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Electroweak gauge theories are discussed, using charge commutation relations and asymptotic
symmetry. The mass of the second Z boson (m2) in the SU(2)1. XU(1)l XU(1)2 models is predicted
using the W- and first-Z-boson masses lm~ and m~) to be mzz ——I3 r+ [(3 —r) +—4(r —1)(2—r)/
(1—ce r)]'~')mg /2, where r=(m, /m~)' with 1&r &2 and ce' ——1 —se' with se' ——(37.2
GeV/rn~) defined at zero-four-momentum-transfer-squared limit. At present, m2 is bounded as
m2 )(1.6—1.7)m~ by the recent data on sq and r from the pp collider experiments.

I. INTRODUCTION

After the great success of low-energy phenomenology
of the Glashow-Weinberg-Salam (GWS) electroweak
model based on the SU(2)L XU(1)z gauge group, ' the
weak bosons have finally been discovered at the pp collid-
er at CERN. The masses of the 8'boson (m~) and the
Z boson (mz) are reported by UA1 (UA2) as m~-80
GeV (-81 GeV) and mz-95 GeV (-91 GeV) in good
agreement with the predictions of the GWS model. The
next experiments at higher energies may disclose how
many weak bosons there are in nature. It is, therefore,
important to try to predict the masses of the extra weak
bosons if they exist. Various alternative gauge models
beyond the GWS model with extra weak bosons have been
proposed and discussed. ' Among them, the minimal
extension of GWS based on SU(2)I XU(1)~ XU(1)z (Refs.
6—10, 13, 14) is known to imply a light second neutral
weak boson. However, its mass has not been predicted be-
cause of the complexity due to the Higgs scalars. To get
around this problem, we propose the use of charge corn-
mutation relations (CR's) present in gauge theories.

A fresh approach using the CR's is carried out by real-
izing that (1) the breaking of an underlying gauge symme-
try such as SU(2)1 XU(1)r can be expressed by the CR's
involving the time derivatives of the charges, and (2) the
usual Higgs mechanism of spontaneous symmetry break-
ing permits us to have asymptotic symmetry in the sense
that the linearity of the transformation under the gauge
group is preserved in the asymptotic limit. ' The latter is
compatible with the notion of gauge hierarchy. ' As to
(1), the use of SU(2)L-doublet Higgs scalar will be shown
in the GWS model to be equivalent to imposing the CR
[V+,V+]=0, where V+ ——V&+iVz and V; (i =1,2, 3)
are the generators of SU(2)1.. In the SU(2)L, XU(l)~
XU(1)z model, the constraint [V+, V+]=0 together with

[V +' V+ ]=0 is able to predict the mass of the second Z
boson (mz) as

mw

]. /2 '

4(» —1)(2—r)= —, . 3 r+ (3 r)—+—
1 —cg 7'

where r =(m&/m~) with 1&r &2 and ce ——1 —se with
se ——(37.2 GeV/m~) . The masses of the IV boson and
first Z boson (corresponding to the Z boson) are denoted
by mw and m&, respectively. It should be noted that the
CR's are always present in models but their realization de-
pends crucially on the spectra of physical particles con-
tained in the models.

The two points (1) and (2) mentioned above will be
shown to be satisfied in the GWS model. However, the
proposed method is also useful in the technicolor and
preon model with dynamically broken gauge symme-
try, ' ' since CR's do not depend on the detail of models.
This CR approach has already been shown' to give a
good description of hadron masses and couplings. The
difference between hadron physics and electroweak phys-
ics thus seems to lie only in the choice of underlying
group.

This paper is organized as follows: In Sec. II, the main
ingredients of our approach are explained in the GWS
model. The SU(2)L XU(1)&XU(1)z model is then studied
and the mass of the second Z boson is expressed in terms
of the masses of the 8" and first Z bosons. Low-energy
phenomenology of the SU(2)L X U(1) ~ XU(1)z model is
studied in addition in Sec. III. The final section is devot-
ed to a summary.

II. CHARGE-COMMUTATION-RELATION
APPROACH TO SU(2)L, XU(1)l XU(1)2

A. Basic ingredients and SU(2)L, XU(1)y

Asymptotic symmetry' applied to SU(2)L is as follows.
The transformation of the annihilation operator a ( k, A, ),
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of the physical boson with momentum k, helicity A, , and
a= W —,Z, y, . . ., under the SU{2)L generator V~ can be
expressed (suppressing I, ) by

aIr—
+ '(k) =cosh'(k, m~)a, +;2(k)

—sinhA(k, m~)a, +;z( —k) . {2.6)

[V;,a (k)]=i+ u;~~( k)a~(k)+5u(k); .
P

(2.1)

ap(k)=QCp~aJ(k), k —&oo,
J

(2.2)

where C@ defines the mixing parameters. Since mass pa-
rameters present in the theory can be neglected in this
limit, the four-momentum squared k of a (k) can be tak-
en to vanish. Therefore, the mixing parameters are de-
fined at the massless limit ( k =0).

The above relations are satisfied by electroweak gauge
models. In fact, the mixing and diagonalization of the
SU(2) triplet W&

' and singlet B& fields considered in the
GWS model

On the right-hand side of Eq. (2.1), the first term picks
up, in principle, all the terms linear in the operators a@ of
the physical 1 mesons contained in the models, and the
remainder is amalgamated into the term 5u. Strictly
speaking, a~ should thus involve the 1 qq meson opera-
tors as well since, in broken SU(2)L, mixing could arise,
though small, even between the 1 qq mesons and the 1

weak bosons.
Asymptotic symmetry' proposes in broken symmetry

that as kazoo, then 5u(k)~0 faster than I/~ k ~, i.e.,
the physical operators a ( k)'s form a linear realization of
broken SU(2)L as k~0o. Thus, for kazoo a~(k) can be
related' linearly to the hypothetical representation opera-
tors of SU(2)L, , aj(k) (j=1,2, 3, and 0, etc.) by (neglecting
the mixings between the weak bosons and the I qq
mesons etc.)

From these relations, we find that Eq. (2.2) is recovered as
mt' /~ k

~

and mz /~ k
~

~0 (k~op) because
cosh', (k, m)~1, and

az ( k ) =cos8~a 3 ( k ) —sin8grap( k ),
a~(k) =sin8~a3(k)+cos8~a0(k) .

(2.7a)

(2.7b)

The CR's of Eq. (2.1) thus exhibit the required property
5u ( k )—+0 as k ~ oo since 5u ( k ) always contain the terms
proportional to sinh ( k, m) which vanishes in this limit as

The procedure (2.2) expresses the gauge hierarchy' in
terms of a slightly different language —asymptotic sym-
metry. The linear SU(2)L XU(1)r symmetry is restored
(in the sense that 5u ~0) above the, energy scale m ~.

As to the SU(2)L breaking, we only assume that the
breaking interaction belongs to an SU(2)L, triplet, which is
true in the GWS model with the SU(2)L, -doublet Higgs
scalar. Then the "exotic" CR [V+,V+]=0 mentioned
before holds for V,where V=i [H, VJ. Since we assume,
as in the GWS model, that only the mixing between 8'3
and B is important in Eq. (2.2), we have Eqs. (2.7a) and
(2.7b) for A and Z for kazoo. By realizing the CR
[ V;, VJ ]=i ecjt, VI, in the asymptotic limit using asymptotic
SU(2)L, we obtain, for example,

sinh7 (k, m) —m'/4
~

k
~

' O,

where m =m@ or mz. Therefore, in this limit, we obtain

&„(x)=sin8g W„' '(x)+cos8~B„(x),

Z&(x) =cos8~ Wz '(x) sin8~B„(x)—,
can be shown to be equivalent to

(2.3a)

(2.3b)

{Z(k ')
~

V+
~

W (k)) =(2m)'5(k —k')W2cos8~

for k —+ oo. The matrix element is evaluated at the zero-
four-momentum-transfer-squared limit q =0, i.e.,

q'=(k —k ')' (m~' —mz')'/4
l

k
I

'
O

aq(k) =sin8~a3(k)+cos8~a0(k), (2.4a)

az( k ) =cosh'( k, mz ) [cos8~a 3(k ) —sin8~a0( k )]

—sinhA(k, mz)[cos8~a 3( —k)

as
~

k
~

~ oo. Therefore, our sin 8~ is the one evaluated
atq =0

We now sandwich [V+, V+]=0 between {W+(k)
~

and
~

W {k))with k~co and obtain

with

—sin8p a0( —k)], (2.4b) g{W+i V iM){M( V
i

W ) —(V - - V )=0,

1cosh', (k, m) =—
2

1/2
co( k, o)

c0(k, m)

1/2
c0(k, m)

co{k, o)

k~0c . (2.8)

Under the present approximation M =Z and A only, we
obtain the first sum rule,

1
sinhA, (k, m) =—

2

1/2
co( k, o)

co(k, m)

co(k, m)

co( k, o)

(2.5a)
' 1/2,

(2.5b)
~w =~z2 2 (2.10)

cos 8p(mg —mz )+sin 8g (mg —mg )=0. (2.9)

With the physical photon mass mz ——0, Eq. (2.9) becomes

where a;(k)(i =0,3) are for the original massless B (i =0)
and W3 (i =3) fields and co(k, m)=(

~

k
~

+m )'~ .
Similarly for 8"+—',

which is precisely the result of using the SU(2)L doublet
Higgs scalars.

However, we realize that the model actually possesses
an infinite number of constraints



M. YASUE, S. GNEDA, AND MILTON D. SLAUGHTER 30

d"V
[V+,V+]=0, where V+ ——,n =1,2, 3, . . . .

dt"
(2. 11)

If we repeat the same realization for the CR's in Eq.
(2.11), we find that it is automatically satisfied for n =
even. For n = odd we obtain, including Eq. (2.9),

cos 9w(Plw —11lz ) +sin 9w(mw —Ply ) =0,
n =1,3,5, . . . . (2.12)

gLS g =g lcgcy =g2cgsiI| =e. (2.15)

Asymptotic realization of Eq. (2.11) in terms of only these
weak boson yields using C;~ defined in Eq. (2.14),

(C13l ™W ml ) +(C23) (IW ~2

Two of the three mixing angles (a, 9,$) are specified by
three gauge couplings, gL, of SU(2)L and g; of U(l);
(i =1,2), as

Combining the n = 1 and 3 sum rules, we find a nontrivial
solution called the "ideal" solution with mz ——0, with

+(C33) mw "——0, (2.16)

z 2m w and cos w2= 2 1 (2.13)
3

Q (C;) =1. (2.17)

In fact, ail the constraints in Eq. (2.12) are satisfied by
Eq. (2.13).

The experimental value of 9w is (cos 9w),„~,=0.77
—0.80. So something is amiss. However, we have to real-
ize that the diagonalization, Eqs. (2.3a) and (2.3b), is still
an approximate one as mentioned just before Eq. (2.2).
We have to notice that the effect of the contributions of
the neglected states in the intermediate states M in Eq.
(2.8) is greatly enhanced as n increases. They take the
form y (Plw —mM )", where y denotes the 8'3 com-
ponent contained in the intermediate physical state M
with k ~ oo. Because of the kinematical factor
(mw —mM )", even the contributions of the 1 qq
mesons could become non-negligible for n =3. At this
point we have two possibilities: (a) If the minimal model
is valid up to the energy scale, say 1 TeV, the above-
mentioned mixing between the gauge bosons and 1 qq
mesons should already be important at n =3, although
their effect is certainly negligible at n = 1 (at most, of or-
der a). (b) If this effect were not still very important at
n =3, Eq. (2.13) suggests the presence of at least one more
weak neutral boson, which can appreciably mix with 8" '

and 8. This case corresponds to the various alternative
gauge models beyond the GWS model with extra weak bo-
sons mentioned before. Present experiments do not ex-
clude this possibility. To pursue the second possibility, we

go beyond the GWS model.

a. SU(z), xU(~)&xU(jL)2

We thus proceed to an SU(2)1 XU(1)&XU(1)z elec-
troweak model "' ' which contains WL

'
( =83),

8&, and 82 as neutral members in the symmetry limit.

According to Eq. (2.2), physical states (with k —+ ~) can
be expressed as (cg ——cos9, sg=sin9, tg ——tan9,
cw —cos9w, etc. )

The ideal-like solutions of Eq. (2.16) for all values of n

are, corresPonding to Eq. (2.13), (a) I, =Plz =2mw
with sg ———, , (b) ml ——mz ——mw with sg =0, and (c)
M) ——mw and m2 ——2mw with s =tg . However, we
take a more realistic point of view that only n =1 and 3
sum rules are trustworthy when we neglect the mixing be-
tween the weak bosons and 1 qq mesons.

From these (n = 1,3) we now obtain

(Cl3) =mw (mw —mz )(2mw —mz )

X[ml (ml —mz )(3mw —ml —mz )]

(C23) =mw (mw —ml )(2mw —ml )

X[11ll Plz (3Plw —Pll —11lz )]

with ( Cl3 ) =(cgc ), ( C23 ) = (cgs ), and ( C33 ) =sg
Thus, 0 and a are determined by the weak-boson masses.
Since 0((C;3) &1 (i =1,2, 3), the masses must, in gen-
eral, satisfy

Pl l ( (Pl W/Cg) (11l2 (2.19)

which is compatible with the result of Ref 9and 12.. Two
different domains are allowed (see Fig. 1):

(A) PlW (Pl l & 2PEW & Plz

(8) ml (mW, 1nW &Plz (2PlW

with 2mw & m
~ +m2 & 3mw

(2.20a)

(2.20b)

X [I2 ( Pl 2
—Pl l ) ( 3Pl w —11l l

—Pl 2 ) ]
(2.18)

( C33 ) (PlW 11l '[ )(11lW 11lz )(211lW —11l
~

—Pl )

ca,sa, O

Z2 = —S~,C~, O

0,0, 1

X Cv+i
J

g Czja,
J

X C3J~J
J

Cg 8 L —$ gC yB ~
—$gsy82

(3)

—SPA) +cg82

sgPL +cgcg8)+cgsg82(3)

(2.14)

The GWS model corresponds to the limit of m2 —+oo.
The connection between the physical domains (A) and (8)
and the ideal-like configurations is illustrated in Fig. 1:
(a) is continued to domain (A), (b) to domain (8), and (c) is
the transition point from (A) to (8). In Fig. 1, the relation
between Pl l and mz for given values of sg is shown. The
domain (8) is already excluded by the present experi-
ments.

It should be emphasized that the second-weak-boson
mass is predicted by mw and Pl l (and 9) as from ( C33)
of Eq. (2.18)
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(a) &u)

amining the effective Lagrangian for small-momentum-
transfer interactions. Also discussed is low-energy
phenomenology of the SU(2)L, XU(1) i XU(1)q electroweak
gauge model, which also gives a lower bound on m2.

III. LOW-ENERGY PHENOMENOLOGY
OF SU(2) XU(1)i XU(1)p

0 'A%M.MxiKM. WWYA4. M.WM.M.AWWWWMNM. 'A'AkkiM'A'Ax%Mx

5.0 4.0 5.0 6.0 7.0 8.0
0.8 rn /rn

~0. l98
~0.240

0.2

0.0

2m Z2
W
p, WiZi, Za W

Zl

(e)[b)
I

4(r —1)(2—r)
3 r+ (3——r) +

2 1 —cgr

where r= (m&/m~—) and 1(r (2 [domain (B)]. There-
fore, in principle, by measuring m

&
and m~, m2 can be

predicted since sg is related to m~ as m~ ——(37.2
GeV/sg). Our sg is evaluated at q =0 and the observed
value of sg is related to sg evaluated at q =m ~ . The
relation is given by

FIG. 1. Relation between mi and m2 for given values of
s~ ——0. 198, 0.211, 0.244, and 0.240. The numbers in the brack-
ets denote the values of (mi/m~) for mq~m. The experi-
mental data of (m&/m~) are denoted by UA1 and UA2. Two
shaded areas represent the two domains (A) and (8). The pas-
sage from "ideal" to real situations is also illustrated.

To discuss low-energy phenomenology, we have to
derive the effective Lagrangian for small-momentum-
transfer interactions. We discuss (A) the low-energy ef-
fective Lagrangian expressed in terms of three mixing an-

gles defined in Eq. (2.14) and ( m
&
/m ~ ) and ( m 2/m ~ ),

(B) the equivalence between the first sum rule ( n = 1) ob-
tained in Eq. (2.16) and the usual result obtained by using
the I =0 and —,

'
Higgs scalars, and (C) lower bounds on

m2 derived from low-energy phenomenology.

(0~in~ =gL JPi WL,„+g~i"&ip (3.1)

where J's are the corresponding currents. To obtain the
effective Lagrangian expressed in terms of a, 8,
mi/m~, and m2/ms, we follow the method of Refs. 5

and 7. The weak neutral and electromagnetic parts of the
Lagrangian are expressed in a convenient form (suppress-
ing the Lorentz indices): '

~,„,=g, (J
~

W),
where

J ) =(J3L,J, tg/c~, J2/tgs&),

i
W) =(WL,Bi,82) .

(3.2)

(3.3a)

(3.3b)

After diagonalization of the neutral fields by Eq. (2.14),
we obtain

W;„,=gL (J'
i
T '

i
Z)+eAJEM, (3.4)

A. Low-energy effective Lagrangian

The Lagrangian for the WL'„' (i = 1,2, 3) and 8,.„(i =1,2) is

sin 8(m~ )=aEM(m~ )sin 8(0)/aEM(0)

= 1.070 sin 8(0), (2.22)
where

Ca Sa
for aEM(m~ ) =(128) ', ' which gives m~=[38.5 GeV/
sg(m~ )]. At present, experiments by UAl (UA2) indi-
cate sg (m ~ ) =0.226+0.011 (0.014) which leads to

—Sa Ca

J') =[cgJ3t. sgtg(Ji+J~)—,

(3.5a)

sg =sg (0)=0.211+0.010 (0.013)

(m, /m~)'=1. 385+0.08g (1.268+0.084) .

(2.23a)

(2.23b)

tg(cp J2 sp J, )/cysts], —

i
z) =(z„z,),

(3.5b)

(3.5c)

mp ) (1.6—1.7)mg (2.24)

These data are also shown in Fig. 1. From the UA2 data,
the mass of Z2 is bounded as

JEM ~31.+J1 +~2 (3.5d)

For small-momentum-transfer interactions, the effective
Lagrangian can be written as

within one standard deviation. With the precise measur-
ment of the masses of W and Zi, we are in a position to
predict the mass of Z2.

In the next section, we will demonstrate that the first
sum rule (n =1) of Eq. (2.16) is equivalent to choosing
the SU(2)L, -singlet and -doublet Higgs scalars by only ex-

where

ff—4~2GFm ~ (J'
~

T~ 'M (3.6)

(3 7)
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Following Barger, Ma, and Whisnant, "we parametrize
W, ff as

and

(B /C)=Di —(b, /D2)

jeff 4~~GFmw [(piJZL) +(p2JZL+ IJzi) ]
where

(3.8)
D1D2 —5 =X1X2,

JZL J3L ~ 8 JEM
2

JZ1 J1 ~P ~8 JEM
2 2

(3.9a)

(3.9b)
which finally gives

where x;=(m;/mw), pi becomes

pi x ix——2/D2cg2 2 (3.17)

Since our currents J' are expressed in terms of JzL and
JZ1 aS pi ——mw/(c~ mi +s~ m2 ) cg .2 2 2 2 1/2 (3.18)

J1 =JzL ~&e

J2 —— tg(c~—JzL+Jzi)/c~s~,

(3.10a)

(3.10b)

From two equations [(3.16) and (3.18)], we can show
that the first sum rule (n =1) of Eq. (2.16) derived by

[ V+, V+ ]=0 requires that

+«Jzi)'] (3.11)

the effective Lagrangian (3.6) can be transformed into

F,ff=4U 2GFmw cg [A(JZL) —2B(JziJZL)
P1 ——l, (3.19)

which in turn chooses 5i ——52 ——0 from Eq. (3.16), the ab-
sence of the I =1 Higgs scalars; therefore, pi ——1 is
equivalent to i.mposing

where I=O and (3.20)

with

3 =[Di 2b(sg/t—p)+D2(sg/tp) ],
B =[6. D2(sg/t—~)](sg/s~t&),

C = D2(s g/sp tp )

(3.12a)

(3.12b)

(3.12c)

for the trans''ormation properties of the Higgs scalars.
This is the condition corresponding to p—=mw/mzcg ——1

in the GWS model.
By n =1 and 3 of Eq. (2.16), other parameters are also

calculated to be

Di ——c (mw/mi) +s (mw/m2)

D2 ——m1 - -- m2 in D1,
A=c s [(mw/mi) —(mw/m2) ] .

(3.13a)

(3.13b)

(3.13c)

Comparing Eq. (3.11) with Eq. (3.8), we finally find that

pi ——(AC B)/Ccg—
(p2lpi) =B /(AC B), —

(2l/pi) =C /(AC B) . —

(3.14a)

(3.14b)

(3.14c)

1 1

1 1

f2 (2' 210)t v2

1 1(0, ——,, —, ), u3,

(1,0, 1), 5, ,

(1,1,0), 52,

(3.15)

where the U's and the 5's are the VEV's. Then we find
that

pi ——(v, +u2 +25, +252 )

B. [ V+, V+ ]=0 and the representations
of the Higgs scalars

For the present purpose, it is enough to express p1 in
terms of vacuum expectation values (VEV's) of various
Higgs fields. Let us choose under SU(2)L XU(1)i XU(1)2

p2 ——[b —(mz /mmi)2sg/t~] (m~m2/mw )

2I =(mz'»m, m2 )(sg/s pcs ),
(3.21)

with mz =mw/cg. Since a, 0, and thus b„are expressed
in terms of ( m, /mw) and ( m, /m w) by Eq. (2.14), p, and
21 become functions of p only.

QEM ——VL + Y/2

for the leptons and quarks.

1. SU(2)g X U(1)g X U(1)g

C. Lower bounds on m2 from low-energy phenomenology

Let us exaraine low-energy phenomenology which also
gives the constraint on m2 although it depends on the de-
tails of the model, the quantum number assignment of the
leptons and quarks in SU(2)L XU(1)i XU(1)2. Two fami-
liar models are (1) SU(2)L X U(1)g X U(1)g L (R«s.
7—11) where U(1)ii acts on the right-handed states of the
leptons and quarks and the electric charge QEM is defined
by

V( )+V( ' B—LL+ ~+
with V~

' being the third component of the SU(2)~
charges; and (2) SU(2)LXU(l)2 XU(l)D (Refs. 13 and
14), where the leptons and quarks are neutral under U(1)2i
and

X (v i + v 2 +45 i +452 )

On the other hand, since

(3.16) Phenomenological analyses on this model have been
carried out by various authors. ' '" The present con-
straints are"
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O. 94&p, '+p, '&1.16, p, '&0.15,

q&0.5, ep cg &0.7.

IV. SUMMARY

We have shown that the "exotic" SU(2)L, charge com-
mutation relation [V+, V+ ]=0 provides

with p~ ——1. For example, the lowest m2 is obtained at
0.5 and c~ —0.5 once s~ is given:

(3.23)

p=mip/mzcs = 1

Pi=mip/(ca mi +sa ml ) co= 12 2 2 1/2

(4.1a)

for ss determined by Eq. (2.23a). In these ranges of sit,
m i ~( 1.1—1.2)m ip and p2 iS abollt 0.02. T111S 1OWC1'

bound is stronger than Eq. (2.24).

2. SU(2)I. X U(1)yx U(~)g)

W,tt ——4v 26pmip [(Jzt ) +CpM(JpM) ], (3.24)

by requiring that the v-induced neutral-current interac-
tions be described by the G%'S model. This requirement
can be fulfilled by

Since the current of U(1)D, which is taken to be Ji, can
be neglected for the lepton and quark interactions„Jz

&
be-

comes —cy cg JEM. It ls tlllls coilvcillcilt to icwl'ltc W tt
as

(4.2)
where r =—(m i /m ip) and 1 (r & 2.

We can best summarize, at present, the allowed values
of the second-Z-boson mass:

m2 ) (1.6—1.7)mip, (4.3)

from the pp-collider experiments. If we further specify
the models, from the low-energy phenomenology we get a
stronger bound

for SU(2)t X U(1) i XU(1)2. Having assumed that
[V+,V+]=0 is also well satisfied by the three neutral
gauge bosons in SU(2)L, XU(l)iXU(1)2, we predict the
mass of the second Z boson using the masses of 8' and
first Z bosons to be

=—,3 r+ (—3—r) +1 z 4(r —1)(2—r)
1 —cg p'

since pi ——1. We thus find that' '
pl2 )2.0m p (4.4a)

m2 & 1.6m', (3.27)

togCtllCr Witll m i ) 1.1m lp and Eq. (2.23a) fol sip, Wlllch
is almost the same as Eq. (2.24).

CpM ——clp (m2 —mz )(mz —mi )/m, m2 . (3.26)

It is the result of 8=0 from p2 ——0 and A=co from

pi ——1. Therefore, the masses are determined by su and
CEM. The phenomenologically allowed value of CEM has
been given by Dittmann and Hepp'" as CEM &0.03. It
can be satisfied by

for the SU(2)t XU(1)ii XU(1)s I model and approxi-
mately the same bound

m2 & 1.6rng

for the SU(2)L, XU(1)pXU(1)D model.
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