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Physical systems of finite size and limited total energy E have limited entropy content S (alterna-

tively, limited information-storing capacity). We demanstrate the validity of our previously conjec-
tured bound on the specific entropy S/E in numerous examples taken from quantum mechanics
(number of energy levels up to given energy), free-field systems (entropy of miscellaneous radiations
far given energy), and strongly interacting particles (number of many-hadron states up to given ener-

gy). In the quantum-mechanical examples we have compared the bound directly with the logarithm
of the number of levels for the harmonic oscillator, the rigid rotator, and a particle in an arbitrary
potential well. For many-particle systems such as radiations, there is no closed formula for the
number of configurations associated with a specified one-particle spectrum. To overcome this bar-
rier we use an efficient numerical algorithm to calculate the number of configurations up to given

energy from the spectrum. In all our examples of systems of scalar, electromagnetic, and neutrino
quanta contained in spaces of various shapes, the numerical results are in harmony with the bound
on S/E. This conclusion is buttressed by an approximate analytical estimate of the peak S/E
which leaves httle doubt as to the general applicability of the bound for systems of free quanta. We
consider a gas of hadrons confined to a cavity as an example af a system of strangly interacting par-
ticles. Our numerical algarithm applied to the Hagedorn mass spectrum for hadrons confirms that
the number of many-hadron states up to a given energy is consistent with the bound. Finally, we
show that a rather general one-channel communication system has an information-carrying capacity
which cannot exceed a bound akin to that on S/E. It is argued that a complete many-channel sys-
tem is similarly limited.

I. INTRODUCTION

The entropy content S of a physical system is an im-
portant quantity in several contexts. For example, the en-
tropy associated with microscopic degrees of freedom re-
lates to thermal properties (heat capacity of a cup of cof-
fee). Similarly, the maximum entropy associated with
measurable macroscopic degrees of freedom quantifies the
amount of information that may be coded in, and then
read out of the system (computer magnetic tape). Entropy
flow rate S is also important. Thus, the maximum entro-

py flow rate associated with macroscopic degrees of free-
dom quantifies the maximal rate of information transfer
(telephone). Needless to say, a specific determination of S
or S requires detailed computation starting, say, from a
particular density operator for a quantum system.

If one is willing to forego precision in exchange for be-
ing spared consideration of details, then several possibili-
ties arise. One proposal is that specific entropy (entropy
to total energy ratio S/E) is always bounded from above
in terms of the radius of the sphere that circumscribes the
(complete) system. ' This would mean, for example, that
the information capacity of a device of arbitrary construc-
tion and logic is limited in a predictable way by its linear
size. In a similar vein, the entropy flow rate in a one-
channel system may be limited by the energy available to
form the message/ by its mean energy, or by the energy
flow associated with it. The origin of these bounds is
diverse. The proposed one on S/E was suggested by an
argument in black-hole physics, and received further sup-

port from an investigation of canonical distributions of
quantum fields. ' The associated bound on S is an im-
mediate extrapolation of it to traveling systems.
Bremermann's bound on S is a marriage of Shannon's
channel capacity theorem with considerations about the

role of quantum noise. Pendry's bound on S is based on
a calculation of the entropy carried by traveling modes
populated by a canonical distribution.

The possibilities for bounds like these are manifold,
essentially because there exist many inequivalent defini-
tions of entropy: canonical, microcanonical, . . . . Also a
complicating factor is the related fact that the term "ener-
gy" could be given various meanings: precisely defined
energy, mean energy (Pendry's and our bounds), max-
imum available energy (Bremermann's bound), . . . . The
best policy in the face of such ambiguity would seem to be
to first define precisely what one means by energy, and

then determine S or S from that probability distribution
(or density operator) which maximizes it subject to the
given constraints on the energy.

For example, if the mean energy (E ) is fixed, the dis-
tribution is a canonical one with some "temperature. " Ef-
fectively, Pendry's calculation starts from such a
viewpoint. He eliminates temperature from consideration
by relating the square of entropy flow to the energy flow.
This succeeds because of the one-dimensional nature of
the flow; a different relation would be needed otherwise.
Thus, if it could be generalized to a three-dimensional
standing system, Pendry's approach would give a bound
on S related to (E )3~4 reminiscent of bounds proposed by
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Page, and by Unruh and Wald which hold that the en-

tropy of thermal radiation sets an upper bound on the en-

tropy of any system with like mean energy and volume.
Counterexamples to these bounds are known, but it is
clear from their nature that they do not compromise
Pendry's specific treatment.

Interestingly, if one does not require that (E ) be fixed,
but merely that S/(E) be maximal, then the appropriate
distribution is also a canonical one, but with a special
temperature this time. ' The maximum actually exists
provided the ground state of the system has positive ener-

gy. This is the relevant case for most thermodynamic sys-
tems, despite the existence of field systems with negative
ground energies. However, the usefulness of such an ap-

proach for bounding S in a communication system is
doubtful since here the zero-energy state of the "message"
can exist. '

An alternative meaning for energy is the total energy
available or accessible to the system. Bremermaqp formu-

lated his bound on S in these terms. When the S/E
bound was first proposed, Gibbons" suggested interpret-
ing E as the available energy. He investigated some ex-
amples of fields contained in simple cavities or spaces.
For effectively one-dimensional systems the applicability
of the bound on S/E was well in evidence. For the inore
complicated systems, the labor involved in determining
the bound with a pocket calculator was found to be prohi-
bitive, and the question was left unanswered. Actually
there exists a simple relation between the bound on
S/(E ) and that on S/E, where E is the available energy:
provided the zero of the energy scale is chosen in the same
way, the former must bound the latter from above. The
proof is a slight modification of one given earlier. How-
ever, this is not very useful for the communication prob-
lem since one wants the energy of the message to start
from zero, and under such conditions there is no max-
imum to S/(E). '

Our main purpose here is to investigate extensively the
applicability of the bound on S/E which we state as

S/E & 2m.R /Pic,

and that of the akin bound on the information flow rate I
for one-channel communication systems,

Suppose we want to maximize S/E for allotted energy E.
In the classical case, if N(E) denotes the number of states
with energy no larger than E, then evidently S is maxim-
ized if P; =1/N(E) for states with energy up to E, and
P; =0 otherwise, in which case S=lnN(E). Then,
without regard to E

max(S/E) =max [lnN (E)/E],
where the maximization in the right-hand side is over all
allowed E. Exactly the same result applies in the quan-
turn case. This is best seen by using the energy represen-
tation for p. One can thus hope to evaluate the truth of
(1) when one has a grasp of the shape of the cumulative
density of states N(E) for generic classical or quantum
systems. In the following sections we explore this ap-
proach for various types of physical systems.

In Sec. II we show that (1) is necessarily satisfied by
simple quantum-mechanical systems (vibrators and rota-
tors) regardless of the parameters chosen for them. This
has immediate relevance to the issue of storage of infor-
mation in atomic or molecular degrees of freedom (fu-
turistic data bank). In Sec. III we study a large variety of
examples of noninteracting many-particle systeins (bosons
or fermions) confined to spaces of various shapes. These
are paradigms of blackbody radiation at very low tem-
peratures, or of the computation process seen at its most
elementary level. By a complicated algorithm that calcu-
lates S(E) we verify that there are no exceptions to (1)
among our examples. In Sec. IV we uncover a simple way
to estimate max(S/E) for such systems when the one-
particle spectrum is known. Most interesting, for three-
dimensional systems, whose aspect ratios are not too ex-
treme, we find that knowledge of the first one-particle lev-

el suffices to estimate max(S/E), and to show, with some
confidence, that bound (1) is respected in general.

In Sec. V we extend the concepts developed so far to in-
teracting many-particle systems, such as hadrons. The
empirical Hagedorn spectrum of hadrons is shown to be
in harmony with bound (1). Communication systems are
the subject of Sec. VI. One-channel communication lines
are discussed in some generality, and using techniques
from Sec. II, we show that they must respect bound (2), or
equivalently, Bremermann's rule. Finally, we discuss our
conclusions in Sec. VII.

I & irE/iiiln2 . (2)

In (1) and (2) E is regarded as the total energy available to
the system or signal, respectively. We conjecture that ine-

qualities (1) and (2) are generally valid on the basis of a
variety of evidence which we shall present.

Our starting point will be the definition of S. Classical-

ly, for a system which can be in any of a class of states
with probability P; for the ith state,

S= —g P;lnP;

with gP;=1. In the quantum theory, for a system

whose state is described by the density operator p with
Tr(p) = 1,

S= —Tr( p lnp) .

II. ONE-PARTICLE SYSTEMS

An atom or a molecule could, in principle, be turned
into a short-term information-storage device. The infor-
mation coding would exploit the multiplicity of available
atomic or molecular states. Because these states usually
differ in energy, it is relevant to ask what is the maximum
information which may be coded for given available ener-

gy. Suppose we apply (1) taking care to include in E all
the energies, i.e., rest energies as well as excitation ener-
gies. Of couse, in real atoms and molecules most of the
energy is rest energy, and so (1) predicts, for typical atom-
ic (molecular) dimensions and masses, that the limit is
some 10 bits. This certainly exceeds the logarithm of the
number of atomic (molecular) states below ionization (dis-
sociation) in known atoms and molecules, so bound (1) is
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easily satisfied. (The seemingly discrepant case of hydro-
gen with its infinity of levels is easily accounted for by
remembering that the highly excited states correspond to
dimensions large by atomic standards. ) But it is interest-
ing to consider hypothetical atomiclike systems whose rest
masses could be adjusted at will. Would not reduction of
such masses eventually bring (1) into conflict with the ac-
tual value of max[lnN (E)/E]?

To elucidate this question we shall now consider the cu-
mulative number of states N (E) for one-particle
quantum-mechanical systems described by Schrodinger's
equation. Our examples are meant to capture the essential
features of the electronic, rotational, and vibrational de-

grees of freedom we meet in atoms and molecules. We
want to see whether the peak value of lnN(E)/E is indeed
bounded by 2nR/Pic as predicted by (5) and (1). As ex-
pected, the inclusion in E of the rest energy of the parti-
cle, however small, is essential for the bound to be obeyed,
so we choose the zero of the energy scale accordingly.

f [2m (E —V)]'~ dx =2m.(N+ —,
' )A', (6)

where V(x) is the potential and the integral ranges over x
for which E) V. Evidently, only the whole part of N
given by (6) is to be used. For the moment we ignore the
inherent inaccuracy of the WKB formula for low-lying
states. Evidently, the range of x is less than 2R. Further,
E —V& e where e is E measured with respect to the bot-
tom of the potential well. Thus,

N &R (2m e)'~ /iiiri . (7)

It is also clear that E=e+mc . %ith the notation
e, = e/mc and R» =Rmc/A' we have

lnN(E)/E & FR/2fic,

F=ln(2e»R» /H)/R»(1+e, ) .

(8)

It is clear that within the Schrodinger theory we can only
consider the case e, &1 (nonrelativistic particle). Let us
now maximize Y with respect to e~. The maximum
occurs at the e~ determined by

2R» e»2=m e»exp(1+1/e» ), (10)

and amounts to (e, R» } '. Because e„&1 the right-hand
side of (10) is never smaller than 72.93 and so F& 0.1656.
Therefore,

lnN (E)/E &0.0828R /iric

A. Particle in one-dimensional potential we11

Our first example concerns a particle of mass m in a
one-dimensional potential well. This is relevant to elec-
tronic states (radial Schrodinger equation with electron
mass m), or to vibrational states (m is then a nuclear
mass). Let us assume that its motion is constrained to a
range of size R on either side of an appropriately chosen
point regardless of its energy E. A simple way to count
the number of states N up to and including E is to use the
WKB formula'

B. Rigid rotator

Consider now a two-dimensional system, a rigid rotator
with moment of inertia I and mass m is confined within a
sphere of radius R. This can serve to model the rotational
levels of a molecule (m is molecular mass}. The rotational
energy levels are given by e=j (j + 1)fi /2I with the levels
labeled by j (j=0,1,2, . ..) being 2j+ 1 degenerate. The to-
tal energy is mc +e. Obviously, N(E) is just the sum of
2j+1 from j =0 to the largest j for which mc +e does
not yet exceed E. Denoting this by j, we find
N(E)=(j, +1) . Now, we are interested in the peak
value of lnN(E)/E; this obviously occurs for an E which
is just a rotational level [if E is increased slightly, the fac-
tor E depresses the ratio while N(E) does not grow unless
the next level has been reached]. Thus, with the notation

I, =I/mR and R, =Rmc/fi we may put

lnN (E)/E =2XR /Pic,

X= ln( j» + 1)[R» +j» ( j» + 1)/2I» R» ]

(12)

(13)

As a function of j„Xpeaks at the j, determined by

(2j» + 1)(j» + 1 )ln( j» + 1)—j» (j» + 1)=2I,R, (14)

maxX=2I»R»(j, +1) '(2j, +1) (15)

lnN (E)/E & 0.346R /iric (16)

for our rigid rotator. Thus, S/E obeys the bound (1) re-
gardless of the parameters of the rotator.

C. Three-dimensional harmonic oscillator

Consider next a three-dimensional isotropic harmonic
oscillator of rest mass m and frequency co. This can serve
to model the rotational-vibrational levels of a complicated
polyatomic molecule (m would then be a molecular mass).
Its energy levels are

e =(ni+n2+ni+3/2)fico, (17)

where n;=0, 1,2, . . . . Again, the total energy is mc + e.
N (E) is evidently the number of ways in which the n; can
be added in such a way that the total energy does not
exceed E. Again, the peak lnN(E)/E is reached when E
exactly corresponds to some energy level. If F(n) denotes
the number of ways in which three labeled non-negative
integers can be added to give the integer n, then the peak
value of lnN(E)/E is given by

Of course, if (14) does not give integral j„then the peak
in X cannot be quite reached, and (14) actually gives us an
upper bound on I,R, for a specific j, . But if I, and R,
are so adjusted that the full peak can be reached and

j~ =0, 1, 2, 3, 4, 5, 6, ..., then I~R~ =0, 1.08, 5.24, 13.4,
26.2, 44.1, and 67.7, respectively, with the increasing
trend continuing indefinitely. Because the radius of gyra-
tion cannot exceed R, I~ &1 so we get upper bounds on
I»R, itself to substitute in (15). In this way we find that

for all e. Thus, by (5) S/E always obeys the proposed
bound (1) regardless of the choice of m. lnF(n)R, '[1+(n+ —,

'
)y] 'R/itic (18)
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lnN(E)/E &lnF(n)[2(n + —, )] iR /Pic (20)

since b&1. Now, F(n)&(n+1) so that the ratio in the
right-hand side of (20) eventually decreases with n. For
n=0, 1, 2, 3, 4, 5, 6, . . . we find F(n) =1, 3, 6, 10, 15, 21,
28, . . . so that the peak is reached for n =2:

lnN(E)/E &0.256R jRc . (21)

Again we find the bound on S/E is satisfied for all values
of the parameters m and co.

The range of applicability of our example probably
transcends the pure harmonic oscillator. Any spherically
symmetric potential well resembles a harmonic potential
near the bottom. Since the peak in lnN(E)/E is reached
at low excitation, it-is likely that some anharmonicity of
the potential does not change (21).

If there is a moral to our three examples, it is that,
when rest energy is included in E, the number of states
accessible to a quantum-mechanical system with energy
limited to E is less than exp(2n. ER/Pic). The inclusion of
rest energy in E is crurial. VA'thout it any bound such as
(1) can be surpassed by adjusting parameters of the prob-
lem, i.e., making the moment of inertia of the rigid rota-
tor large. However, the rest energy can be small without
upsetting our result. Since our examples can be tailored to
electronic, vibrational, and rotational levels, we can state
with some confidence that the information that could be
coded in an atom or molecule is indeed bounded by (1).
For real atoms and molecules the maximum inust fall
considerably below (1). In fact, if we consider only elec-
tronic levels (case A) for which the electron mass is the
relevant one, (11) limits the information to a few tens of
bits.

III. MANY-PARTICLE SYSTEMS:
NUMERICAL EXPERIMENTS

There are at least two reasons to study many-particle
systems in the context of the present paper. First, a col-
lation of many identical particles is a paradigm of black-
body radiation, and if any system might be suspect of
violating bound (1), blackbody radiation would be a prime
suspect. After all it has rather large entropy content for
given energy. The second rea'son concerns the computa-
tional process. In considering ways to optimize comput-

for some integer n & 0. Apart from the usual notation R,
we have also used y =fuujmc .

The effective radius of the oscillator is not predeter-
mined: it can be no smaller than the amplitude of the os-
cillator. The quantum virial theorem' assures us that the
expectation of the square of the vector amplitude is just
e/mcoz. We can thus take R as a small multiple b of
this state-dependent quantity. In view of (17) we have

R, =b [(n +—', ) /y]'i

As a function of y, (18) peaks at y=(n+ —,) ', i.e.,
where the oscillator's energy just equals the rest energy.
Of course this point is already outside the nonrelativistic
domain. However, it should be clear that the forrnal peak
value obtained with this y does bound any lnN(E)/E
realizable by the nonrelativistic oscillator. Thus,

Dtn;I= g(n;+g; —1)!jn;!(g;—1)!

for bosons, and

D I n; I = g g;!/(g; n; )!n—;! (23)

for fermions (with n; &g;). These formulas take into ac-
count the identity of particles and, when appropriate, the
Pauli principle. Precisely at E=g n;e;, N(E) undergoes

an increment equal to D I n;] and stays at its new value as
E increases until E reaches the next higher many-particle
energy level. Thus, N(E) is a sum of step functions.

The usual microcanonical entropy is just lnD; it is obvi-

ously very discontinuous, being a "comb" function with
peaks at the many-particle levels. Following Gibbons we
shall define entropy as S(E)= lnN (E), a somewhat
better-behaved function of E. Clearly, S(E)&lnD so that
any statement about the maximum of S(E)/E carries
over to lnD/E.

Given a generic one-particle spectrum, there exists no
general analytic expression for N(E). It is possible to
make some statements about its behavior for large E, but
when the quantity of interest is the peak value of S(E)/E,
one is interested in N(E) for intermediate E as well.
Thus, we have adopted an "empirical" approach in this
section.

(i) Define a spectrum of interest.
(ii) Populate its levels according to some pattern which

assures inclusion of all many-particle states up to some
energy ceiling.

(iii) Bin the many-particle states by energy and thus

ers, a useful reference would be a computing machine, it-
sdf composed of elementary quanta, in which information
is coded in the occupation numbers of the various modes,
and in which the elementary operations consist of shifting
quanta from one mode to another. It is difficult to believe
that any foreseeable computer composed of macroscopic
components could be more energetically efficient or faster
at storing, retrieving, or processing information. Thus, it
is interesting to assess the information capacity of an as-
sembly of quanta, or, equivalently, the inaximal entropy
for given available energy.

Consider a collection of identical noninteracting parti-
cles confined to some volume. These may be described as
quanta of some field. The stationary states are described
in terms of the one-particle energy spectrum. Owing to
the boundary conditions on the confining surface this will

be a discrete spectrum e&, e2, . . . with degeneracies g~,
gz, . . . . A many-particle state is specified by occupation
numbers ni, n2, . . . for the various one-particle energy
levels. In view of the lack of interactions, the total
many-particle energy is $ n;e;

When energy E is available, the number of accessible
states N(E) is just the number of distinct ways in which
the levels may be populated in harmony with the ap-
propriate statistics, and with g n;e; & E Ev.idently
N(0) =1, since the vacuum state is a legitimate state (we
choose our zero of energy at the vacuum energy in this
section and in Sec. IV). The number of ways in which a
set of occupation numbers may be realized is
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form an approximation to N(E) which improves with the
fineness of the bins.

Owing to the labor involved, we implemented this pro-
gram on a microcomputer. A variety of spectra for sca-
lar, vector, and spinor fields in boxes of various shapes,
and in spaces with various dimensions and topologies
were tried. The strategy for populating the levels was the
following. First, a single quantum was successively pro-
moted through the levels in the sense of increasing e; until
this exceeded the ceiling. At each step the number of
states was calculated with (22) or (23) and these numbers
were binned by energy. Then a second quantum was add-
ed at the lowest level, while the first was returned to the
lowest available level (if fermions and gi ——1 this was ei).
Then the first quantum was successively promoted level

by level until the ceiling was exceeded at which point the
second quantum was promoted one level up, and the first
was returned to the lowest available state not below that
of the second. Then the promotion of the first quantum
began again, and the pattern was repeated. Numbers of
states were calculated from (22) or (23) at each promotion
and binned. When the two-quantum system already ex-
ceeded the ceiling at the start of a promotion series, a
third quantum was added at the lowest level, the second
was put in the lowest available level, and the first into the
lowest available level above that. This pattern was repeat-
ed until already at the addition of a new quantum, the
ceiling was exceeded. This populating pattern assures in-
clusion of all states up to the ceiling. At this stage a
count of the number of states in bins up to a given E gives
a good approximation to N(E). In this way N(E) was
obtained for E up to the stated ceiling.

Not surprisingly, the computing time required to calcu-
late N(E) grows very rapidly with the ceiling energy. In

most cases the ceiling was set at some seven times the en-
ergy of the first level. For some examples (notably those
involving one-dimensional and two-dimensional spaces)
we went up to 20 times the first level. The number of
bins used was usually 200 which provided adequate accu-
racy.

Only massless fields were considered since for given
available energy a nonvanishing rest mass reduces the
number of accessible states. Thus, the N(E) we obtain is
actually the upper envelope of N(E) for massive fields,
and our conclusions about a bound on S(E)/E apply as
well to massive fields (masses are included in E as in Sec.
II). We considered the following fields.

(a) The electromagnetic (EM) field without sources
obeying perfect conductor boundary conditions on walls
of the box, or appropriate periodicity conditions for closed
spaces of non-Euclidean topology.

(b) The conformal scalar (CS) field without sources
obeying Dirichlet boundary conditions on walls, or
periodicity conditions for closed spaces. The conformal
scalar equation coincides with the usual scalar equation in
fiat spacetime. Otherwise'

Clg ——,
'

[(q —2)/(q —1)]R,Q=O,

where R, is the scalar curvature and q+1 is the dimen-
sionality of the spacetime. We have insisted on (24) for
consistency; our other field equations are conformally in-
variant.

(c) The neutrino field (SP) obeying the two-spinor Weyl
equation and periodicity conditions for a closed space, or
a special boundary condition' or a spherical box.

We considered a variety of spaces. First we considered
all three fields confined to a spherical box. The one-

TABLE I. Energy levels for conformal scalar (CS), electromagnetic (EM), and neutrino (SP) fields in
various spaces.

Field

SP

EM

CS

CS

SP

Space

Sphere

Sphere

Sphere

Line

Square

S3

S3

S3

Levels e b

Wj„I /R

jnI /R

~(j.r «j.'I)/R
n Rcm. /d

~~(n 2+~ 2)1/2/d

nomic /2R

( l + 1/2)Pic /R

nomic/R

( n +1)Pic/R

(n +1/2)Ac/R

gt

2l+ 1

2(2l +1)

2l +1

-2l +1

n 2

2n(n+1)

2n(n +1)

Ranges

n=1,2, . . . 1=0,1, . . .

n =1,2,-. . . 1=0,1, . . .

n, l =1,2, . . .

n =1~2~. . .

n~pli = 1,2, . . .

n 1)2) ~ ~ ~

l=0, 1, . . .

n Op 1p ~ ~ ~

n 1y2y ~ ~ ~

n 1p2y ~ ~ ~

'R denotes radius and d denotes linear size.
ji and ji denote the nth root of the lth spherical Bessel function and its derivative, respectively.
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particle spectra have been worked out in Ref. 1, for exam-

ple. Likewise, we considered all three fields in an Einstein
universe, a static three-sphere (S3). The CS and SP levels

are given by Al'taie and Dowker, ' and the EM levels by
Mashhoon. ' To investigate the effects of varying num-

bers of dimensions we compared a CS confined to a circle
(Sl) and to the surface of a sphere (S2) with that in S3
using periodic conditions throughout. The curvature term
appears in the last two examples. For 52, where

R, =2/R (R is sphere's radius) and q =2, this term
changes the usual /((+ I) eigenvalue to (l+ 2 ) . Like-

wise, we compared a CS confined to a one-dimensional

line and to a two-dimensional square with that in a cube
(see below). The eigenvalues for all the above cases are
summarized in Table I. Finally, we considered both CS
and EM in three-'dimensional rectangular boxes with a
variety of aspect ratios to check for the effect of shape.
For a box with sides a, b, and c, the energy levels are

e=(i /a +j /b +k /c )'~ M. (25)

For CS, i, j,k= 1, 2, 3, . . . and g= 1. For EM, levels with
one of i, j, or k vanishing are allowed and they have g= 1.
Levels with ijk&0 all have g =2. There are no levels
with two vanishing quantum numbers. %e did not con-
sider SP in rectangular boxes because of the legendary dif-
ficulty in formulating appropriate boundary conditions.

The number of distinct levels required in the actual
computations varied from 20 in the one-dimensional cases
to several hundreds for the rectangular boxes.

In all cases we found that S/E as a function of E starts
from zero at E =0, rises rapidly, and with some oscilla-
tion to what is often an extended plateau, and then de-
creases slowly at larger E's. The three curves reproduced
in Fig. 1 (50 bins were used to produce them) are, to a
large extent, typical of the behavior for three-dimensional
systems. On general grounds we know that the decrease
of S/E must continue since when the number of quanta
in the system is large (large E/ei), thermodynamics is
applicable and predicts S~E ~ (Stefan-Boltzmann for-
mulas). In Fig. 2 we see two examples of the S/E curve
for lower-dimensional systems. Here the oscillations can
be stronger, and the decrease at large E steeper. This last
fits in with the thermodynamic prediction that S ccE ~

o I.0-
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FIG. 2. The entropy-to-entropy ratio as a function of energy
(in units of the first one-particle level) for (A) a conformal scalar
field confined to the surface of a unit sphere, and (B) a scalar
field confined to a unit one-. dimensional space (Dirichlet boun-

dary condition). %e take A=c = 1.

for two-dimensional systems, and S cc E '~2 for one-
dimensional systems.

Since we are mainly interested in max(S/E), we do not
reproduce the curves for all systems, but merely list
max(S/E) for each in column 3 of Table II. These values
were obtained by scanning the results from numerical ex-
periments using 200 bins. It may be seen by comparing
with the last column in Table II that bound (1) is satisfied
without exception.

IV. MANY-PARTICLE SYSTEMS:
ANALYTIC APPROACH

As mentioned earlier, there is no general analytic ex-
pression for N(E) or even for max(S/E) given a generic
system. But it is also evident that detailed computations
such as those in Sec. III are not the perfect answer when
one wishes to understand large classes of systems. We
need a more theoretic approach for that. Here we develop
an analytic approximation for max(S/E) which allows us
to do just that.

Recall the definition of the partition function Z(p) for
a system: the sum of exp( —PE) over all many-particle en-

ergy eigenvalues E. Since N(E) increases by unity at
each eigenvalue, we may replace

g~ f dN(E), (26)
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FIG. 1. The entropy-to-entropy ratio as a function of energy
(in units of the energy of the first one-particle level) for (A) a
scalar field in a unit cube, (8) an electromagnetic field in a box
of dimensions 1~ —, g —,', and (C) a neutrino field in a unit

sphere. Units are such that A=e = 1.

and performing an integration by parts, we have

Z=P f exp( PE)N(E)dE . — (27)
I

The boundary terms from the integration by parts are ab-
sent because N(0 )=0, and because it is assumed impli-
citly that N(E) does not grow as fast as exponentially for
large E (thus, black holes and hadron gas —see Sec. V—are
excluded from this treatment).

A significant way to rewrite (26) is

Z=P f expI E[P lnN(E)/E] —jdE . — (28)

The useful thing here is the explicit appearance of
S(E)/E as we have d. efined it. Now in Sec. III we found
that lnN(E)/E quickly rises from zero to a broad plateau
from which it drops only slowly at rather large E. Since
at large E the integrand is already small, this means that
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TABLE II. Numerically computed max(S/E), analytic ap-
proximation to it, and the universal bound 2' (A, c, and radius
or longest linear dimension taken as unity).

Field-

CS
EM
SP
CS
CS
CS
CS
CS
EM
SP
CS
EM
CS
EM
CS
EM
CS
EM
CS
EM
CS
EM
CS
EM
CS
EM

Space

Sphere
Sphere
Sphere
Line
Square
S1
S2
S3
S3
S3
1X1X1
1X1X1
1X0.95X0.9
1X0.95X0.9
1XO.SXO.S

1XO.SXO.S

1X1XO.2S
1X1X0.25
1X0.66X0.2
1X0.66X0.2
1X0.25XO 25
1XO-25XO 25
1X1X0.1
1X1X0.1
1X0.1X0.1

1X0.1X0.1

max(S/E)'-

0.446
0.711
0.526
0.216
0.220
0.162
1.39
1.02
0.977
1.130
0.264
0.390
0.250
0.365
0.164
0.243
0.154
0.245
0.122
0.197
0.0998
0.149
0.0984
0.218
0.0507
0.0768

g(4) I/4

0.452
0.718
0.537
0.325
0.256
0.193
2.025
1.124
0.944
1.140
0.269
0.384
0.248
0.366
0.162
0.239
0.147
0.270
0.115
0.213
0.0968
0.144
0.0931
0.257
0.0480
0.0723

2mR

6.283
6.283
6.283
6.283
4.443
6.283
6.283
6.283
6.283
6.283
5.441
5.441
5.174
5.174
3.848
3.848
4.512
4.512
3.828
3.828
3.332
3.332
4.454
4.454
3.173
3.173

'From the numerical algorithm.
bFrom Eq. (37).

one can approxiinate well the integral by using max(S/E)
in lieu of lnN (E)/E. Then carrying out the integral expli-
citly and solving for max(S/E) gives

max(S/E) & PI 1 —exp[ —lnZ(P) ) ) . (29)

lnZ = g +g;in[1+exp( —Pe;)], (30)

where the sum is over one-particle energy levels, and
upper (lower) signs correspond to bosons (fermions). If
one has the one-particle spectrum on hand, lnz is easily
calculated to good accuracy from (30) (only a few seconds
of microcomputer time needed). By trial and error one
can find the P for which the right-hand side of,(29) is
largest. Then a good approximation to max(S/E) is ob-
tained by taking the equality in (29). Thus, with rather
limited computation one can circumvent the onerous algo-
rithm of Sec. III which can take anywhere from 20 min to
several hours of microcomputer time to find max(S/E).

The above strategy is still one based on concrete com-

Here the ) reminds us that rigorously there is an inequal-
ity, but that the equality is close by. And obviously the
equality is closest when the right-hand side is maximized
over P.

All this is general. For a system of many noninteract-
ing particles, there exists a well-known alternative expres-
sion for lnZ, '

g(p)= gg;e; ~. (32)

For a system in q space dimensions, the g function con-
verges for p & q. It is evident that"

n (e) & g(p)e+~ (33)

because in g(p) there are n terms, each of the form e;
with e; & e, as well as other positive terms. With the help
of (33) we can integrate (31) to get

lnZ(P) &g(p)P ~gti(p+1)I (p+1), (34)

where gz is the Riemann g function and I is the factorial
function.

Now the idea is to approximate lnZ by a fixed fraction
k of the power of P in the right-hand side of (34). Recall
that we only need lnZ at the P for which the right-hand
side of (29) is maximized, so the approximation is not
necessarily as crude as it would seem. Further, we are
free to choose p to optimize the approximation. In this
connection we recall that for a system in q space dimen-
sions, n (e) rises as ee for large e (volume of phase space).
Thus, if we wish to employ a single inequality like (33),
we must choose p & 3 for it to be valid for one-
dimensional, two-dimensional, and three-dimensional sys-
tems. The choice p =3 is not very convenient because for
three-dimensional systems, g(3) converges only marginal-
ly: g(p) diverges for p & 3. This means that to get a good
approximation to g(3), one must perform the sum in (32)
over many levels. One may not know enough about the
system to be able to do this. As p is raised, fewer and
fewer levels are needed to get g(p) to reasonable accuracy.
However, as p is raised the power law in (33) looks less
and less like n (e) at high e. Thus, as a compromise value
we choose p =4.

Replacing now lnZ(P) in (29) by k times the right-hand
side of (34) and maximizing the right-hand side of (29)
over P, we find

max(S/E) = [24k/~(5)g(4)/x]' [1—exp( —x)], (35)

where the (positive) x is determined by

exp(x) —1 —4x =0 . (36)

This last gives x =2.336. At this point we choose
k =0.141 with a view to doing away with the numerical

putations, and cannot be used for more than one system at
a tiine. To get a more flexible approach, let n (e) be the
number of one-particle energy levels not exceeding e. Ob-
viously n (0)=0 (we exclude systems with zero

odes —for the rationale see Sec. VII). One should distin-
guish n (e) from N(E). They are the saine only for one-
particle systems like those discussed in Sec. II. For a
many-particle system N(E) is a complicated functional of
n (e), and therein lies the subtlety of our subject. We may
now replace the sum in (30) by an integral over dn (e).
An integration by parts allows us to rewrite (30) as

lnZ= I n(e)[exp(Pe)+1] 'd e . (31)

At this point we introduce the "g function" for the
one-particle spectrum



1676 JACOB D. BEKENSTEIN 30

coefficient in (35). This cavalier approach, which does
yield a very simple expression, is mainly justified by the
results. We get the estimate

max(S/E) =g(4)' (37)

max(S/E) & 0.784R /itic .

According to our firidings, the actual values of
max(S/E) are unlikely to exceed bound (38) by more than
a factor of 2. Indeed, every exact result for max(S/E) in
Table II concurs with (38). It thus seems safe to conclude
that systems of scalar, electromagnetic, or neutrino quan-
ta in boxes of arbitrary shapes (but with not too large as-
pect ratios) will respect the more generous blanket bound
(1). Extending this conclusion to systems with high as-

pect ratios is an important problem for the future.

In Table II we have tabulated this estimate of
max(S/E) for the various systems considered in Sec. III
(the g function was calculated using all levels available in
the numerical calculation of S/E). It may be seen that
the agreement with the "experimental" values is very
good, typically better than 10%. The larger discrepancies,
of order 50%, occur only for one-dimensional and two-
dimensional systems. Thus, for three-dimensional sys-
tems the rule (37) seems to be quite adequate when a not
very accurate estimate of max(S/E) is desired.

When the one-particle spectrum is poorly known, so
that it is not possible to explicitly compute g(4}, a crude
estimate of it may be obtained by simply replacing it by
its first term, giei (the first level can usually be deter-
mined easily by variational methods). The approximation
is not as bad as it sounds because g(4) appears only to the
power —, in (37). The new approximation should be best

for systems whose first level is well isolated from those
above it. For such a system the first level does indeed
make a major contribution to g(4). Numerical checks for
the systems in Table II show that the simplified estimate
of max(S/E) usually underestimates the actual value, but
almost never by more than a factor of 2. Somewhat larger
discrepancies occur precisely for boxes of large aspect ra-
tio for which there are many energy levels just above the
first. Thus, for systems with moderate aspect ratios the
simplified estimate provides a "rough and ready" idea of
the largest possible S/E.

Our simplified estimate for max(S/E) also provides a
way to deal with large classes of systems. We have shown
earlier' that for a scalar field in a three-dimensional box
of arbitrary shape (Dirichlet boundary conditions),
ei ~ nomic/R, where .R is the circumscribing radius of the
box. Similarly, for the electromagnetic field (perfect con-
ductor boundary), ei &2.082Ac/R. Insofar as our pro-
posed boundary condition for the neutrino field' makes
sense, e, ~iriiic/R for it. All the examples in Table II
(boxes with some degree of symmetry) ascribe gi ——1 to
the scalar and electromagnetic fields. For boxes with
lower symmetry, this rule should continue to hold. Our
single example for the neutrino field in a box has gi ——2
and this may continue to be true for lower symmetry.
Combining these hmitations with our simplified estimate
we find

V. STRONGLY INTERACTING PARTICLES:
HADRON GAS

Sections III and IV have left two important questions
unanswered. Is the bound on S/E still valid in the pres-
ence of interactions? Is it still valid when many species of
particles are available? It is reasonable to expect that
weak interactions between particles should not affect the
conclusions reached earlier, but that outcome would seem
uncertain in the face of strong interactions? In order to
check this point we turn to the example of a hadron gas,
where (almost by definition} the interactions are strong.
Now hadrons come in a myriad species, so the example is
also well tailored to elucidation of the influence of multi-

plicity of particle species. It has often been argued ' that
multiplicity of particle species will lead to a violation of
the bound. However, it has been shown that such viola-
tion, if it occurs at all, demands very large multiplicity
(maybe 10 species). Much of the polemics are academic:
they refer to massless noninteracting particles of which
there are only a few species in nature. Hadrons with their
rich mass spectrum invite a new look at this issue.

Consider, then, a box sufficiently ample to contain had-

rons. Energy E is allocated to it and may be materialized
in any permissible way into hadrons. What is the max-
imum S/E of the box contents'? For simplicity we here
ignore the contribution to the number of quantum states
from motion of the hadrons. After all, we have shown in
Secs. III and IV that even for massless particles the num-

ber of states associated with motion in the box falls well
short of what is required to violate the bound. For our
(very) massive hadrons this statement should be all the

ore correct. But is not the rationale just stated good for
noninteracting particles, but of doubtful relevance to the
hadron case? To answer this quibble we shall argue, in
the spirit of the bootstrap idea, ' that the influence of
hadronic interactions is approximately accounted for by
considering simultaneously the full complement of had-
ronic species. In this way we sidestep the thorny issue of
interactions, while at the same time focusing on the multi-
plicity of species, which interests us in its own right.
Thus, by nuinber of quantum states (and entropy) we
mean here the contributions from the variety of species
(the entropy first dealt with by Gibbs in connection with
the fainous paradox bearing his name).

In principle the determination of the run of S/E with
energy could be accomplished by the method of Sec. III.
One would list the hadronic mass levels and their degen-
eracies, and would populate them with an algorithm
differing from that previously described only in that it
would treat some levels as bosonic with formula (22), and
some as fermionic with formula (23), (mesons vs baryons).
In reality the hadron mass spectrum is so populous that it
would be almost hopeless, and certainly pointless, to enter
into such detail. After all, one only wants S(E) which is
not very sensitive to the fine details of the many-particle
spectrum, let alone the one-particle spectrum. Thus, we
simplify our treatment in two senses. First, we treat all
mass levels as bosonic. Clearly, this can only have the ef-
fect of overestimating S, and that is permissible when one
desires an upper bound on S/E. Second, we make use of
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a smoothed density of hadron mass levels instead of using
a precise list of resonances.

In practice we employed the serniempirical Hagedorn
density of levels'7

p(e)d e =26300(2.5X 10 +e )
~ exp(e/160)d e . (39)

Here all energies e are meant to be expressed in MeV.
The formula includes spin and isospin multiplicity as well
as hadron-antihadron duplicity. This density is known to
bound the empirical hadron spectrum, and has also been
supported by theoretical arguments. ' '

By means of (39) we constructed an artificial discrete
spectrum in the range 0 to 1500 MeV by partitioning the
energy into intervals of widths varying from 100 MeV at
low energies to 10 MeV at high energies. The center of
each interval was regarded as a discrete energy level, and
assigned a degeneracy factor equal to the number of had-
ron states which reside in the interval according to (39).
Then the many-hadron states with energies up to E were
counted with the help of the algorithm of Sec. III (bosonic
version), and the run of S/E with energy was determined,
with S(E) being the logarithm of the number of hadron
combinations with energy not greater than E. We stress
again that kinetic energies were not included in E.

The curve S/E vs E rises with some oscillations up to a
peak at 0.007 MeV ', and for E & 700 MeV becomes very
flat at a value 0.0056 MeV '. There is an almost imper-
ceptible decrease after that (the contrast with the curves in
Figs. 1 and 2 in this respect results from the exponential
rise of the Hagedorn spectrum). Is the peak S/E found
here consistent with bound (I)? The box containing the
hadrons should be large enough to fit in the typical had-
ron, which is definitely an extended particle. Thus the
box (assumed spherical for simplicity) should be no small-
er than 1 fm in radius. To take it smaller would mean
hadrons could not remain intact, and would have to dis-
solve into quarks chan~ing entirely the terms of our prob-
lem. For R &1&10 ' cm,

2nR/kc &0.0318 MeV (40)
I

so that the bound (1) is obeyed with inore than a factor of
4 to spare. We conclude that strong interactions and high
multiplicity of species do not, at least for the obvious ex.
ample in nature, cause a violation of the conjectured
bound on S/E.

One could also consider an enclosure too small to con-
tain hadrons. The energy would then be materialized as
quarks, leptons, and various gauge particles. According
to contemporary physics there are only some 10 relevant
species (if the number of generations is 3—4), most of
them massive. Further, for a sufficiently small enclosure
the quarks can be regarded as weakly interacting (asymp-
totic freedom). The S/E of such a system can be bound-
ed by the method of Sec. III.

First, we regard the particles as massless —this can only
overestimate S/E. Next, we replace each spinor particle
by two scalar ones, and each vector one by three. For
nearly free massive particles this should be a reasonable
approximation if all that is desired is an entropy. Also by
supplanting spinors by scalars and so sidestepping Pauli's
principle, one is again exaggerating S/E. As the number

of effective scalars we adopt 10 which obviously leads to
a further overestimate of S/E. This quantity is computed
with the algorithm of Sec. III by the simple device of tak-
ing each one-particle level as 10 -fold degenerate. The
conclusion is that for the realistic system

S/E & 2. 13R /Pic .

Thus, the system respects bound (1).

(41)

VI. INFORMATION FLOW

f g (x y)eikz imt— (43)

where x and y are coordinates in the cross section of the
pipe. Denoting by 5 the two-dimensional I.aplacian in x
and y, we find that

kg=(k —co /v )g= —bg . (44)

In (44) we are confronted with an eigenvalue problem
for the operator b, . The eigenvalues b determine the
dispersion relation for waves traveling along the pipe. We
may assume b &0. To have negative b would mean that
the group velocity

vs=uk(b+k2) —in (45)

can exceed c for long wavelengths. If b &0, the frequen-
cies of traveling (hence, information-bearing) waves have
a threshold at ub' . On dimensional grounds we expect
the lowest b '~, if nonzero, to be of order of the reciprocal
transversal size of the pipe. Thus, for a thin pipe the
smallest energy invested in the quanta could be quite
large, and for given E we would get only a few possible
states; this would suppress S. We thus see that the
highest S are expected for a pipe which admits the eigen-
value b =0. For such there is no threshold. An example
of such a pipe is the coaxial cable. ' Henceforth, we deal

In this section we consider the validity of the bound (2)
on the flow of entropy or information. As mentioned in
Sec. I, this bound is merely a reinterpretation of that pro-
posed in Ref. 3. We shall first be considering a one-
channel communication line, essentially a material "pipe"
which is supposed to guide signals coded in some field to
their destination. We want to compute the maximum

flow S for allotted energy E of the signal.
In order not to complicate the analysis, assume the pipe

is straight and of constant cross section, at least over the
length scale of interest. We need not assume the cross
section to be circular; in fact, it could be multiply con-
nected, i.e., coaxial cable, or two parallel wires. The pipe
may be hollow and conducting, or solid dielectric.
Whether a scalar or electromagnetic field is to be guided,
each field component will satisfy a wave equation

p2f —v
2

$2f /Qr2 0 (42)

where u denotes either c for the scalar or electromagnetic
field in a hollow pipe, or c/(index of refraction) for the
electromagnetic field in a dielectric pipe. For simplicity
we ignore dispersion in the dielectric (v assumed indepen-
dent of frequency). The symmetry along the pipe (coordi-
nate z) allows us to concentrate on solutions of the form
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only with such pipes which, for given allotted E, can car-

ry information the fastest.
The one-quantum states out of which the signals will be

built are thus specified entirely by k. In the usual manner
we discretize k by invoking periodic boundary conditions
for the field (large period L). The allowed k are integer
multiples of 2m. /L, and there are two such modes for each
k (sine and cosine). Thus, we have e;=2~L 'i and

g; =2 for i = 1, 2, 3, . . . . With the algorithm of Sec. III
we have established that

max(S/E) =0.162L hrlc, (46}

where, as always, S stands for the natural logarithm of
the number of many-quantum states which can be popu-
lated with allotted energy E (Bose-Einstein statistics were
assumed).

Because the longest wavelengths involved are t., we
must regard L as the size of our signal. The signal thus
takes at least a time L/U in sweeping by a fixed point
since by (45) the signaling speed never exceeds U. We may

thus infer S by dividing by L /U. Further dividing by ln2

to convert from entropy units to bits we have

I & 0.234E/irt, (47)

where I, information flow, is expressed in bits/s. Bound
(47) is still a factor 15 below our proposed universal
bound. The latter, Eq. (2), as well as Bremermann's
rule, thus seem to be obeyed in the realm of one-channel
communication systems, at least those for which our
straight pipes with constant cross section are a good
model.

What happens when several channels are available'? It
would seem that an opportunity would open to surpass
the bound since by allocating the allotted energy in dif-
ferent ways among the channels, one can increase the
number of available states. Actually the number of chan-
nels required to do this is large. A calculation along the
lines of those in Sec. III shows that as many as 2X10
may be required (in essence one considers a pipe whose

every mode is N degenerate, with N the number of com-
murucation channels). But this does not mean that it is
possible to design a complete communication system
which violates bound (2).

Having many channels available is only half the solu-

tion. One still has to solve the problem of integrating the
signals from different channels into a coherent whole. To
complete the communication process all signals must
reach a central unit in the "receiver" where they can be
decoded in concert. Conceptually this calls for an acces-
sory channel that connects sequentia11y into this or that
primary channel, and conveys its information to the
decoding device. It can be seen that the accessory channel
will be the bottleneck of the system, for it too must be
subject to bound (2). If it has available the same E which
was available to the primary channels, the full system
cannot communicate information faster than a one-
channel system.

It could be argued that by boosting the energy available
to the signal at the final stage, one can fully match the
higher communication capacity of the primary channels.

This is true but does not alter the fact that at some stage
in its trip, the signal ties up as large an E as required by
the bound. In fact, when originally described, the bound
was stipulated to apply with E being the energy of the re-
ceived signal

One could try to dispense with the bottleneck channel
by connecting the primary channels directly to the central
unit and scheduling the bursts of information in the dif-
ferent channels so that they would arrive one after the
other. But then the system would no longer be a many-
channel system; only one channel would be active at any

time, and the energy available to it, E, would hmit its I by
(2). So even if E can be reused by the next channel, (2}
still limits I for the ensemble of channels.

The many-channel system can convey information fas-
ter than allowed by (2) if the number of channels is

& 2)& 10, and if the information, upon arriving, is left in
unintegrated format. For example, a large bundle of our
pipes could presumably convey the picture of an object,
and form its likeness upon a screen at a rate faster than
(2) if each pixel of the image is produced by one or a few
channels. However, if what is desired is the further step
of bringing the image into a "brain" to evoke
recognition —"bird" or "flower" —then one will run into
the bottleneck channel, and bound (2) should limit the rate
of flow of information for the full process.

We conclude that the full communication process to its
end as integrated information at a central unit cannot
transcend the stated bound (2), even if many channels are
involved.

VII. CONCLUSIONS AND DISCUSSION

One conclusion supported by several examples (Sec. II)
is that a nonrelativistic quantum-mechanical system with
limited size R has a limited number of energy levels (in-
cluding degeneracy) not exceeding the exponential of a
number of order of the ratio of R to the Compton length
of the system. This conclusion is in harmony with bound
(1) when E is interpreted there as rest energy.

For systems of identical particles (quantum fields) con-
fined to spaces of finite effective radius R, one may con-
clude, on the basis of many numerical examples (Sec. III)
and a crude analytic argument (Sec. IV), that the rnicro-
canonical entropy is indeed limited by bound (1), with E
being the total energy available to the particles (including
rest masses, if any). Vacuum energy plays no role in this
formulation; thus the result is not subject to the problem
pointed out by Page, Unwin, and Deutsch' for the ear-
lier formulation of the S/E bound. ' There are some sys-
tems which approach bound (1) to within a factor of 5
(Table II).

One seeming loophole in the results of Secs. III and VI
hinges on their being based on the assumption that the
cavities enclosing the fields are empty. In a cavity filled
with dielectric all formulas relating to S/E of photons
would be changed by the replacement c~c/(index of re-
fraction). If the index is large, the peak S/E is increased
proportionately. For example, from Table II we might
infer that S/E of photons in a sphere filled with dielectric
of index 10 slightly exceeds bound (1). However, this
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would be a hasty conclusion. The electromagnetic inodes
in a dielectric are a property, not only of the electromag-
netic field, but also of the collective oscillations of the
dielectric (the photons are "dressed" ). Hence, in the spirit
of Secs. II and III we must include the dielectric rest ener-

gy in E. Now, the particles comprising the dielectric are
confined within effective radius R, so their Compton
lengths must be smaller. Hence, each contributes rest en-

ergy at least as large as Pic/R. When these energies are in-
cluded in E, max(S/E) is much reduced below the naive
estimate, since in all cases considered S/E peaks at ener-
gies a few times Pic/R. It is of importance that unless
there are many dielectric particles (and S/E is strongly
suppressed by the large E), the (in dielectric) one-photon
spectrum loses all but its lower levels because the medium
is not smooth as seen by short-wavelength excitations.
This has the effect of suppressing S. We believe these ef-
fects succeed in keeping S/E (as interpreted) below bound
(1), but have not carried out extensive checks.

Another obvious loophole in Secs. III and IV is that the
possibility of zero (eigenfrequency) modes is not con-
sidered. It would seem that when such a mode is present,
a violation of bound (1) is possible because there are
several zero-energy many-particle states, so S/E can
diverge. Actually the problem goes well beyond the pro-
vince of the bound on S/E: when a zero mode exists, mi-
crocanonical entropy is infinite for any energy. This is so
because for any many-particle state one can construct an
infinity of states with like energy by just adding quanta to
the zero mode one at a time. Thus, N(E) is always infin-
ite.

But our intuition revolts against such a conclusion. It
must be that the entropy so defined is not physically
relevant, that it must be "renormalized. " And the obvious
way to do this is to exclude from N(E) all states which
have some quanta in the zero mode. This purely prag-
matic approach may be justified theoretically in light of
the observation that zero modes (for example that of the

conformal scalar field in S3—see Table I) are generally
spatially homogeneous. We may then think of the quanta
in the zero mode as a "condensate" akin to the classical
part of a quantum field that arises in the theory of sym-
metry breaking. When such a field is second-quantized,
creation and annihilation operators are associated only
with the nonzero modes. The homogeneous static part
(the vacuum value) is left classical. Adopting such a phi-
losophy here means that N(E) will ignore quanta in the
zero mode. This justifies the above ad hoc procedure; the
loophole is thus closed. In effect we treated the confor-
mal scalar field in S3 just in this way in Sec. III.

In principle very large numbers of particle species
(& 10 ) can help to violate bound (1). However, in nature
large nuinbers of species occur only among the strongly
interacting hadrons. The evidence marshalled in Sec. V
supports the conclusion that interactions compensate for
the presence of many species, and bound (1) is still
respected.

The close relation between entropy and information al-
lows us to draw the further conclusion (Sec. VI) that a
one-channel communication system has a limited
information-transfer capacity in terms of the energy avail-
able to the signal. The limit deduced supports our pro-
posed bound on I—inequality (2) as well as the very simi-
lar Bremermann's rule. It also seems likely, as men-
tioned in Sec. VII, that a many-channel system is limited
by the same bound.
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