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Classical dynamics and classical and quantum field theories are formulated on discrete space-
time, the idea of which was originally introduced by Yukawa and was called an elementary domain.
The theory given here is, so to speak, a naive realization of the elementary domain. All the funda-
mental equations are written in the form of difference equations instead of differential equations.
The equations are solved exactly in special cases. The field is quantized canonically and the propa-
gator of the field is obtained. In the case of an interacting field any matrix element is proved to be
convergent as long as the field is massive.

I. INTRODUCTION
AND FUNDAMENTAL ASSUMPTIONS

In the ancient Greek period, Hellenic philosophers
(Leukippos and Demokritos) considered the construction
of matter in nature and arrived at the concept of the
"atom, " which meant at that time an indivisible element
of matter. It was, of course, a product of the imagination.
In modern times Yukawa considered space-time in the
same way and concluded that it should also consist of
small parts, which are by no means divided into smaller
pieces. ' This constituent element was called an "elemen-
tary domain. " The philosophical background of this idea
is that the continuity of space-time is the very origin of
the divergence difficulty encountered in field theory. To
put this more strongly, matter cannot exist with a finite
quantity in continuous space-time. Yukawa and his col-
laborators attempted to formulate his idea in a mathemat-
ical form, but did not succeed in establishing it for a wide-
ly accepted theory. The most difficult point in this case is
how one can make the elementary domain conform to re-
lativity. After Yukawa's death the idea was left unnoticed
and no development has been observed in this field. How-
ever, it offers a fundamental problem on our view of na-
ture, which should be settled in the future.

The purpose of this note is to give a naive mathematical
form to the idea of the elementary domain, which is com-
pletely different from the original one of Yukawa. As
was suspected by Yukawa, many contemporary physi-
cists have vague doubts about the space-time concept of
special relativity when applied to the fundamental nature
of elementary particles. The formulation proposed here
does not necessarily conform to relativity in the rigorous
sense, but it might be acceptable with the above-
mentioned interpretation.

We now consider the following three assumptions.
(1) "There exists an absolute minimum distance for

discrimination in space-time. " That is to say, two points
that are closer to each other than this distance are by no
means distinguishable. When A, and ~ denote these
minimum values of space and time, respectively, it might
be reasonable to assume A, =cv, where c is the velocity of
light (c and A' are set equal to 1 hereafter).

(2) "The value of this minimum distance is independent
of Lorentz frame. " The introduction of a length which is
not subjected to the Lorentz transformation might violate
the principles of relativity. We will come back to this
point @ little latter and consider it more precisely. If we
accept these assumptions, there is no meaning in consider-
ing a smaller length than the value A, . Therefore, all dif-
ferential equations with respect to space-time should be
replaced by difference equations. We call this replacement
"quantization of space-time. " The difference equations
should tend to the original differential equations, if A, and
w go to zero. As is easily seen, we can consider many
difference equations which correspond to one differential
equation. For example,

df (t)
dt

h,f(t)

1 [f(t+mr) f(t+nr)]-,(m —n)r

where m and n are arbitrary integers. However, we will
consider only the cases where m and n are equal to zero
or +1 for simplicity.

(3) "What describes nature correctly is the difference
equation. " The differential equation is just an approxima-
tion. This situation is similar to the relation between clas-
sical theory and quantum theory. As we obtain classical
theory from quantum theory by setting R~O, we also ob-
tain the original (but approximate) differential equation
from the difference equation by taking the limit A, ,~~O.

It must be noticed here that the difference equation is
not Lorentz invariant, because the quantization of space-
time is done referring to a special coordinate system.
Lorentz invariance is to be required only of the original
differential equations and not of the difference equations.
Our interest at present lies mainly in academic problems,
such as whether or not it is possible to formulate a con-
sistent theory on discrete space-time, how the divergence
difficulty (which was inevitable in the case of continuous
space-time) is removed, and so on.

In Sec. II we reformulate classical dynamics on discrete
time, where space is still continuous. We take a linear os-
cillator as an example and see how the quantization of
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space-time works. There are many ways of quantizing
space-time, some of which may lead to unfavorable solu-
tions. In order to avoid such problems we start from first
principles and construct a consistent theory, that is, we
see that the favorable theory is reproduced by Lagrangian
formalism. Section III is devoted to classical field theory,
where both space and time are quantized. The field satis-
fies a difference equation, which is solved in a special
case. The canonical momentum conjugate to the field and
the Hamiltonian are obtained. In Sec. IV the field is
quantized canonically. The propagator of the field is ob-
tained. In the case of an interacting field we have no con-
sistent theory. However, we discuss the problems met
there in some detail, especially the divergence problem.

II. CLASSICAL DYNAMICS

In this section we reformulate classical dynamics on
discrete time, where space is still continuous. As classical
dynamics has a firm foundation, the new formulation
should not give any visible change. Under these condi-
tions we construct the theory from first principles. We
see that the Lagrangian formalism is also possible in this
case.

A. A heuristic example

We begin with a linear harmonic oscillator,

(2.7)

which diverges again for t~ oo.
From a certain standpoint such a divergence is undesir-

able, though it causes no trouble in practice. In fact, the
divergence results from the simple-minded quantization
of space-time. If we choose the following difference equa-
tion instead of Eq. (2.2),

b,, x(t r)—= co —x(t), (2.8)

we have the solution

x ( t) =a cos(8t /r+ a ),
sin8/2—:cor/2

(2.9)

which does not diverge for t~ oo. For the energy the ex-
pression

E= —,[h~ (t) ] + —,co x (t)x (t +r)

instead of Eq. (2.6) gives the constant energy:
T

E=—am 1—co r
2 4

(2.10)

(2.11)

From Eq. (2.9) we see co&2/r and 0&8&2m. For one
given co there exist two 8's (say, 8~ and 82) that satisfy
0)+02 ——2~.

d x = —co x
2 (2.1) B. Lagrangian formalism

as the original equation. By simple-minded quantization
of space-time we obtain the following difference equation:

b,, x(t)= —co x(t),
where

(2.2)

(2.3)

Equation (2.2) is easily solved by standard methods. The
solution is given by

x(t) =c[1+(cow) ]'~' cso( t8/r+a), tan8—:cur (2.4)

As is seen in Sec. IIA we have a wide choice in quan-
tizing space-time. Therefore, it seems necessary to start
with a first principle and to get a unique equation. In this
section we formulate classical dynamics on discrete time
according to the principle of least action. Hereafter we
use the time unit r= 1 and hence h, =b.

&

—=6 for simplici-
ty.

Now we assume the Lagrangian is a function of x (t)
and bx(t), that is, a function of x (r) and x (t + 1):

(2.12)

If we require that the action integral (or sum)
which diverges as t goes to infinity. If we accept it seri-
ously and estimate the length of time that yields an ob-
servable change in the amplitude, then we have at least
r & 10 sec=10' yr for co-1 sec ', because we know that
A, should be smaller than 10 ' cm, hence v &10 sec.
This length is far larger than the age of the Universe so
there is no problem in practice.

In order to calculate the energy we rewrite the expres-
sion

be stationary for arbitrary variation at t,

x(t')~x(t')+e5. . .
we have the equation of motion

[L(t)+L(r 1)]=0, —a
Bx t

(2.13)

(2.14)

(2.15)

1 dx
2 dt

+ 2COX
2 2

in the difference form

E= —,
' [b.~(t)] + —,co [x(t)]

(2.5)

(2.6)

which should be satisfied by x (r).
Example: Linear harmonic oscillator.
Assume the Lagrangian

L(t)= —,'[bx(t)] ——,'co x (r) .

Substituting the solution (2.4) for x(t) in Eq. (2.6) we ob-
tain

Then we see Eq. (2.15) yields

6 x(t 1)= co x(t), ——
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that coincides with Eq. (2.8).
The momentum canonically conjugate to x(t) is de-

fined by

Then the field equation is

Q 2$(t —l,x ) b—, '2$(t, x —1)+m P(t,x ) =0 (3 8)

aL(t)
Mx (t)

(2.16)
or equivalently,

P(t + l,x ) +P(t —l,x ) P(—t,x + 1)
as is in the case of continuous time. We should notice
here the differentiation with respect to b.x(t) =x( t
+1)—x(t). We mean that x(t+1)+x(t) is fixed con-
stant at the time of differentiation. For example, we see
Bx(t)/Bouc (t) = ——,. The Hamiltonian is defined by

P(t—,x —1)+m P(t,x)=0 .

The solution of this equation is

(3.9)

H =p(t)hx(t) L(t)—.

Example: L,inear harmonic oscillator.
In this case we have as the conjugate momentum

p(t) =Ex(t)+(to /2)x(t),

(2.17) (3.10)

80—=2sin '[sin (81/2)+m /4]'
m'—=2sin '(1 —m /4)'

(3.11)

(3.12)

where A(8&) and B(8~) are arbitrary functions of 8~ and

the second term of which may seem to be rather superflu- Oi course, m' is equal to m. if m =0 and 80 varies between
ous, if we compare it with the momentum in the case of 2sin m/2 and ~
continuous time. The Hamiltonian is then

H= —,
' [hx(t)] +(to /2)x(t)x(t+1),

that agrees with Eq. (2.10). Using the equation of motion,
b,H =0 is easily verified.

III. CLASSICAL FIELD THEORY

In this section we quantize both space and time and for-
mulate the theory of classical field on discrete space-time.
We treat here the theory only on the one-dimensional
space for simplicity, but it is easy to extend it to the
three-dimensional space. We use the space and time units
of A, =a= 1 hereafter.

B. Canonical momentum and Hamiltonian

In the case of continuous space-time the Lagrangian
density is a local quantity and therefore the momentum
canonically conjugate to a field p is defined by the deriva-
tive of the Lagrangian density L with respect to the time
derivative of P: BL/B(Bog). However, the Lagrangian
density in our case of discrete space-time is a nonlocal
quantity as is seen from Eq. (3.3). For this reason we de-
fine the canonical momentum conjugate to p(t, x) by

~(t,x ) —=aW/any(t, x), (3.13)

A. Field equation and its solution

where W is the Lagrangian:

W = g L(t,x') . (3.14)

6'P(t, x ) =P(t,x+ 1)—P(t,x),
then it is written as

(3.2)

Let P(t, x ) be a scalar field and assume the Lagrangian
density is a function of P(t,x ) and

b P(t, x ) =P(t+ l,x ) P(t, x ), — (3.1)

The differentiation with respect to bP(t, x)=P(t+I,x)
P(t, x) is the —same as in the case of Eq. (2.16).
It must be noticed here that there are many Lagrangian

densities that give the same Lagrangian, as is seen from
the following example:

L ( t,x)=L [P(t,x ),P(t+ l,x ),P(t,x+ 1)] .

The requirement that the action sum

S—:g L(t', x')

(3.3)

(3.4)

P(t ~,x')P(tq, x'+ n )

=g P(t &,x'+ m )P(tz, x'+ n +m ),
t', x'

be stationary for arbitrary variations at a space-time point
(t,x):

where m and n are arbitrary integers. Therefore, the den-
sity is not considered as a fundamental quantity. The
Hamiltonian is defined by

P(t', x') ~P(t', x') +e5, ,5„ (3.5) A = g 2 [m(t, x'), bP(t, x')]+ (3.15)

leads to the field equation

[L(t,x)+L(t —l,x)+L(t,x —1)]=0 . (3.6)
a

8 t,x

where it is symmetrized for the sake of later convenience.
Example: Klein Gordon field-
The canonical momentum is

Example: Klein Gordon field. -

We assume the following Lagrangian density:
2

L(t,x)= , [bP(t,x)] —,' [b P(—t,x)] — P (t,x) . (3—.7)
2

m~(t,x)=A/(t, x)+ 1+ P(t,x)
2

,'P(t, x —1) ,'P(t, x+1) .————(3.16)
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The last three terms seem rather superfluous from the
standpoint of continuous space-time, but are necessary for
the consistency of the theory. Using the field equation
(3.9), it is rewritten in a simple form:

the commutation relations of Hamiltonian A with P(t, x)
and m(t, x):

[P(t,x),A ] = [P—(t+ l,x) P—(t l,—x)]
rr(t, x)= ,' [P—(t+l,x) P—(t l—,x)] .

The Hamiltonian is

(3.17)
=i m.(t,x ),

[m(t, x),~] = [m(t+—l,x)—~(t —l,x)] .

(4.5)

(4.6)

m
[P(t,x'),P(t+ l,x') ]+2

However, for a general operator F(t,x) which includes
powers of P(t,x) and n(t, x .

) we see

[F(t,x ),A ] &—[F(t+ l,x ) F(t ——l,x )] . (4.7)

,' [P(t,x—'—),P(t+ l,x'+1)]+

,' [P(t—,x—'+1),P(t+ l,x')]+ I .

It is also rewritten by the field equation to give

(3.18)

Therefore, we can say that the Heisenberg equations do
not hold for this Hamiltonian.

In order to represent the commutation relations (4.3)
and (4.4) in terms of creation and annihilation operators,
we expand P(t, x) in the following form as in Eq. (3.10):

~= g I , P (t,—x') , [P—(t+1,x'—),P(t 1, x)]+ I .—

(3.19)

AA =0 is easily verified.

P(t,x)=, [a(0, )e—~' (2sin0 )'
t(0 )

i(Hot 8)x)—
]

(4.8)

IV. QUANTUM FIELD THEORY

In this section we restrict- ourselves to the Klein-
Gordon field and quantize it canonically. In the case of
the interacting field the consistent theory is not yet ob-
tained. The difficulties and problems met there are point-
ed out. The divergence problem inevitable in the case of
continuous space-time can be avoided in the massive case.

A. Quantization of the field

The canonical momentum conjugate to P(t, x) is given
by Eq. (3.16), that is,

m~(t,x)=P(t+1,x)+ P(t,x)
2

,' P(t,x 1)——,
' P(t—,x—+1). — (4.1)

For these quantities we assume the' following equal-time
commutation relations:

[P(t, ),xvr(t, x')] =i5„„,
[P(t,x),P(t,x')] =[m(t, x), m(t, x)] =0 .

(4.2)

(4.3)

Substituting Eq. (4.1) for vr(t, x') in Eq. (4.2), we have

[P(t,x),P(t+ 1,x')] =i5 „. (4.4)

It might be interesting here to see if the Heisenberg
equhtions hold in our case. For that purpose we examine

[a(0, ),at(0', )] =5(0,—0) ),
[a(0&),a(0'|)] =[a (0, ),at(0&)] =0.

(4.9)

(4.10)

However, it should be noticed that the original commuta-
tion rules (4.3) and (4.4) cannot be obtained from the com-
mutation rules (4.9) and (4.10), because we take the
domain of integration in Eq. (4.8) as [ vr', m'] instea—d of
[—m;m. ]. As is seen from Eq. (3.11), 00 that corresponds
to 0& in the interval m'&

i 0&
~

&m. is not real (pure
imaginary). Therefore, the state with such a 0& is unphys-
ical. It is uncertain whether the restriction on the domain
of 0~ might bring any difficulty into the theory.

The Hamiltonian (3.18) or (3.19) is reduced to
7T'

A = f d0&sin00a (0&)a(0&), (4.11)

where we neglect the zero-point energy. If we, therefore,
define the vacuum

~

0) by

a(0))
~
0) =0, (4.12)

then a (0&) and a(0~) are the creation and annihilation
operators of the states with energy eigenvalue sin00,
respectively. '

Now we define the causal propagator by

Dz(t t', x x';m ):(Oi —TP(t—,x)P—(t', x')
i
0) .

After simple calculation we see

(4.13)

where 00 is restricted in 0&90&+. The commutation
rules (4.3) and (4.4) lead to

—i(pt —e&x)

DF(t,x;m )= d0~ dP z(2m)z —~' —~ 4sin (p/2) —4sin (0~/2) —m +ie
1

[0(t)e +0( —t)e ],—i(eat —e/x) i(eot —e/x )

4m —~' sinoo
(4.14)
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where 8(t) is the usual step function:

8(t)=1 for t&0,
S-matrix theory on the discrete space-time. As in the case
of continuous space-time we assume for a time that the S
matrix

= —, for t=0,1

(4.15) S—:T exp i —g~;„, '
(4.22)

=0 for t &0.
Clearly, DF satisfies the equation

5 DF(t 1,x—;m ) 5' —Dp(t, x —1;m )

+ m Dp( t,x;m )= i 5—, o5„p . (4.16)

B. Interacting field and transitien matrix

In this section we consider the Klein-Gordon field with
self-interaction. There are many ways to rewrite the in-
teraction in the continuous space-time to the one in the
discrete space-time. For example, a nonlocal interaction
in the discrete space-time,

gP(t+m~, x+nA, )P(t+m'r, x+n'A)P(t+m , "r,x+n "A,),

~intA ~int ' (4.17)

tends to a local interaction gP (t,x) in the continuous
space-time, as the space-time units ~ and A, go to zero.
However, if we assume such a nonlocal interaction, we
should not only change the quantization through the
change of canonical momentum conjugate to p but also
deal with the difficulty of superlight velocity. Therefore,
we assume the local interaction also in our case of discrete
space-time.

Unlike the case of continuous space-time the interaction
Hamiltonian is not equal to the negative interaction La-
grangian in the case of discrete space-time:

is interpreted as usual. Then we see the eigenvalue of free
Hamiltonian A is not conserved between the initial and
final states. However, the eigenvalue of the new operator

/

6&= f,d8i8&a (8i)a(8i) (p= 1,0) (4.23)

is conserved. The commutator of P(t, x) and ep gives the
"formal" derivative of P(t, x) with respect to t:

[P(t,x),e ] =i P(t—,x) .. 8
at

(4.24)

Therefore, if we suppose the Hamiltonian is ep instead of
A, we have the Heisenberg equation

[F(t,x ),eo] =i F(t,x) .
a

(4.25)

The equation is also written in the integral form:

P(t, x ) =go(t, x )

+3ig g DF(t t', x x'—;m )P —(t',x'),
t', x' (4.27)

where Pp(t, x) satisfies Eq. (3.8). By iteration Eq. (4.27) is
solved in a power series of the coupling constant g.
Therefore, the multipoint function

On the other hand, we have the following field equation
in the case of the interacting field:

6 P(t —l,x) 6' P(t,x——1)+m P(t,x)=3gg (t,x) .

(4.26)

In fact, the interaction Lagrangian (0
~
P(ti, xi)$(t2, xq) P(t„,x„)

~

0) (4.28)

W;„,= g gP (t,x), (4.18)

changes the momentum canonically conjugate to p(t, x)
from m(t, x) to K(t,x):

F(t,x)=m.(t,x)—2gg, '(t,x) . (4.19)

(4.20)

The newly added term does not affect the quantization
(4.4), but changes the Hamiltonian (3.15) to the new one:

A +A;„,= g —,
' [P(t,x ),hP(t, x )]+

would be calculable perturbatively in principle. Hence,
the transition matrix element for a certain process would
be obtained in a power series of coupling constant, though
the convergence of the series and the unitarity of S matrix
remain unproved.

Whichever method we use, S matrix (4.22) or the mul-
tipoint function (4.28), to evaluate the transition matrix,
we must consider the Feynman diagrams, some of which
correspond to the divergent integral in the case of con-
tinuous space-time. The highest divergence comes from
the tadpole diagram and is given by the value of the prop-
agator at the origin t=x=0. In our case of discrete
space-time, however, it is finite if m&0:

where ~j„t is given by

A;„,= gg[ —,P (t,x)

,' [P (t,x ),P—(t+l,x )]+I, (4.21)

dOi
DF(o,o;m') = f4m —~' sinOO

1 2 2
[(pp —m )(4—pp )

2

Nl

X(4+m po )] ' dpo—

which is not equal to —W;„,. The second term of Eq.
(4.21) seems to show a nonlocality over time.

Now it appears very difficult to establish the consistent

(4.29)

For m~0 there are two domains relating to the diver-
gence; one is near po ——0 and the other po ——2. The former
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apparently corresponds to the infrared divergence, which
can be removed by the well-known procedure. The latter
is similar to the former, if. po and 2—po are exchanged.
This fact seems to suggest the possibility that the latter
divergence be removed by a similar procedure.

Finally, we must mention the relation of our theory to
the lattice gauge theory. Although the original ideas are
different from each other in the two theories, there are
some similarities. For example, the space-time is divided
into a lattice. However, in the lattice gauge theory the
space-time is Euclidean, the lattice spacing is to be led to
zero in the last step and the Feynman path-integral
method is used for the quantization. The underlying
thought of our theory is akin rather to the work of Tati.
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