to
derive the effective Lagrangian for small-momentum-
transfer interactions. We discuss (A) the low-energy ef-
fective Lagrangian expressed in terms of three mixing an-
gles defined in Eq. (2.14) and (m;/my) and (m,/my),
(B) the equivalence between the first sum rule (n =1) ob-
tained in Eq. (2.16) and the usual result obtained by using
the I =0 and + Higgs scalars, and (C) lower bounds on
m, derived from low-energy phenomenology.

A. Low-energy effective Lagrangian

The Lagrangian for the W}f}, (i=1,2,3) and B,
(i=1,2)is

Li=8L I Wi +8JB,, (3.1)

where J’s are the corresponding currents. To obtain the
effective Lagrangian expressed in terms of a, 6, ¢,
m,/my, and m,/my, we follow the method of Refs. 5
and 7. The weak neutral and electromagnetic parts of the
Lagrangian are expressed in a convenient form (suppress-
ing the Lorentz indices):>’

Lin=8LJ | W), (3.2)
where

|J) =3, J1tg/cgd 2 /tesy) (3.3a)

| W)=(W",B\,B,) . (3.3b)

After diagonalization of the neutral fields by Eq. (2.14),
we obtain

Liw=8{J | Ta | Z)+eAJgpy , (3.4)
where
ca sa
To= |_sa ca] ; (3.52)
| ') =[ceJsL—sete(J1+J3) ,
tolcg™ Ty —s4201)/cys4] (3.5b)
| Z)=(Z,,Z,), (3.5¢)
Jem=Ja+J1+J> . (3.5d)

For small-momentum-transfer interactions, the effective
Lagrangian can be written as

Leg=4V2Gempy(J' | Ty ' M™2T,|J") , (3.6)
where
m;~% 0
M7= o (3.7)
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Following Barger, Ma, and Whisnant,'! we parametrize
< off AS

L or=4V2Grmy [ (pzr )+ polzr + 1211 (3.8)
where

(3.92)
(3.9b)

Jzr =J31—56*TEM >
J21=J1 _C¢2002JEM .

Since our currents J' are expressed in terms of J; and
J Z1 as

J'l =JZL/C9 s
Jy=—tglcg® 71 +Jz1)/c454 »

(3.10a)
(3.10b)
the effective Lagrangian (3.6) can be transformed into

feff:4\/-2-Gme2C'9_2[A (JZL )2—‘2B (JZ 1JZL )

+CWJz)?, (3.11)
where
A=[D;—2A(sg/ts)+Dy(s9/t4)] , (3.12a)
B =[A—D;y(sg/t4)1(sg/s4t4) (3.12b)
C=D,(sg/s4t4)*, (3.120)
with
D, =cX(my/m ) +s2(my /my)?, (3.13a)
Dy=mi<s>m, in D, , (3.13b)
A=cysa[(my/m )} —(my/my)?] . (3.13¢)

Comparing Eq. (3.11) with Eq. (3.8), we finally find that

p12=(AC —B?)/Ccq?, (3.14a)
(p2/p1)*=B*/(AC —B?) , (3.14b)
(9/p1)?=C?/(AC —B?) . (3.14¢)

B. [V,, ¥V + 1=0 and the representations
of the Higgs scalars

For the present purpose, it is enough to express p; in
terms of vacuum expectation values (VEV’s) of various
Higgs fields. Let us choose under SU(2); X U(1), X U(1),

$1: (3,0,
$2: (1,—7,0), va,
¢y (0,—5,3), vs,
Ay (1,0,1), 6,
A, (1,1,0), &5,

where the v’s and the &’s are the VEV’s. Then we find
that

1
_7)’ Uy,

(3.15)

p12=(v12+v22+2812+2822)
X0 24,2 +48,2+48,2)"L . (3.16)

On the other hand, since

A —(B*/C)=D,—(A?/D,)
and
D1D2—A2=X1x2 )

where x; =(m; /my )%, p,® becomes

p12=x|x2/D2c92 ’ (3.17)
which finally gives
pr=my /(ca’m 2 +5, m,2) 2%y . (3.18)

From two equations [(3.16) and (3.18)], we can show
that the first sum rule (n =1) of Eq. (2.16) derived by

[V , ¥V ]=0 requires that
+2 7V + q

p=1, (3.19)

which in turn chooses §;=8,=0 from Eq. (3.16), the ab-
sence of the I=1 Higgs scalars; therefore, p;=1 is
equivalent to imposing

I=0 and + (3.20)

for the transformation properties of the Higgs scalars.
This is the condition corresponding to p=my /mzcg=1
in the GWS model.

By n =1 and 3 of Eq. (2.16), other parameters are also
calculated to be

p22=[A—-(m22/m1m2)2s9/t¢]2(m,mz/mwz)z ’
(3.21)
n=(mz*/mm;)(sqg/s4cy) ,

with mz=my /cq. Since a, 0, and thus A, are expressed
in terms of (m/my/) and (m,/my) by Eq. (2.14), p, and
1 become functions of ¢ only.

C. Lower bounds on m, from low-energy phenomenology

Let us exarnine low-energy phenomenology which also
gives the constraint on m, although it depends on the de-
tails of the model, the quantum number assignment of the
leptons and quarks in SU(2); XU(1);XU(1),. Two fami-
liar models are (1) SU(2)p XU(1)g XU(1)p_; (Refs.
7—11) where U(1)g acts on the right-handed states of the
leptons and quarks and the electric charge Qg is defined
by
B—L

2

with V§ being the third component of the SU(Q2)g
charges; and (2) SUQ2); XU(1)yXU(1)p (Refs. 13 and
14), where the leptons and quarks are neutral under U(1)p
and

Qem=V'+Y/2

for the leptons and quarks.

V£3)+ VI((3)+

1. SUQ2) XUy XU(1)g_;

Phenomenological analyses on this model have been
carried out by various authors.!®!! The present con-
straints are'!
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0.94<p®+p2<1.16, p,?<0.15,
(3.22)
17<0.5, c4%ce*<0.7 .

with p;=1. For example, the lowest m, is obtained at
7=0.5 and c42~0.5 once s4” is given:

my=~2.0my (3.23)

for sy determined by Eq. (2.23a). In these ranges of s42,
my~(1.1—1.2)my and p,® is about 0.02. This lower
bound is stronger than Eq. (2.24). '

2. SUQ2),XU)yXU((1)p

Since the current of U(1)p, which is taken to be J;, can
be neglected for the lepton and quark interactions, Jz; be-
comes — c4°co’Jpm. It is thus convenient to rewrite - o
as

L g=4V2Grmy [ (Jz)*+CemUem )1, (3.24)

by requiring that the v-induced neutral-current interac-
tions be described by the GWS model. This requirement
can be fulfilled by

p2=0 and 0:6W . (3.25)

since p;=1. We thus find that'>!*
CEM=cW4(m22—m22)(m22——m12)/m12m22 . (3.26)

It is the result of B =0 from p,=0 and 4 =cy’ from
p1=1. Therefore, the masses are determined by sy> and
Cem. The phenomenologically allowed value of Cgyy has
been given by Dittmann and Hepp'* as Cgy <0.03. It
can be satisfied by

m221.6mw ) (3.27)

together with m; > 1.1my and Eq. (2.23a) for sy, which
is almost the same as Eq. (2.24).

1IV. SUMMARY

We have shown that the “exotic” SU(2); charge com-
mutation relation [V ,V, ]=0 provides

p=my/mzcg=1 (4.1a)
for SU(2);, X U(1)y and

pr=my /(cg’m*+54°my?) 2co=1 (4.1b)
for SU(@2), xU(1);XU(1),. Having assumed that

[V,,V]=0 is also well satisfied by the three neutral
gauge bosons in SU(2); X U(1);XU(1),, we predict the
mass of the second Z boson using the masses of W and
first Z bosons to be

1 (r —1)(2—r) ]”2]

2

m

2 =-——'3—r+{(3——r)2+41 2
—Cqg'r

my 2

4.2)
where r=(m,/my)*and 1 <r <2.
We can best summarize, at present, the allowed values
of the second-Z-boson mass:

my>(1.6—1.7)my 4.3)

from the pp-collider experiments. If we further specify
the models, from the low-energy phenomenology we get a
stronger bound

my>2.0my (4.4a)

for the SUQ2), XU(1)g XU(1)g_; model and approxi-
mately the same bound

for the SU(2); X U(1)y X U(1)p model.
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