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,Vfe advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of
quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natur-
al extension of intuitive notions familiar from quantum mechanics. A variety of quantum-
mcchanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration
of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the
phenomena discussed. %e suggest how the GEP could become the basis of a systematic approxima-
tion procedure. A companion paper will deal with scalar field theory.

I. INTRODUCTION

with p and p being conjugate operators, [p,p]= iA'—
Thls nlatllcInatlcal st1llcturc cR11 bc dcscrlbcd 111 fwo dif-
ferent physical languages. In the usual QM language one
speaks of a particle (of unit mass) in a potential V(P),
with P and p being the particle's position and momentum
operators, respectively. In this case, the particle moves
only in one spatial dimension. For a two-dimensional sys-
tcIIl thc posltloll bccolllcs R vcctol' p wltll CRrtcslRI1 cooi-
dinates QI,QI and the Hamiltonian becomes

II= Ipi'+

lpga'+V(OI

Oz) . (1.2)

Similarly, one can generalize to X-dimensional systems.
However, in the quantum field theory (QFT) language,

the word "dimensions" takes on a different meaning. One
imagines a spacetime consisting of (one point)e(time).

The one-loop effective potential' (1LEP) has become a
very popular field-theoretic tool for assessing the impact
of quantum effects on the classical potential. The purpose
of this paper is to advertise the attractions of a similar,
but superior, object, which we call the "Gaussian effective
potcIltlal (GEP). Wc hastcll to say that tllc collccpt ls
not novel, having been reinvented several times. Qur
role is that of advocate, only. We argue that, as compared
to the 1LEP, the GEP is (i) conceptually superior, (ii)
more reliable, in both quantitative and qualitative terms,
and (iii) almost equally easy to calculate. We support
these contentions by presenting results for a variety of
quantum-mechanical models, where the physics is well
understood and where exact results are available for com-
parIson.

The GEP concept is best described as a means of
formalizing our intuitive understanding of zero-point
fluctuation effects in quantum mechanics (QM) ln a way
which carries over directly to field theory. For this reason
eve think it is very important to have a good understand-
ing of the QM case. In a companion paper we discuss the
appllcatlo11 to scalar field theories.

Here, we study QM systems governed by a Hamiltonian

On this "(0+ 1)-dimensional" spacetime lives a quantum
field P=ttt(t), whose dynamics is governed by the La-
grangian

~= J«l z(~td)(~tk) V(0—) j (1 3)

and hence by the Hamiltonian (1.1), with p = iBtp-
(8t =d /dt). For example, a simple-harmonic-oscillator
potential V(P)= —,'m P corresponds to a (0+ 1)-dimen-
sional free field theory. The system (1.2) is also to be
thought of as a (0+ 1)-dimensional field theory, but now
there are two fields, Pi and $2, which are coupled in a cer-
tain way. %e shall make use of both languages: indeed,
our aim is essentially to transcribe the intuition familiar
in QM terms into the QFT language.

We begin by Inotivating and defining the Gaussian ef-
fective potential in Sec. II. Our discussion here is very
qualitative and informal. In Sec. III we present quantita-
tive results for a variety of interesting potentials. Section
IV describes the GEP formalism for two-dimensional sys-
tems (two coupled fields), and applies it to the O(2)-
symlnetric anharmonic oscillator (Goldstone potential)„
and to a coupled oscillator model exhibiting dynami. cal
mass generation. Section V deals with the relationship
with the Caswell-Killingbeck (CK) method, ' ' which
suggests a means by which the GEP could be made the
basis for a systematic approximation scheme for field
theory.

II. THE MOTIVATION FOR THE GEP

In QM one has quite a good intuitive understanding of
the effects of quantum fluctuations. This intuition is par-
tially summarized by the statement that a quantum-
meeha7licaI, pap'tlcle does plot IIke to ISUe Epl a llarl'ow poten;
tial ioell. This "quantutn claustrophobia" arises from the
uncertainty principle: If the particle's wave function is
concentrated in a small spatial region b,P, then the
momentum uncertainty is correspondingly large
(hp &Ill/Ap), and so there is a large contribution to the
energy arising from the kinetic term ( —,'p ). Hence, the
groulld-stRtc (GS) cllci'gy ls Influence Ilot gust by thc
depth, but also by the width of the potential well(s). A
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familiar example is the zero-point energy ,'fic—o of the
harmonic-oscillator potential, V(P) =

2 co P . In this way

a quantum particle tends to resist being confined in a
small space.

Without this effect, the world as we know it would col-
lapse. The Coulomb potential —e jr in an atom is un-

bounded below, so classically the electron should simply
fall into the nucleus. It is the quantum fiuctuation effects
which prevent this disaster. The quantum claustrophobia
of the electron enables it to resist the seemingly irresistible
attraction of the classical potential, and the net result is a
compromise; a finite-energy ground state, centered on the
origin, but with a definite spatial extent. (The
phenomenon has been aptly named' "quantum-
mechanical resuscitation, " since a system which is sick,
classically, is restored to life by QM fluctuation effects. )

It is natural to describe the situation in terms of an "effec-
tive" potential, which, in some vague sense, gives a picture
of how the quantum fluctuations modify the classical po-
tential. For the hydrogen atom problem it would look
something like Fig. 1.

Some other examples of how quantum effects may
qualitatively change a system's behavior. are illustrated in
Fig. 2 in terms of an "effective" potential. Consider a
symmetric double-well potential. To begin with, suppose
the quantum effects are relatively small [Fig. 2(a)]. The
effective potential is then little different from the original
potential; slightly higher in the wells, due to the —,'%co,ff
zero-point energy, and slight)y lower in the barrier region,
since by "spreading itself out" the particle is able to lower
its energy. If, however, the quantum effects are large,
then the particle does not see two separate we11s but per-
ceives only the outer walls as forming one large well—
with the "barrier" being no more than an irrelevant bump
at the bottom. The effective potential is a simple U

shape, centered on the origin. [See Fig. 2(b).] In QFT
language this would be described as "symmetry restora-
tion by quantum effects. "' We shall see this effect quan-

titatively in Sec. III A.
Our other example is a particular type of asymmetric

double-well potential, consisting of a broad well and a

FIG. 1. The Coulomb potential. The effect of quantum fluc-

tuations is pictured in terms of an "effective" potential (dashed

curve).

(c) (d)

FIG. 2. "Effective" potentials for some double-well exam-

ples. In (a) and (c) the parameters are such that the quantum ef-
fects are relatively small. In (b) and (d) the quantum effects are

large and qualitatively alter the physics. (As with Figs. 1 and 3,
these are sketches only: quantitative examples are discussed in

Secs. III and IV.)

(2.1)V,fr($0) = min & Q ~

H
~ g &,

with i}'i subject to

&%If&=l, &41414&=40 (2.2)

This means that one should consider the expectation value
of the energy obtained with a11 possible normalized wave
functions centered on Po (in the sense that the expectation
value of P is $0). The effective potential at $0 is the
minimum such energy expectation value. Notice that,
even in QM, the procedure involves a functional minimi-
zation (normally handled by a Lagrange-multiplier tech-
nique' ' ). The most important property of V,ff($0) is
that its global minimum gives the exact GS energy of the
system.

slightly deeper, but much narrower, well. If the quantum

effects are relatively small, then the effective potential is

qualitatively similar to the classical potential [Fig. 2(c)],
and the ground state remains in the deeper, narrower well.

Now we adjust the potential's parameters such that the
narrow well is made narrower and narrower. Eventually,
the zero-point energy will become so large that the parti-
cle will prefer to reside in the broader well, even though it
has a higher classical energy [Fig. 2(d)]. In QFT terms,
the "false vacuum" of the classical theory has become the
"true vacuum" of the quantum theory, and vice versa. In
Sec. III8 we sha11 see an example which "almost" shows

this effect.
So far we have been deliberately vague as to what exact-

ly we mean by the effective potential. Our examples
above were intended to convey some feeling for how an ef-
fective potential should look, if it is to serve as a pictorial
representation of our intuitive understanding. We now

consider how to define an object which embodies these

ideas.
First, the effective potential we have been discussing is

certainly not what is usually called "the effective poten-

tial."' (A nice discussion of the effective potential in

QM has been given by Curtright and Thorn, ' and our re-

marks here are mostly borrowed from them. ) The con-

ventional effective potential is defined by
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V ff(40) V(00)+ g +Vs(00)
n=1

then

(2.3)

Vif(pp) = V(pp)+A Vi(pp) . (2.4)

The problem —quite apart from the question of whether

~ ~~

'j1
CL

FICi. 3. Odd behavior of the conventional {so-called) effective
potential for (a) the double-well potential and (b) a finite-depth
potential well. Below each figure is a sketch of the wave func-
tion associated with the point $0 indicated.

Another important feature is that V,ff(pp) is convex
(i.e., d V,ff/dip &0).' ' This is most undesirable from
our point of view. It means that V,ff(pp) can never have a
double-well shape, even in cases [e.g., Fig. 2(a)] where this
is the natural way to describe the physics. Instead, one
gets the kind of absurdity seen in Fig. 3(a), where V,ff(pp)
has its minimum value right in the rniddle of a very real
potential barrier. Some recent papers have helped to elu-
cidate this curious phenomenon. ' ' The essential point
is that the condition (11

~ p ~
p) =$0 only requires the

wave function to be "centered" on $0 in a purely nominal
sense. It could, for instance, consist of two large peaks on
either side of $0, with

~ p ~
being small in the neighbor-

hood of Pp. As an analogy, consider a commuter who
works in the inner city but who lives in the countryside.
His mean position is somewhere in the inner suburbs, but
he sees that locality only for a few seconds per day as he
flashes past in the train. His experience of life tells us
nothing about life in the inner suburbs. In the same way,
the effective potential at a point $0 may not give a good
indication of conditions there: Instead, it may be giving
some average of conditions in two or more regions either
side of $0. It is due to this effect that the effective poten-
tial misleadingly wipes out very real barriers, as in Fig.
3(a).

Another bizarre consequence is seen in Fig. 3(b). For
any potential which tends to a finite value at infinity, as
in many QM problems, V,ff($0) equals Ep for all $0.'

This gives a misleading impression that the particle is free
to wander anywhere, whereas of course it remains local-
ized in the potential well. The moral of these examples is
that Veff($0) does not in general give a good "picture" of
the physics, ' and it cannot be the effective potential we
had in mind earlier.

Nor is the one-loop effective potential adequate for our
purposes. This is a semiclassical construct, based on add-
ing to the classical potential the order-A' quantum correc-
tions, and neglecting the terms of order A' or higher.
That is, if V ff(pp) has the formal series expansion
(around the hypothetical A' —+0 limit)

the effective potential is itself a desirable goal—is that a
one-loop approximation generally breaks down whenever
the quantum effects become large —and, as we saw above,
most of the interesting cases occur precisely when this is
the case. We shall be illustrating the failings of the 11.EP
later on in Secs. III and IV.

Returning to our discussion of the (exact) effective po-
tential, we saw above that its undesirable features arose
from the possibility that the trial wave functions could be
double humped (or even multiple humped) and not located
at $0, except in a nominal sense. This suggests that we
can obtain a more realistic effective potential by insisting
that the trial wave function be genuinely concentrated in
the vicinity of $0. An obvious and attractive way of doing
this is to restrict the admissible wave functions to those of
Gaussian form, centered on $0. The Gaussian function is
a natural choice, being the GS wave function of the arche-
typal parabolic potential well. This motivates the defini-
tion of VG($0), the Gaussian effective potential (GEP), as

VG($0)= min VG($0, Q)=—min (0 I
K0 0,

(2.5)

with

1/40
exp ———(P —$0), Q&0.1 Q

2 A

(2.6)

Note that the width of the Gaussian, governed by the pa-
rameter Q, is left to adjust itself so as to minimize t,'K) at
each $0. Thus VG can be described as a variational ap-
proximation to V,ff.

As we say, this is a very natural and obvious idea, so it
is not surprising that it has been invented, and reinvented,
before. See Ref. 7 and Refs. 2—6. Our aim here and in
Ref. 8 is to distill the essence of these ideas and present
them in the simplest possible form.

The thrust of our above discussion is that VG should
not be regarded merely as an approximation to V,ff but as
an interesting object in its own right. With its convex
property, V,ff is not a very useful object, and does not
provide a good picture of the basic physics. We can ex-
pect VG to be more realistic in this respect, since it
expresses what it feels like to be a quantum particle "at"
$0—with the word "at" having something more like its
everyday meaning than the treacherous expectation value
requirement employed by V,ff.

We shal1 no longer have the property that the global
minimum of VG gives the GS energy, as was the case with
V,ff. However, by the Rayleigh-Ritz theorem, VG(pp)) Veff($0) at any p p. In most circumstances one can ex-
pect a good approximation to Eo, for the usual variational
reason that any halfway-realistic wave function generally
gives a reasonable estimate of the GS energy.

A major practical advantage of VG is that it is calcul'-
able. Moreover, the calculation is rather easy, and gen-
eralizes immediately to field theory. The direct
approach is to use the Schrodinger representation
p = i'/dP an—d evaluate (P ~

K
~
g) as the integral
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(H)= f d()()'(()) — &+V(()) (N()),

(2.7)

Ho =-'{p'+Q'0'»

H, =A, (t) + —'(m —Q )P

[an an]=I {2.9)

and evaluates the expectation value of H in the state

l
0&n, defined by

an l0&n=0. (2.10)

The subscript Q is a reminder that an and an depend on
the frequency of the harmonic oscillator whose ground
state l0&n is our Gaussian trial wave function. The
field-theoretic generalization is obviously to write the field
P{x)as a classical field Po{x) plus the usual expression for
a free quantum field of mass Q.2

To illustrate the procedure we consider the anhar-
monic-oscillator (AHO) Hamiltonian '"

H = ,' p + ,' m P—+A,$—4 . (2.11}

The matrix elements of p, P, and (t, are easily evaluated
from (2.8)—(2.10), leading to

VG(po, Q)=n(0
l
H

l 0&g,

= —4A'Q+ T'm [po +A'(2Q) ']

+A[fo4+6go'A'(2Q)-'+3k'{2Q)-'] . (2.12)

VG(go) itself is obtained by minimizing VG(go, Q) with
respect to Q. Note that Q is positive definite, since the
Gaussian wave function must be normalizable. Moreover,
81ncc thc k1Ilct1c term glvcs risc to aIl Q term, and thc po-
tential terms to inverse powers of Q, it is clear that a
mlnlmum always cxlsts 1I1 thc I'ange 0 Q 0 Q Oo . Thc
equation for the optimum Q, denoted Q, is obtained by
differentiating (2.12), and can be expressed as

Q (m +12k,Po—)Q —6iriA', =0 . (2.13)

We shall refer to this as the "optimization condition, "
though it is often called the "gap equation. "'9 We can use
it to simplify the expression for VG to

VG(go) =(-,'m'Po'+~/, ')+-,'RQ ——,'e', . {2.14)0
We shall often drop the overbar on Q where no confusion
caIl ar1sc.

There is a close connection here with the method of
Caswell' and Killingbeck" for obtaining eigenvalues 'of
the AHO with a modified form of perturbation theory in
which

with it)(P) being the Gaussian function displayed in Eq.
(2.6). However, for a polynomial V((t)), one can make the
calculation purely algebraic by employing the creation-
annihilation operator formalism. To do this one makes
tlM substitut1ons

y=yo+iri(2')-'~'(a„+a to },
p = ,' i—(2—iriQ)'~z(an a ii—),

l j&n—={J'() '"{an&'I o&n . (2.17)

In other words, our trial wave function is now the jth ex-
cited state, rather than the ground state, of a harmonic os-
cillator of frequency Q, i.e., a Gaussian times the jth Her-
mite polynomial. Estimates for the excited-state eigen-
values can be obtained from the minima of the VG J(go)
potentials, and, we sha11 investigate this a little in Sec. III.
Note that the Po identified as the location of the ground
state is not necessarily relevant for calculating the
excited-state eigenvalues. For example, in an asymmetric
potential well the centroid of the first excited-state wave
function is shifted relative to the GS wave function.

Finally, we describe the connection between the GEP
and the 1I EP. %'e have laboriously kept all the A factors
to facilitate this. {In later sections we set A=1.) The
GEP calculation actually contains within it the one-loop
result. All one need do is to drop the A' term in (2.12)
and, in consequence, the A' term in (2.13). The optimiza-
tion condition then reduces to

(See also Ref. 12.) The arbitrary frequency parameter Q
is chosen such that each approximate eigenvalue is sta-
tionary wl'tll respect 'to varlatloiis iil Q about Q. ' (Tliis
requires a different Q for each eigenvalue, and for each
eigenvalue Q changes from order to order. ) Although for
the excited states one no longer. has a Rayleigh-Ritz in-
equality to rigorously justify this choice of Q, one can still

- argue strongly that this is a sensible procedure. ' ' The
point is that the exact eigenvalues are obviously Q in-
dependent, and so the results of the procedure implied by
(2.15) are only believable when they are at least approxi-
mately 0 independent.

It should be obvious that the first-order result of this
procedure applied to the ground state yields precisely the
(}}o

——0 value of Va. Thus, the GEP can be viewed as a
generalization of the Caswell-Killingbeck (CK) procedure,
incorporating a trar. slation of the field (position operator)
()). This additional feature gives us a great advantage over
the CK procedure in the case of the double-well potential
(m ~0), where the minimum energy state is not neces-
sarily located at the origin.

However, in many ways it is the CK procedure which is
the more general, since it applies to any eigenvalue, not
just the lowest. (It can also be made into a method for
computing accurate wave functions. ) Most importantly,
it supplies a systematic procedure for steadily improving
the results. Our hope is that by combining the GEP con-
cept with the CK procedure' ' one can build a much
superior alternative to the conventional loop expan-
sion/perturbation theory methods in field theory.

We postpone further discussion of these matters until
Sec. V, but we do note here that one can immediately de-
fine an excited-state generalization of VG by

V (P )= min V (QQ)= min (j lH l j&, (2 16)
0 ' 0
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0 =m +12k,Pp ——V"(Pp), (2.18)

0D dk 12AAjkp= —,tri
— ln 1+

2& k2+m ~

=
2 A'[(mi+12A, po )'/ —m] .

(2.20)

[The extra ——,
'

trim term is simply a reflection of the fact
that the Coleman-%einberg calculation implicitly involves
a redefinition of the zero of the energy scale so that
Vi)(ko=0) =0']

Note that, whereas VG(gp) is always well defined and
real, Vtt(gp) becomes ill defined and complex whenever
V"(Po) is negative. It is important to realize that this is
purely an artificial pathology of the 1LEP, not a patholo-

gy of the physics. This, and other matters, will perhaps
be clarified by the quantitative examples we show in the
next two sections.

where the relation to the second derivative of the classical
potential is true quite generally. Using (2.14), again dis-
carding the fP term, we have

Vu(ko) =«4o)+ i &[V"((to)l'" .

(Tile positive square toot ls iequlled, slilce 0)0.)
It is amusing to check that this is indeed the 1LEP, as

understood by field theorists, by performing the diagram
summation in the manner of Coleman and Weinberg' in
0+ 1 dimensions. [For the (0+ 1)-dimensional Feynman
rules see Ref. 9.] This gives the one-loop correction term
in the form

4!A,—,
'

Pp

g
—=m /(2A) /3 .

Then we have the following correspondences:

(3.3)

g ~+ oo weak coupling,

g =0 strong coupling (quartic oscillator),

g ~—ao two independent harmonic wells

Table I shows the GEP results for the GS energy over the
whole range of g . The entries have been selected for ease
of comparison with readily accessible "exact" numerical
results. For the AHO we have utilized Table II of Ref.
10, and for the DWP we have used Table IV of Ref. 22.

111. quANTITATIVE EXAMPI.ES

A. The ariharmonic-osciBator/double-veB potential

We now turn to a quantitative discussion of the GEP
applied to the familiar potential

V($)=sr+ ,' rn —$2+A,P (3.1)

which is the anharmonic oscillator (AHO) for I~ ~ 0, and
the standard double-well potential (DWP) for m & 0. We
choose the constant term such that the classical GS ener-

gy is zero, i.e.,

0, I ~00 =,'

(3.2)
Im /(16K, ), m ~0.

From now on we set fi= l. Following the usual practice
we quote en«gte»n u»ts of

I
I

I
in T~~l~ I Howev«,

in some ways it is more helpful to imagine A, as fixed,
vrith m as the adjustable parameter. For this reason we
introduce a "dimensionless mass" parameter

Error (%)EP'/I m
I

1

0.507 288
0.560 307
0.812 500
1.531 250

192 A/IA

(0.6814@.'~'

0
0.006
0.21
1.09
1.75
1.95
2.01

1

1.02875
1.221 20
2.00000
4.00000
8.473 85
(6a)'"

0
0.01
0.1

1.0
10.0

100.0

13,572. ~ ~

2.924. . .
0.630. . ;
0.136. . .
0.029. . .

0

TABLE I. Approximate GS energies for the AHO/DWP obtained from the GEP. See Eqs. (3.4) and
(3.5) for g & —3.385 and (3.8) and (3.9) for gi & —3.385. Energies are quoted relative to the classical
ground state as zero, so the error column represents the percentage by which the GEP result overesti-
mates the quantum zero-point energy.

k/Im I3

—50

1.414. .
0.5
0.177. .
0.0625.
0.045. .
0.027. .
0.016. .
0.001. ~

0

1.87660
1.21341
0.707 11
1.16444
1.253 78
1.324 95
1.364 1-5

1.409 95
vz

0.681-309
0.477014
0.441 942
0.651360
0.669 565
0.685 542
0.694821
0.706043

v 2/2

3.32
5.11
9.86

11.84

1.36
0.64
0.05

0
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3 A
VG(go ——0)= —,Q 1 —— +cr, (3.4)

where

Q —m Q —6A, =O . (3.5)

As noted earlier, this is exactly the same as applying the
first-order CK method. The result is accurate to within
2% even in the strong-coupling limit, ' as seen in the
first part of Table I. By contrast, the one-loop approach
gives an estimate of Eo which is —,m for all A, . This is ac-
curate for weak coupling, but it becomes quite unrealistic
for A, ) 1. The problem is simply that V" at the origin is
then not a good measure of the effective width of the well.

In the 0%'P case the situation is more interesting.
With g negative, but small, the GEP retains a single-well
shape, showing the "symmetry restoration" phenomenon
described earlier. As g becomes still more negative,
VG(go) evolves into a double-well form. The two cases
are exemplified by g = —1 [Fig. 4(a)] and g = —10 [Fig.
4(b)]. One can easily show that in all cases the origin is a
minimum, never a maxirnurn, since

d'VG/dPo'
I y, =o=Q2

I y, =o (3.6)

For small negative g this minimum continues to provide
us with our estimate of the ground-state energy. Howev-
er, for g & —3.385044 there is a deeper minimum at the
position

(Note that their Z corresponds to our —g~.)
The formulas for constructing VG(go) have already

been given in Eqs. (2.13) and (2.14). For the AHO,
ao &g &0, the shape of VG(go) can easily be imagined,
and so we do not show a figure. The minimum is of
course at the origin, and it yields the following estimate of
the ground-state energy Eo.

where Q is the larger positive root of

Q'+2m'Q+12A, =0 . (3.9)

[The other positive root corresponds to the local max-
imum of VG(go) between Po;„and the origin. ] Thus for
large negative g, our estimate of the GS energy comes
from Eqs. (3.8) and (3.9). As g ~—ee this estimate be-
comes exact because the system becomes essentially two
independent harmonic-oscillator wells. This provides a
substantial improvement over the CK method, which
remains committed to the Po

——0 result and which be-
comes progressively worse as g ~—ae.

As shown in Table I, the GEP gives a good estimate of
Eo for all values of g . The worst case occurs for
g =—3, in the transition region between single-well and
double-well behavior. Nevertheless, the GEP results
remain reasonably satisfactory even here Ex.trapolating
from the tabulated values, we estimate that the error is
never worse than about 20%.

In contrast, the 1LEP shows pathological behavior. It
is very similar to the GEP at large Po, but quits abruptly
when the second derivative of the classical potential be-
comes negative. (See the dotted lines in Fig. 4.) For small

Po the 1LEP is undefined or, if preferred, it may be said
to have an imaginary part. According to folklore, this is
supposed to be an indication of some sort of instability at
small Po. Clearly, this is not the case for small negative

g, as in Fig. 4(a), where the GS wave function is actually
concentrated at small Po.

Returning to the GEP, we can extend the results to the
excited states by computing the excited-state generaliza-
tion of VG defined in Eqs. (2.16) and (2.17). The calcula-
tion is almost equally simple and gives

VGJ(po)=V(po)+(j +Y~)Q 4(2j +2j +1)A/Q

(3.10)

1 q 6A,
No, min =

4g
m +

with energy

1/2

(3.7)
where

Q3 —(m +12lpo )Q —6A(2j +2j+1)/(2j+1)=0 .

(3.11)
VG (po;„)= —,

' Q(1+ 3A, /Q ), (3.8)

2=

4 5 (b)

FIG. 4. Effective potentials for the double-well potential; (a)
g~= —1 (A, /Im

I
3=0.5) and (b) g~= —10 (A, /Im

I

3

=0.015 811). Solid curve=potential; dashed curve= GEP; dot-
ted curve=lI. EP. The arrow indicates the exact GS energy.
Only the right-hand half of the symmetric potential is shown.
The GEP and 1LEP almost coincide for large $0.

When this potential has its global minimum at Po
——0, as

is always the case for the AHO (g & 0), our eigenvalue es-
timates coincide with the first-order CK method. This is
known to give excellent results, even in the strong-
coupling limit. ' " (For g =0, the errors interpolate
smoothly between + 2% for j=0 to —1% for j~ae.)

For the DWP at large negative g, VG z(Po) has basically a
double-well shape for small j, evolving to a single-well
shape for large j. This corresponds to the low-lying states
being located within one or other of the two wells, while
the high-lying states above the barrier see only a single
overall well. Note that j does not necessarily correspond
to the principal quantum number, as the states may have
to be renumbered: When VG J(go) has its minimum away
from the origin, it indicates a pair of degenerate states,
one in each well. In reality, of course, these "degenerate"
states are split by a small amount, due to tunneling be-
tween the two wells, but the GEP is blind to this small ef-
fect. [However, when tunneling becomes a large effect, it
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is seen by the GEP through the lowering of the effective
barrier (cf. Fig. 4).]

As far as we can tell from the rather limited compar-
ison with the exact results of Ref. 22, we obtain a reason-
able description of the DWP eigenvalues by this means.
It is rather remarkable that in just two simple equations,

. (3.10) and (3.11), one can summarize an approximate
description of the entire energy-level structure of the
AHO/DWP for all coupling strengths.

B. An asymmetric double-we11 potential

It is quite straightforward to extend the calculations to
a general sextic potential

&j I»'lj &=JQ,

&j lk'l j&=40'+J/Q,

&I I
~'t I & =~'+3J~./Q,

(J
~ p ~ J &=$0 +6JQO /Q+3(4J +1)/(8Q ),

(J
~ p ~ J & =$0 +10J$0 /Q+ 15(4J +1)$0/(8Q ),

(j ~ $ i j & =$0 + 15JQO /Q+45(4J +1)$0 /(8Q )

+5J (4J'+ 5)/(8Q') .

(3.13)

The required matrix elements, in terms of J—:j+ —,, are

V(P)= g c„P".
n=0

(3.12)
From these results we find the generalized GEP can be
written as

VG J
——V(gp)+ JQ —

z (c4+5c5$0+ 15c6$0 )—3(4J +1) 5J(4J'+ 5)
C6,

8Q 4Q
(3.14)

with 0 given by

—4JQ +8J(cz+3c3$0+6cqpo +10c5$0 +1 c5$60)Q +6(4J +1)(c4+5c5$0+15c6$0 )Q+15J(4J +5)e6 0. ——
(3.15)

The particular example we wish to discuss is a potential
of the form

V(p) = —,[~'(p)+U'(p)],

with

(3.16)

U(p) =(I+/')(1 —ihip), (3.17)

which arises in a supersymmetric QM model studied by
Karsch, Rabinovici, Shore, and Veneziano (KRSV). We
shall not discuss the supersymmetry aspects here: for our
purposes the potential is simply an interesting example for
which some exact results are known. The special features
of this kind of potential are (i) the GS energy is exactly
zero, with the GS wave function being exp[f v(P)dP],
and (ii). for small m it is "almost" an example of quantum
effects interchanging the roles of true and false vacua, as
discussed in Sec. II [see Fig. 2(d)]. We say almost because
here the ground state remains localized in the deeper, nar-
rower well, as in the classical case, but all the other low-

lying states are associated with the higher but broader
well (for sufficiently small m).

We see this phenomenon very nicely through the GEP.
Figure 5 shows the case m=0.2. The ground state corre-
sponds to the minimum of the GEP (dashed line), which
occurs in the right-hand well and has a value of approxi-
mately zero. The GEP has another prominent minimum
in the left-hand well. This corresponds to the first excited
state of the system, having much lower energy than a
one-quantum excitation in the very narrow well, as can be
seen by comparison with VG i($0) (dot-dashed curve). The
second excited state of the system is a one-quantum exci-
tation in the broader well, corresponding to the lowest
minimum of VG i($0). (For the higher states the situation
is complicated, since we enter the transition region to

I I I
I j

l j
I

I
I
I
l
1

j I[
!I
j I

I

I )
j t

!
j I

j l

'N.J
t

I
I
I

2 4

m=0. 2

FIG. 5. The KRSV potential, Eqs. (3.16) and (3.17) with
m =0.2. The GEP is the dashed curve, and its first-excited-
state generalization is the dot-dashed curve. {See Figs. 3, 4, and
6 of Ref. 23.)

I

single-well behavior. ) This picture of the energy-level
structure, and the kind of wave functions it implies, com-
pares very well with the numerically computed results of
KRSV in their Figs. 3, 4, and 6. A comparison of the ap-
proximate eigenvalues from the GEP with the exact re-
sults is shown in Table II.

With the GEP it is easy to proceed to smaller values of
m (whereas numerical integration of the Schrodinger
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GEP Exact

Eo(m =0.2)
E)(m =0.2)
E,(m =0.2)

0.036
1.17
2.88

0
1.15
2.91

Ep(m =0.5)
E)(m =0.5)
E&{m =0.5)

0.13
1.03
2.30

0
1.02
2.40

TABLE II. Eigenvalues for the KRSV potential, Eqs. (3.16)

and (3.17) showing the comparison between the approximate
values obtained from the GEP and the exact values from Ref.
23.

that dominates, turning the potential well into an ap-
parent barrier. The effect is clearly seen in Fig. 6 which
shows the 1LEP (dotted curve) in the cases l=0.2, l=0.1,
on the same scale. The rapid growth of the "barrier"
height as l-+0 is evident. This behavior of the 1LEP
bears no relation at all to the rea1ity of the physical situa-
tion. (Of course, the fact that the one-loop "correction
term" is much larger than the classical term is a warning
not to trust the one-loop result. )

To calculate the GEP in this case it is easier to use the
direct integration method of Eq. (2.7), rather than the
a, a t formalism. The result is

Ql~
VG(po, Q) = —,

' Q ——
1+Ql'

1/2 —Qgo
P

equation becomes progressively harder). One sees clearly
the phenomenon described by KRSV, with the spectrum
tending to that of V(P)= —,[(I+/ ) +2/] [the m~0
limit of Eqs. (3.16) and (3.17)], but with an extra state-
the ground state, with Ep ——0 and (P)=1/m.

As KRSV discuss, a field theory with this kind of po-
tential could be very interesting. The normal one-particle
excitations of the true vacuum would be extremely mas-
sive, so it may be that the lowest-mass excitations are ex-
tended objects—bubbles of false vacuum with some defin-
ite size. (There is perhaps some connection with the
ideas of Lee and Wick. '

) With the help of the GEP one
may be able to explore this possibility further in the fu-
ture.

C. The Gaussian well and the 5-function potential

Next, we consider a potential well of finite depth, where
the potential levels off to a constant value as P~+ ao. As
noted in Sec. II [see Fig. 3(b)], the so-called effective po-
tential in such cases is simply a constant, V,ff(gp)=Ep,
and it is interesting to see how the GEP and 1LEP fare in
the same circumstances.

A convenient example to study is an inverted-Gaussian
potential

(3.18)

with Q given by

(3.20)

1'

—'Q' (1+Ql ) =K 1 — exp
2QPp —Qgp

1+Q/ 1+Ql

(3.21)

The result is plotted as the dashed line in Fig. 6 and, for
these small l values, it has a very shallow bowl shape, in-
dicating a bound state just below the continuum, near the
top of the well. This does correspond to reality.

Note that the GEP lies below the classical potential at
large P, something which is inherently impossible for the
1LEP. However, this is "right" in the sense that the ef-
fective extent of the well is much greater than the width
of the classical potential. This is obvious from the 5-
function limit, where the classical potential has zero
width, yet the exact GS wave function has a finite extent,
=I/(aV m). However, it must be admitted that the GEP
grossly exaggerates this spreading-out effect, as it has an
extremely long tail, behaving asymptotically like Pp
(As Pp —& ao in (3.21),

Q~(2yp')-'[I —(e/8)'"(ago) '+O(yo ')]
resulting in VG(gp) ~—(2e) ' a/Po. )

Depending on the parameters, this well admits one or
more discrete eigenstates with negative energy, and a con-
tinuum of positive-energy scattering states. As 1~0,
with tc fixed, the well becomes deeper and narrower, ap-
proaching the form V(P)=aV m. 5(P). Although the po-
tential becomes singular, the physics of this limit is
smooth: There is just one bound state, with energy
——,'mv, and whose wave function approaches the form
exp( —a~i.

~ P ~

).
This exainple is a good illustration of just how silly the

1LEP can be. The 1LEP,

—I0

I ) I I s t

4 =0.2
-10

Vii(ko) = V(ko)+ i [V"(4o)]'", (3.19)

is undefined in the large-p region, where V"(pp) is nega-
tive, and exists only for

~ p ~

&l/V 2. Furthermore, in the
central region where it does exist, its behavior is quite per-
verse: For small l, it is the positive —,( V")' contribution

I

0 0P
I i I i I

FIG. 6. The Gaussian potential well, Eqs. (3.18) with a=1
and l =0.2,0. 1, illustrating the approach to the 5-function limit,
l~0. Dashed curve=GEP; dotted curve=1LEP.



30

FIG. 7. The 5-function potential V= —V e.8(P},with its as-

sociated GEP {dashed curve). The dot-dashed curve represents

the first-excited-state generalization of the GEP {though see text

for explanation).

FIG. 8. The "crater potential, "Eq. (3.25) with U =I =1 and
v=1. Its associated GEP is the dashed curve, shown enlarged
in Fig. 9.

The shape of the GEP in the 5-function limit is shown
in Fig. 7. Note that the value at Pp ——0 is —a, to be com-
pared with the exact eigenvalue —

2 7TK .
The next question to consider concerns the excited

states. There should be none, when l is small. Does the
GEP approach see this, and, if so, how7 To answer these
questions we compute the excited-state generalizations of
the GEP. Again we use the direct integration approach,
with the excited oscillator states used as trial wave func-
tions being written out explicitly as Hermite polynomials
times a Gaussian. For example, to construct VG &(Po) one
uses

' 1/4

f=(2Q) ~ (P —Po)exp[ ——,'Q(P —Po) ] . (3.22)

For simplicity we quote the result only for the 5-function
limit, I~O (the behavior for small, finite I is qualitatively
similar):

with

VG i(gp, Q)= ,'Q 2a—gp Q—~ exp( —Qgp ), (3.23)

1/(2Q' ) =2xgo (1——', Qgo )exp( —Qgo ) .

The optimization condition for Q has a very different
character from Eq. (3.21) above. At large Pp there are two
solutions: the smaller-Q solution corresponds to a local
maximum of VG &(Pp, Q), so it is the larger-Q solution
which is relevant. When inserted into Eq. (3.23), this Q
gives rise to the dot-dashed curve in Fig. 7. As Pp is de-
creased, the two solutions come together, coalesce, and
then disappear for Pp & Pp «,——(0.7685 }a '. In the
small-Pp region there is no solution because VG, (pp, Q) is
a monotonic-increasing function of Q. Its minimum
value occurs at the end point Q=0, where VG i

——0. (We
did not encounter this situation in the earlier examples be-

cause there Q —+0 gave rise to an "infrared divergence. "
Here, since the potential is bounded above, an infinitely
spread-out wave function has finite energy. ) Note that the
end point Q=O actually takes over from Eq. (3.24) as
soon as the latter starts to give a value for VG i which is
greater than the end-point value of zero. This breakpoint
occurs at

~ Pp ~
=Ppb i,=(0.8744)a ', just before the

solution to (3.24) disappears. Thus, VG i(Pp} is given by
the dot-dashed curve for

~ Pp ~
&go»„i„where it crosses

the axis, and equals zero for J Pp ~

& Po»«k.
The large-Pp behavior of VG i(Pp) seems peculiar, espe-

cially as it lies below the GEP itself. This must be admit-
ted to be an artificial pathology, unrelated to any real
physics. However, from the behavior at small Pp, one
would naturally conclude that the potential does not ad-
mit any excited states —which is indeed the case.

D. The crater potential

An interesting variant of the potential studied in the
previous subsection is the form

V(P)=U( —1+2' /l )exp( —P /I ), (3.25)

in which the central well is guarded on each side by
"crater walls" (see Fig. 8). In the previous case of a rim-
less bowl-shaped potential, there was always at least one
bound state. Here, it is possible for there to be none. This
happens if v is too large, when the narrowness of the cen-
tral well pushes the energy of the would-be ground state
above zero. It then becomes metastable; a resonance
which can decay into the continuum of unbound, non-
norinalizable, scattering states. We can see this effect
nicely through the GEP, and the results are instructive be-
cause they bear a striking similarity to the behavior found
in p field theory in 3 + 1 dimensions. s

Calculating VG(gp, Q) we find

VG(go, Q)= —Ux'i [(1—v)+vx(1 —2xgoz/I )]exP( —xylo /l ),
4/2 (1—x)

where

(3.26)



30 GAUSSIAN EFFECTIVE POTENTIAL: QUANTUM. . . 1721

x=Ql /(1+Ql ) . (3.27)

As usual, this expression has to be minimized with respect to Q, for 0 & Q & M. The stationarity condition d VG/d Q=0
gives the equation

U exp( —xylo /I )[(1—v)(I —2xgc /l )+vx (3—12xgo /l +4x Po /l")] —x'~ /[21 (1—x) ]=0 . (3.28)

However, in this example it can be that the global
minimum of VG occurs at the end point Q=O, where

VG(go, Q) =0.
For illustrative purposes we set U =/ =1 and consider

the two cases v= 1 and v=1.5. For v=1 the potential is
shown in Fig. 8, with VG(go) superimposed. The GEP is
shown on a larger scale in Fig. 9. What happens is this.
The stationarity condition, Eq. (3.28) has two solutions
for Q at small Po. The relevant solution has the larger Q
value: the other solution corresponds to a local maximum
of VG(go, Q). The two solutions coalesce and then disap-
pear when Po exceeds Po,„,——0.9114. Thereafter, Eq.
(3.28) has no solution. However, before this happens, the
local minimum found from (3.28) ceases to be the global
minimum, and at pp=pp b 1,=0.7587 the end point Q=0
takes over. Thus, for po&gob«, 1, one has VG(pp)=0.
(See Fig. 9.) Exactly the same behavior is seen in the
GEP for (p )3+, field theory. '

In the present case, the physical interpretation is clear:
There is a ground state, centered on Po

——0, of roughly the
usual harmonic-oscillator type, with a continuum of ener-

gy levels above it, corresponding to nonlocalized "ionized"
states. (The obvious field-theory analogy would be an or-
dinary field theory at low temperatures, with a phase tran-
sition to more exotic behavior at high temperatures. )

For larger values of v, as we said, the would-be ground
state in the we11 is pushed to higher energies and becomes
an unstable resonance. We see this in the case v=1.S,
shown in Fig. 10. Here, Q=0 is always the global
minimum of VG(go, Q), and so VG(go) coincides with the
Pp axis everywhere. However, the local maximum and lo-
cal minimum solutions of (3.28), still existing at small Po,
give rise to the "ghostly grin" in Fig. 10. The lower of
these two dotted curves can be interpreted as the "poten-
tial well" in which the resonance sits, and its minimum
provides an estimate of the resonance energy.

According to the GEP, the "phase transition" between
the two behaviors (existence or nonexistence of a unique,
normalizable ground state) occurs at v=1.3067. The true
critical value of v is presumably slightly larger than this,
since the GEP is giving us only an upper bound on the GS
energy. [Again, there is a direct analogy with the (p )3+1
results, which show a similar phase transition between
weak and strong coupling regimes. ' ]

IV. COUPLED FIELDS

271 + TP2 + V(01~42) ~ (4.1)

Our trial wave function will now be a two-dimensional
Gaussian, exp( ——,

'
P;Q;JPJ), where the frequency parame-

ter 0 now becomes a symmetric matrix, 0;J. Thus, the
ansatz involves three variational parameters; two principal
frequencies Qi, Q2, and an angle 8 specifying the orienta-
tion of the principal axes of the wave function with
respect to the $1,$2 axes. In terms of the a,a formalism,
we need to generalize Eq. (2.8) to

A. The O(2)-symmetric AHO and the Goldstone potential

We now turn to the case of two coupled fields in 0+ 1

dimensions —or, in QM language, a two-dimensional sys-
tern:

I
)

I I I I
)

I I I I ] I

~ lf Pt ~ ~ ~ to ~ t ~ ~ ~ ~ I ~ 1 ~ ~ tt ~ 0 ~ ~ ~ 0 ~ ~ t I ~ ~ ~ ~ ~ 0 ~ \ ~ ~ ~ ~ 0 ~ ~ ~ '~ I ~ \ ~ ~ 1~ Oi ~ ~I ~

/
/

/. /
/

/
v=-1

/
/

—-01 'Iii JII

I I I I I I I I I I I I I

FIG. 9. A close-up of the GEP for the crater potential of Fig.
8. The dashed line, including the horizontal sections extending

to +00, is the GEP. The dotted lines indicate the inoperative
local-minimum and local-maximum solutions of the optimiza-
tion equation (3.28).

FIG. 10. The "crater potential, " Eq. (3.25) with U=l =1
and v=1.5. The GEP coincides with the P axis. However, the
inoperative local-minimum solution for Q (shown, together with
the local-maximum solution, as the dotted curves) can be inter-

preted as indicating a metastable, resonant state in the central
well.
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0'o, i

No, 2

r

cos8 —sine (20i) '"«i+a»
sin8 cos8

) (2Q2) / (a +at)
(4.2)

The generalization to many fields should be obvious.
We apply this formalism first to the O(2)-symmetric

AHO potential

V(P) = —,
'

m @+A(P)2, (4.3)

cos8 —sin8
sinO cos8

——,i(20i)'/ (ai —ai)
——,'i(20')' (a2 —a2)

where P:—Pi +$2 . The necessary matrix elements are
easily evaluated:

&0
I 2~i'+-'s. '

I 0& =-'(Qi+0.),
&0

~ q
'

~
0& = qp'+(20, )-'+(20,)-',

&0/(P')'/0&=(P()')'+3(20i) +3(20 ) '+2(20 ) '(20, ) '+2(P '[(20, ) '+(20, ) ']

+4(20 i ) '(Pp i cos8+ No, 2sin8) +4(202) '( —Pp isin8+ Pp 2cos8)

From this it is clear that the minimization of VG with respect to 8 will require

4'0, 2/40, 1 or 00, 1/40, 2

(4.4)

(4.5)

The two choices are equivalent, and correspond to the principal axes of the Gaussian wave function being aligned radial-
ly and transversely. Changing notation slightly, we denote the radial and transverse frequencies by 0 and co, respective-
ly. We can then write VG as

VG(gp) = —,
' (0+co)+ —,

'
m [Pp +(20) '+(2') ']

+A[(gp ) +3(20) +3(2') + 2(20) '(2ai) '+6$p2(20) '+2/ (2@i) '] (4.6)

with Q. and co being given by

—~0+ — +A, 2+ +1 m 3 1 34o
4 Q 2Q2 2Qco

1 m 3 1 0o
+4 +~ +2Q +4 co 2& 2Qco co

=0,

=0.
(4.7)

Note that one will have co=0 at Pp ——0, but not else-
where. As before, we can use these conditions to simplify
the expression for VG, yielding

VG(gp)= V(gp)+ —,'(0+pi) — (30'+3''+20co) .
4Q m

(4.8)

It is particularly interesting to look at the m &0 case,
where the potential has a "Mexican hat" shape. [In QFT
terms, this is the (0+ 1)-dimensional version of the Gold-
stone model. ] Results for the cases g2, =—m /(2A, ) /,
= —1 and —10 are shown in Fig. 11, the graphs showing
a radial slice through the potential. By comparison with
the equivalent results for the ordinary AHO (Fig. 4), we
see that the quantum effects are more pronounced in the
O(2) case. Again we see "symmetry restoration" by quan-
tum effects in the g = —1 case, while the ground state
remains at nonzero Pp for g = —10. In the latter case we
note that at the minimum,

~ Pp ~

=3.64, the values of 0
and u are 1.29 and 0.36, respectively. Thus, the wave
function is much more spread out in the transverse than
in the radial direction, exactly as one would expect. Note,

0
(b)

FIG. 11. A radial slice through the Goldstone potential; Eq.
(4.3) with m &0. Conventions as in Fig. 4.

however, that co is not zero; the curvature of the outer
wall of the potential limits the transverse spread of the
Gaussian wave function. Related to this is the fact that if
we compute the energy of the first transverse excitation, it
lies a finite amount above the ground state. There is no
Goldstone theorem in 0+ 1 dimensions. The ubiquitous
(2') ' factors represent severe infrared divergences which
prevent the appearance of a zero-frequency mode. [The
situation is similar in 1+ 1 dimensions, where Coleman's
theorem forbids the appearance of massless bosons. In
higher dimensions the analogs of the (2') ' factors are
no longer infrared divergent, and massless bosons may
arise. ]

We can obtain the 1LEP as before by dropping order-1
terms in Eq. (4.6), together with the terms they produce in
Eqs. (4.7). Although in this section we have been setting
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fi= 1, it is easy to see, by referring back to Sec. II, that the
fi terms are those with denominator (2Q), (2') or
(20)(2'). This leads to

Vii(ko) = V(ko)+ Y~(&+o')

with

(m2+ 12$$ 2)1/2

co=. (m +4k, yp )'

(4.9)

(4.10)

which are the square roots of the second derivatives of
V(Pp) in the radial and transverse directions, respectively.
Thus, the 1LEP becomes undefined for Pp &

I
m

I
/(4A, ),

i.e., inside the circle of classical vacua, and has the strange
appearance shown in the dotted curves of Fig. 11.

B. A coupled oscillator model
with dynamical mass generation

Our final example is the potential

V(P,X)= ,'m P +—gPX (4.1 1)

which, in QI I' terms, describes a massive field p coupled
to a massless field X. As we shall see, the interaction
dynamically generates a mass for the X field. In QM
language, the system consists of a particle in a long, flat
valley running along the X axis. A contour map of this
valley is shown in Fig. 12 for m =g =1; For X=O the
valley is relatively broad, with the sides rising like —,m P,
but to either side the valley becomes narrower, with the
walls rising like ( —,

'
m +gX )P .

Classically, the vacuum is degenerate: the particle is
equally happy to sit anywhere on the X axis (/ =0, X arbi-
trary). However, the quantum claustrophobia of the par-
ticle causes it to shun the narrow ends of the potential,
and favor the broad part of the valley near the origin.
Classically, the particle could escape to infinity, but, ironi-
cally, the restlessness induced by QM fluctuations ensures
that it remains trapped.

Again, it is natural to describe this phenomenon in
terms of an effective potential. Going away from the ori-

Q =m +g(2Xp +1/o)),

co =g(2gp +1/0) .
(4.13)

We illustrate the results for the case m =g =1 in Fig. 13
as a contour map of VG. This shows the effective poten-
tial rising in all directions outward from the origin, just as
we expected. The crucial point is that co, the frequency
parameter associated with the X field, is nonzero.

[There is a subtle point concerning the precise defini-
tion of the "dynamically generated mass" here. We think
it is best defined as the physically observable quantity
E~ —Eo, the energy gap between the ground state and the
first excited state. In field theory, a one-quantum state
has energy (k +m~h& ) +Ep and so the smallest-
e~ergy excitation is iud~ed m~h~ . In field theory this de
inition coincides with the curvature of the effective poten-
tial at the origin, but this equivalence is not true in QM.
We think it best to stick to the physically based definition,
rather than the formal one. For m =g=1 we find

md& =Ei —Ep =0.2—84, which is very different froin

VG/~Xo
I y, =x,=o=~

I y, -x,=o=0 819 ]

gin along the X axis, the particle feels an increasing zero-
point energy associated with its transverse fluctuations in
the narrowing valley. This makes the effective potential
seein to curve upward, even in the X direction, causing an
effective restoring force back toward the origin. In QFT
terms, the induced curvature, being an "effective" X
term, is a dynamically generated mass.

This is exactly the kind of intuition that the GEP em-
bodies. To calculate VG we proceed as in Sec. IVA,
though we quickly find that the appropriate angle 8 is al-
ways zero. This means that the frequency parameters 0
and co can be identified as associated with the P and X
fields, respectively. The result can be written as

VG(4'o»o) = V(fp Xp)+ ' (&+co)—g/(4&oi), (4.12)

with

FIG. 12. Equipotentials of V= z m P +gP X, with

m =g = 1, for energies E=0.1,1,2.

FIG. 13. Contours of the GEP corresponding to the potential
of Fig. 12, for energies E= 1,2,3,4. The value of the GEP at the
origin is E() ' ——0.950.
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FIG. 14. As Fig. 13, showing the effect on the GEP of an ex-
tra gg term in the potential, for g=0.2. The contours remain
closed curves. The minimum is displaced to go ———0.313, and
the energy is lowered to Eo ' ——0.919.

Our example can be made more dramatic by adding a
linear term +gX to the potential. Then the valley slopes
steadily downward to the left. Classically, the potential is
unbounded below, so the system has no ground state: the
particle accelerates off toward Q=O,X=—ac. However,
provided that the slope given to the valley floor is suffi-
ciently gentle, the quantum-claustrophobia effect will con-
tinue to dominate and the particle will remain localized
somewhere just to the left of the origin. This is illustrated
in Fig. 14 for m =g =1 with g=0.2. According to the
GEP, a ground state exists provided

I g I
& ( —,'g)'~, so for

small g we have another example of qu"antum

mechanical resuscitation. " (Note that in this example the
QM effects could not overcome a negative-mass-squared
term. One would need, say, a X P coupling to accom-
plish this. See, e.g., Ref. 27.)

The special case m =0, i.e., V(Q,X)=gg X, where
both fields are classically massless, is particularly interest-

FIG. 16. Contours of the 1LEP for V=gg X . The equipo-
tentials have right-angle corners where they cross the axes. The
value at the origin is zero.

ing. It has been studied recently by Simon, who gives
several rigorous proofs that a unique ground state exists.
The first of these proofs is directly related to the intuitive
ideas we have been using here. A contour plot of the
GEP is shown in Fig. 15. The GEP's estimate of the GS
energy is 0.75g', which compares well with the numeri-
cal result 0.698g ' . The dynamically generated mass
md'„=Ei —Ep ——0.344g '

To be fair to the 1LEP, we should say that it is also
able to see the dynamical mass generation. However, it
does have the slight pathology that it is not differentiable
on the X axis (nor on the P axis if m =0). For the
m =0 case the ILEP has the form

Vtt=gdo'Xo'+( 2g)'"(14oI + IXo I
) ~ (4.14)

whose contours have right-angle corners where they inter-
sect the axes. See Fig. 16. Note that the implied estimate
of the GS energy is zero, which compares poorly with the
exact result 0.698g'~ quoted above.

V. DISCUSSION AND CONCLUSIONS

FIG. 15. Contours of the GEP corresponding to V=gg X .
The value at the origin is Eo ' ——

4 g'

Our motivation in defining the GEP was to obtain a
general picture of the basic physics of a given system; a
picture embodying our intuitive ideas of what quantum
fluctuations do. From the QM examples studied here it
seems that the GEP performs this role rather well. Of
course, in QM—where, from a glance at the potential, one
can more or less guess the basic physics —the concept has
little practical use. However, in field theory, where our
intuition is much less well developed, the GEP gives us a
potentially valuable means of "calculating our intuition. "

Three major questions remain to be considered. The
first is the generalization to field theory, which we shall
discuss in the second paper of this series (see also Refs.
2—6, of course). The second question is how to judge the
reliability of the GEP results: under what circumstances
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will the approximation do poorly, and how can one esti-
mate the error? The third question is what to do next:
having calculated the GEP for some problem, how does
one set about improving the results'? These last two ques-
tions need further attention, but we offer here a few pre-
liminary observations.

As the GEP approach is based on harmonic-oscillator
wave functions, one might think that it can only work in
situations where the classical potential is approximately
parabolic near its minimum. This naive supposition is too
pessimistic. The GEP continues to work excellently for a
pure-P potential, and is satisfactory even in such extreme
cases as a 5-function potential, and the hydrogen atom
problem (see later}. It seems more pertinent to require
that the GEP itself, rather than the classical potential,
should be approximately parabolic close to its minimum.
Let the minimum of the GEP be VG(gp;„)=Ep ', and
let Q;„be the associated value of the Q parameter.
Then, since the trial GS wave function has a width
=Q;„'~2, the GEP picture is self-consistent only if
VG(fp) looks roughly like Ep ' + —,

' Q ' (Pp —Pp';„) in

the region Pp ~;„+Qm;„'~ . The more this condition is
violated, the worse one should expect the error to be.
Looking back at our examples, this idea does seem to have

H= —,'p + V((()),

we propose to write it in the form

a =ao+0
with3

H() ——V(((Ip)+ ,'(p +Q—P),

H.(= V(No+0}—V((()o}—2
Q'0'

(5.1)

(5.2)

(5.3)

and follow the usual Rayleigh-Schrodinger perturbation
procedure. For example, the jth eigenvalue would be cal-
culated as

some validity. However, we have been unable to devise an
approach to error estimation that carries over naturally to
field theory. This is an important problem.

On the third question, of how to systematically improve
the results, we have some more concrete ideas. The essen-
tial point, as hinted earlier, is to regard the GEP result as
the first order in a perturbation series, in analogy to the
CK method. ' ' The only new feature is to incorporate
a possible shift of the field: (I}~go+(I}. If the Hamiltoni-
an 1s

n&j IH.( I
n &nn&n I

H.( I J &n
+n&J IH (Ij&n+ g (o) (o) + ''

n, +1 EJ —En
(5.4)

where E~ '= V(pp)+(j+ —, )Q. At each order the result
will depend on the arbitrary parameter Q, which we pro-
pose to fix by the "principle of minimal sensitivity"2p as
in the CK method. ' " That is, at each order, we require
our approximant to be stationary with respect to Q; the
point being that the exact result is 0 independent, so the
approximation can only be good where it is approximately
Q independent. (See Ref. 20 for further discussion of this
point and subtleties with multiple stationary points, etc. )

It is most important that Q is not fixed "once and for all, "
but is adjusted separately for each physical quantity, and
for each order of approximation. This flexibility is vital
to the success of the procedure in low orders, and to its
convergence in higher orders. ' "' Similar remarks also
apply to the Pp parameter.

In first order this procedure gives

z,'"=min(z, 'o)+n&g IH;„, Ij&n}
Q

=min„&j IH
I j&„,

QO, Q
(5.5)

which reproduces the GEP result. [Keeping the depen-
dence on Pp would give VGJ(gp). ] Higher orders are
straightforward, if tedious. For the AHO this is the CK
procedure: for the DWP there is a difference in that the
optimum shift parameter Pp is not necessarily zero. The
generalization to field theory is again straightforward
(though at some stage it will probably become advisable to
devise a manifestly covariant formalism, i.e., to reinvent

I

Feynman diagrams).
The beauty of this approach is the "benevolent para-

dox" that one can obtain good, nonperturbative results
from a familiar technique —perturbation theory. In field
theory we are constrained by the fact that we can basically
only do Gaussian functional integrations. Our point is
that this does not doom us to conventional perturbation
theory and weak-coupling or semiclassical methods. With
a little more flexibility, we can obtain vastly better results
from calculations of comparable difficulty. The results
do not have to be forced into the straitjacket of an expan-
sion in powers of fi, or in powers of a coupling constant.

Of course, our examples, together with the work of
CK, ' ' only show that the method works in QM: How
well it performs in field theory is a matter for conjecture.
However, the GEP approach should be viewed in compar-
ison to the usual perturbation-theory/loop-expansion
methods, and it can only be better. From the discussion in
Sec. II and from the examples, it seems clear that the
ILEP is merely a "cheap" version of the GEP. It works
only when it approximates the GEP closely: when it
differs it is generally a disaster.

For our parting shot, we return to the hydrogen atom
problem V(r)= —1/r, with r =P) +$2 +$3 . The GEP
analysis is rather messy, but qualitatively it is easy to see
that VG((()p) resembles the dashed line in Fig. l. It is also
easy to calculate the GEP's estimate of the GS energy,
which is —4/(3M) = —0.424k, compared to the exact
result of —O. M . Contrast this success with the 1LEP
which is everywhere complex, and whose real part (which
is just the classical potential) remains unbounded below.
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Suppose we had only the loop-expansion technique:
Would we ever have understood atomic physics?
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