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Theory of the relativistic spinning particle: Hamiltonian forxIInlation and world-line invariance
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The theory of the classical relativistic spinning particle, called the pure gyroscope, is reformulated
in the language of Dirac s constraint Hamiltonian dynamics. So formulated, the particle trajectory
in Minkowski space is shown to satisfy the condition of world-line invariance, in the form of covari-
ant predictivity.

I. INTRODUCTION II. FREE GYROSCOPE KINEMATICS

In 1926 Frenkel' introduced a model of a classical rela-
tivistic point. particle, which has come to bq known as the
pure gyroscope. This model proved to be interesting for
several reasons. (a) It was the first Lagrangian formula-
tion for a spinning particle at the classical, rdativistic lev-
el. (b) It allowed the extension of the correspondence
principle to the domain of relativistic quantum theory.
The pure gyroscope was shown, via Ehrenfest's theorem,
to be the classical limit for a class of first-order relativis-
tic wave equations, e.g., the Majorana equation. (c) Be-
cause of the complex gyrations of the pure gyroscope
within a small region of space, it was considered as a
classical model for an elementary particle. s' This did not
meet with success, but the analysis, coupled with the ex-
tended correspondence principle, shed some light on the
kinematic content of certain relativistic wave equa-
tions. ' The truly significant attempt to upgrade the
structure of thc pure gyloscopc to that of R rclatlvtstlc ro-
tator model for an elementary particle is due to Corben. '

Other models based on "reinvention" of the pure gyro-
scope analysis also occur. '

In this paper we again re-examine the pure gyroscope
for the long-range purpose of constructing an elemen-
tary-part1cle model w1th 1nteract1ng pure gyroscopes as
constituents. To be most useful the theory should rest on
sound Hamiltonian ground. To this end we here reformu-
late the theory of the free pure gyroscope as a problem in
l3irac's constraint Hamiltonian dynamics, and then
check to see if so formulated the theory passes the test of
world-line invariance. '

In Sec. II we briefly review those features of the pure-
gyroscope kinematics which are relevant to the subsequent
discussion. In Sec. III we present the constraint Hamil-
tonian formulation for this model. In Sec. IV we give an
explicit proof of the invariance of the pure-gyroscope
world line by showing that exactly the same world linc
will be calculated by all inertial observers. The method of
proof, called functional reparametrization, requires the in-
troduction of a free, spinless spectator particle to rep-
resent an inertial observer, ' ' and corresponds to a co-
variant predictivity requirement.

where u„=x„, the instantaneous velocity four-vector, is
thc dcrlvatlvc of xp wtth rcspcct to 0', thc PG proper
time, so that Up UI =—.1. There are thrcc 11ncarly 1Il-

dependent constraint equations in (2) and they force the
s;4 to vanish in the frame in which v =0, the intrinsic rest
frame (IRF). Therefore, at rest, the PG is a pure magnet-
1c dipole.

Stncc thc particle ts frcc, Mp~ =0=p~. Therefore, tf
s„„is not required to be separately conserved, then

and in the most general case the velocity and momentum
four-vectors are not collinear. As a consequence of (2) the
sp1n tensor obeys thc 1dcnt1ty

where thc constant s~~sp~=2$0, and so ls the spin '111ag-

nitude in the IRF. We further define the intrinsic rest
mass

which is conserved as a consequence of (2) and (3). It also
follows from (3), (4), and (5) that

2~Up =Pp, +sp, vsvurpo ~$O (6)

Multiplying .through by p& and using (5) yields the identi-

P=ptdsp+ptistI&vopo ~so +rn =0 .2 2=

Successive derivatives of (6) yidd

A spinning particle, described covariantly, is one whose
angular Inomentum tensor is given by

~pv =xppv xvpp+spv ~

where x„ is the instantaneous position four-vector, p„ is
the four-momentum conjugate to x„, and s„„is the an-
tisymmetric spin angular momentum tensor. The pure
gyroscope (PG) is that spinning particle whose spin tensor
is subject to the constraints
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2" 2
$0 U~ =pplpp —M Up

where M = —pppp. Equation (8}admits the solution

xp(cT)=Ap(cTO) slnco1cT+Bp(cTO) cosco1cT+(m /M )PpcT

(8) III. HAMILTONIAN FORMULATION

There are two bases for the usual Hamiltonian formula-
tion of the PG the postulated set of fundamental Pois-
son brackets (PB)

(9a)

which gives the world line of the PG, parametrized by its
own proper time, and

up(cT)=co1[Ap(cTO) cosco1cT Bp—(oo) sinco1o]+mPp /M

where co, =M/so and the amplitudes are given in terms of
the initial conditions by

(x„,x„)=0=(p„,p„), (x„,p„)=5„„,
(xp,s~) =0=(pp, s~),

+
and the postulated proper-time Hamiltonian

H =ctr/2m =0
with P given by (7). Equations (17) ensure that

(17a)

(17b)

(17c)

(18)

&p(CTo}=xp(CTO) cosCO1CTo [u„—(CTO) sinCO1CTol/CO1

—(mpp /M )[cTpcosco1cTp (s1—11co1cTO)jco1]

A p (cro ) =xp ( cTO ) s1nco1 cTp + [up ( cTO ) co sco 1cTp ]/co j

—(mph /M )[oosinCO1CTp+( cosCO1CTp)ICO1]

(10a)

(Mpv&M~}=Mpp5va+Mvp5pa Mpa5vp Mvp5pa &

(19a)

(Mp, p p) =p„5pp pp5„p- (19b}

which is the requisite Poincare group realization, ' and
give as well

and satisfy

(10b) (Mpv, xp) x»5pp——xp5vp —
&

(M„„,X ) =X„5pp X„5„p,—
(20a)

(20b)

Xp=Xp+Sp»P» /PaPa &

it follows that

(12)

Xp mpp /M =(u——p(o.)), (13)

where (u„(o ) ) is the average velocity of the particle along
its world line. Therefore,

Xp(cr) =(mpp /M )o.= (xp(cT) ) (14)

where (xp(cr)) is the average position of the particle in
Minkowski space. Further, using (12), the angular
momentum tensor (1) may be erxpressed as

pp Ap(cTO) =pp8p(cTO) =0

by virtue of (5). Equations (9) describe a particle execut-
ing a helical trajectory in Minkowski space. This oscilla-
tory motion is the classical Zitterbemegung. As viewed
from the momentum rest frame (MRF), defined by p =0,
these oscillations are pure spacelike and take place in a
spatial region with dimensions of the classical Compton
wavelength.

From the covariant generalization of the Pryce center
of mass (c.m. ), ' '

(X„,p„)=5„„,
(X Xp)»= Sp»/M

(20c)

(20d)

Equation (20d) expresses the essential nonlocality of the
covariant c.m. ' Accepting (18) as the Hamiltonian, the
PB equations of motion are

(xp,H)=[Pp+(spasa»P»)/so ]/m =up

(spv&H }=Ppuv Pvup =spv &—

(21a)

(21b)

pppp+(ppspasa»p»)/so +m =0,2 2

Hp sp&&[pv+($»asappp)/sp ] 0
&

(22)

(23)

and the fundamental PB (17). We then obtain the follow-
ing PB among the constraints;

(P,P)=0, (24a)

which, together with the constraints (2), suffice to repro-
duce the analysis of Sec. II.

To put the Hamiltonian analysis on a firm footing we
must treat all the constraints according to the rules of
Dirac's formalism. " In this scheme we start by postulat-
ing the constraints

Mp„X~» X„pp +Sp——„, —
where

(P,&„)=0,
(Op 8 ) Spv+(SpasapSp )/Sp 02

(24b)

(24c)

2
Spv =spv+ (spapap» svapapp )/M (16}

Thus, the postulated constraints are all first class. There
are no second-class constraints so the total Hamiltonian is

for which Sp„——0 and Sp„p„=0. Therefore, Sp„S„„
=2S, where S is the spin magnitude in the MRF. The
relation MS=mso then obtains ' and is the principal
reason the PG fails as a candidate for an elementary-
particle model.

(25)

and the Dirac brackets coincide with the PB. Further,
since 0& has vanishing PB with x,p,s, we may set
A,&

——0, and take
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x„(r)= (2m A, /M )p„r,

xpx~ = —4m A, /M =(m /M )u~u~ ~

(29a)

(291)'

The gauge-invariant equations of motion now lead to the
generalization of (9) and (10):

x&(r) =A&(ro) sincor+B&(ro) cosmos+(2m A/M )p&r,

(30a)

u„(r)=co[A„(ro)cosrar B„(ro—) sin&or j+(2m 2A /Mz)p„,

(301)

where co =2m', u» and

A p ( 'ro )=xp (ro) sl Bcoro+ [up (10) coscoro ]/co

—(2m Ap& /M )[rcsinruro+( coscoro)/~],

(31a)

B~(&o)=xq(&o) coscoro [up(ro) si—ncaa]/~
—(2m Ap„ /M )[rocos~rc —( sincoro)/co] .

(311)

The choice A, =A, i
——(2m) ' gives u„u„=—1, and the

kinematic description of Sec. II is recovered with r=cr
and m =m». There is another interesting gauge choice that
has meaning within the isolated PG system: A, =.A, 2

=M/2m gives X&X&———1. The temporal parameter is
then X, the proper time of the c.m. The world line (30a}
is then explicitly

x„(X)=A&(XO}sincozX+B&(XO) cos~zX+ (p„/M)X

(26)

as the total Hamiltonian. The undetermined coefficient,
A,, represents the gauge freedom still remaining.

From (26) we obtain

xp ——(xp, H)=2A[pp+(s~+„~p~)/&0 ]=up

and (211). The dot now means differentiation with
respect to an as-yet-unspecified temporal parameter r
From (27) we obtain

(28a)

and if A„(XO)=A„(oo),B„(Xo)=B„(oo), where Xo
=X(ciao), (34) is reduced to (9a) for all o. Specifically with
00=0 and thus Xp ——0, we obtain

x„(XO)=x„(oo), u&(XO) =(M/m )u„(crc) .

It is important to understand the sense in which the
simple variable change (33) corresponds to world-line
reparametrization. The relation

where P„=p„/M, assigns the parameter X to X4 in the
MRF, the C.m. pi'opei' tiiile. By the constructlOn (12),
p&(x& —X„}=0 and therefore,

(37)

is an identity (not a constraint) which simultaneously as-
signs the parameter X to x4 in the MRF. If the dot in
(29b) means differentiation with respect to this parameter,
then the gauge is fixed and the PG world line is
parametrized by the c.m. proper time, according to (32).
If on the left-hand side of (37) we use x„(o), as given by
(9a), then the right-hand side of (37) becomes X(o), the
functional form of the reparametrization scheme which
assigns a value of X for each value of o. The result is
(33).

The gauge freedom in the theory permits the PG world
line to be parametrized by its own rest clock, or by a clock
at rest with respect to the c.m. The functional relation-
ship between the two parameters then allows the
reparametrization, from one gauge to the other, after the
respective world lines have been constructed. An explicit
relationship, such as (35), between the two sets of initial
conditions, ensures world-line invariance (WLI) under this
functional reparametrization.

IV. WORLD-LINE INVARIANCE

It is the purpose of this section to show that the world
line of the PG is the same for all inertial observers. The
method used is the demonstration of WLI under function-
al reparametrization. To do this we define an inertial ob-
server as a free, spinless particle, whose world line is a
geodesic in Minkowski space. ' ' This free particle will
be the spectator whose proper clock is used to parametrize
the world line of the PG.

The spectator is described by the Hamiltonian

with Aq(XO) and B„(Xc)gotten from (31) with ro —Xo,
~=coz ——(M/m)~i, and A, =Az. It is important to note
that (32) and (9a), m fact, describe the same world hne.
This is easily shown since from (29b) we have

where k& is the spectator four-momentum divided by the
spectator rest mass m, . If z& denotes the instantaneous
position four-vector of the spectator, then (z„,k„)
=5~~/Nlg» so that

Mlm =o/X=A, z/A, i ——co2/co, .

Therefore,

xq [X(o )j=A„(Xc)sinu to +B„(Xc)cosa' iver+ (mp„ /Mz)o

(34)

z~ (zp, Hg)=——2A,,k~ /m, .

The gauge choice, A,, =m, /2, fixes the clock which
parametrizes the spectator world line to read his own

proper time. Call this temporal parameter ~. The specta-
tor world line is then given by
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z~(v) =kpr .

We now define a two-particle system, consisting of the
PG plus the spectator. The Hamiltonian for this system
consists of the separately vanishing parts, (26) and (38):

H =brig+(m, /2)(k„kp+ 1)=0 .

Since this is a two-particle system, the Poincare genera-
tors are

It is not difficult to see that with the expression (45) used
for v in (30a), there is no exact relationship between the
two sets of A's and B's such that x„[r(a)]=x„(tT)for all
o, unless Ak and Bk =0, but this holds only if k„-p„.

The way around this difficulty is to relax the require-
ment that in the SRF the separation between the instan-
taneous position of the PG and the spectator be pure
spacelike, and require that this condition be satisfied only
on the average. Thus, (43) is replaced by the constraint

Pp =Pp+msKp ~

M„„=(x„p„x„p—„+s„)+(z„k„z„k„—)m, .

(42a)

(42b)
and similarly, X„replaces x„ in (44). Recall that
X&(X)=(p& /M)X, thus r(X) =(pk /M)X, but X
=(m/M)o and, therefore, (45) is replaced by

The group realization is preserved since the position and
momentum of the spectator have zero PB with the posi-
tion, momentum, and spin tensor of the PG.

The world line of the PG is given by (30a), but we must
yet fix the gauge of the PG so that the parameter r in that
expression is, in fact, the spectator proper time. To do
this we might impose the gauge constraint'

kqxq ———~

which also gives

kp(xp —z~ ) =0 .

(43)

(44)

'T( CT) =A k ( crp ) slnco i CT +Bk ( CTp ) cosco io'+ ( mpk /M )0, '

(45)

where

Ak(trp) = —k&A&(tTp), Bk(crp) = —k&B&(op),

sk = —kI,p„.

Equation (43) seeins to represent the obvious generaliza-
tion of the scheme discussed in the last section; in the
spectator rest frame (SRF), defined by k =0, the parame-
ter ~ is assigned to x4, and the separation between the PG
and the spectator is pure spacelike. There is, however, a
problem with this scheme. By the construction (12), the
separation between the PG and its c.m. is pure spacelike
in the MRF. Therefore, unless k& -p&, there are two dis-
tinct inertial frames in which the PG oscillations (Zitter
bewegung) are pure spacelike, and this cannot be. This
difficulty is also seen when we try to test for WLI. We
must start with the PG world line given by (9a), and then
use (43} in the form kzxz(o) = r(tT} t—o find the func-
tional form to be used for r in (30a). Explicitly, this gives

~(o }= (mpk /M )0. .

The substitution of (47) into (30a) then gives

(47)

x„[r(cr)j=A„(rp) sin(compk /M )o

+B„(rp)cos(compk /M )o.

+(2A,m pk /M )p&o .

Since ro =2m A,co i, the choice forced by (46),

A, =M /2m pk

reduces (48) to (9a) with

(49)

V. CONCLUSION

We have recast the theory of a relativistic spinning par-
ticle, the pure gyroscope, in the language of Dirac's con-
straint Hamiltonian dynamics. There are no second-class
constraints and the total Hamiltonian is, aside from a
gauge parameter, the one previously considered. Through
the introduction of a spectator particle (inertial observer),
we have used this gauge freedom to demonstrate world-
line invariance under functional reparametrization. This
invariance ensures that all inertial observers will construct
the same world line for the pure gyroscope, and amounts
to covariant predictivity.

Ap(ro) =A p(tro)~ B~(ro) =By(tTo)

where rp=(mPk /M )crp. Thus, WLI under functional
reparametrization is proved, since the spectator geodesic
is arbitrary. It may appear that the relaxed gauge con-
straint (46) has introduced the possibility of unwanted
timelike oscillations. Such is not the case, however, since
the PG oscillations are pure spacelike in the MRF regard-
less of gauge constraints.
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