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Static spin-polarized cylinder in the Einstein-Cartan theory of gravitation
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An exact solution of the Einstein-Cartan field equations is obtained, which represents the gravita-
tional field of a static perfect fluid cylinder with a net spin polarization along its axis of symmetry.
It is found that the gravitational field is stationary, with the cylinder s spin giving rise to inertial-
frame dragging.

I. INTRODUCTION

There has been a considerable growth of interest in the
Einstein-Cartan (-Sciama-Kibble) (EC) theory of gravita-
tion' in recent years, as a result of a most attractive set
of features that characterize this theory. Among these the
ones mostly cited in the relevant literature seem to be the
following.

(i) The EC theory is a natural, as well as moderate, ex-
tension of general relativity (GR). This is reflected in the
fact that on the one hand it retains GR's model of space-
time as a differentiable manifold with a metric connec-
tion, the metric field being reducible at each point of the
manifold to a Minkowski metric, while on the other hand
its field equations are identical with Einstein's, as long as
the gravitational sources carry no intrinsic or spin angular
momentum. It differs from GR in not demanding that
the connection, when expressed in a coordinate basis, be
symmetric, letting, instead, this asymmetry be determined
by the sources' spin density.

(ii) The EC theory is an improvement of GR because it
provides a geometric framework for the description of
spin angular momentum, a physical attribute of elementa-

ry particles as fundamental as their mass.
(iii) It is a gauge theory of the Lorentz group (or of the

Poincare group, or of the group of affine transformations,
depending on the author), and gauge field theories have
been very successful in recent years. This aspect of the
EC theory derives from the very method its field equa-
tions were obtained by Sciama and Kibble, and has been
extensively analyzed and emphasized by Hehl, Traut-
man, and their collaborators.

A new theory, however, or an extension of a successful
one, starts gaining, real strength when, besides being
aesthetically satisfying, it gives birth to new predictions,
insights, and unified descriptions of physically related
phenomena. It is a problem deriving from this category
of expectations that we consider in this paper.

Specifically, since the EC theory allows for the intrinsic
angular momentum of a mass distribution to effect the
gravitational field produced by the latter, it is natural to
expect that spin can replace orbital angular momentum in
giving rise to characteristic phenomena associated with
this physical quantity as predicted by GR. It is well
known, for example, that the orbital angular momentum
of a source gives rise to the "dragging of inertial frames",
by producing magneticlike components in the gravitation-

al field around the source. This effect was first exhibited
in an approximate solution of Einstein's field equations
obtained by Lense and Thirring, which represents the
gravitational field of a rigidly rotating sphere. It was also
found to be present in van Stockum's later exact solution
describing the field of a rotating infinite cylinder of dust.

An encouraging result in this direction was first ob-
tained by Arkuzewski et al. , who showed that, in the
linear approximation, the EC theory reproduces the
Lense-Thirring effect in the case of a static sphere with
nonvanishing spin angular momentum. About the same
time, however, Prasanna's' exact solution for a static
spin-polarized cylinder in the EC theory was published, in
which this characteristic effect was lacking.

It is the issue of the static spin-polarized cylinder in the
context of the EC theory that we take up again in this pa-
per. In the following sections it will be shown that the use
of matching and junction conditions appropriate to the
EC theory, combined with a proper choice of stress-
energy tensor, leads to the exact solution obtained by the
author recently, " in which a static but spin-polarized
cylinder produces essentially the same gravitational field
as van Stockum's rotating cylinder of dust. This restores
the equivalence of spin to orbital angular inomentum as
far as effects external to the gravitating source are con-
cerned.

The structure of the paper is as follows. In Sec. II, an
outline of the EC theory is given, in order to set the nota-
tion and introduce the geometric and physical quantities
appearing in the rest of the paper. Section III contains a
description of the specific forins of the sources assumed
in the derivation of the interior solution presented in Sec.
IV. Section V is devoted to the solution describing the ex-
terior region and its matching to the solution given in the
previous section. Lastly, in Sec. VI, the distinctive
features of the exact solution obtained are discussed and a
(thought) experiment is proposed for testing its validity.

II. THE EC THEORY OF SPACETIME

The geometric model of spacetime einployed by the EC
theory consists of a four-dimensional differentiable mani-
fold with a linear connection compatible with a metric of
signature (—,+,+, +). In terms of a set of vector
fields I ea I, a=0, 1,2, 3, which span the tangent space at
each point of the spacetime manifold, the components
I ttr of the connection are determined by the covariant
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derivative formula (see Ref. 12 for details on notation)

V~ep ——I ~p e&, (2.1)

while the compatibility of the connection with the metric
g is expressed by the condition

to a perfect fiuid in the EC theory, on the basis of a La-
grangian variational principle. The Ray-Smalley tensor
takes into account the contribution of spin to the specific
internal energy, e, of the fluid, the thermodynamics of the
latter being expressed by the formula

gap, y ey(gap) I apy+ I p y (2.2) dE=Tds Jd-(1/p)+ 21 N.pds p (3.2)

where

5gap=g(ea, ep) I apy=gagl py ~ (2.3) .

The torsion of such a metric compatible connection is
defined as the tensor field with components

T py=~ rp ~ A Cps (2.4)

where the quantities Cpz are determined by the commu-
tators of the basis vector fields, when written in the form

[e ,ep]=c p"ey . (2.5)

What distinguishes the EC theory from classical GR is
that in the former theory the torsion of spacetime is not
allowed to vanish identically. Instead, it is coupled to the
intrinsic or spin angular momentum density of matter.
The latter quantity is represented by a tensor field with
components g py, and the spin-torsion relation is ex-
pressed by the equation

T py +25[pTy ]:KS py (2.6)

where T =T~ &, sc is the GR gravitational constant, and
square brackets denote antisymmetrization. Since Eq.
(2.6) is an algebraic one, the name of field equations is
reserved for the set

1

R~p —
2 g~pR =Kt~p (2.7)

[ p]= "'[ p]=(Vy+ y) "p .

It can, thus, be subtracted, leaving the symmetric part
1

R(~p) ——,g~pR =set(~p)

as the field equations proper.

(2.8)

(2.9)

where R =R ~, R~p ——R~~&p, R p&~ being the curvature
tensor, and t p is the canonical or dynamical stress-energy
tensor, which, in general, is asymmetric. The antisym-
metric part of Eq. (2.7), however, is a disguised form of
the conservation of angular momentum equation

where T is the temperature, s the specific entropy, p the
pressure, p the mass density, s p ——p 'S p, and w p the
angular velocity of the fluid. The last quantity can best
be described in terms of an orthonormal frame I e I, in
which the four-velocity of a fluid particle is given by
Q =50 and its spin by s p

—2A,(x )5[ 5p]. In such a
frame,

u)ap g ( a~~ ope) I apQ (3.3)

The Ray-Smalley tensor for the stress-energy of the
fluid can now be written in terms of quantities already de-
fined as

t(ap) ——p(1+a+pip)uaup+pgap+u(aSp) u

—i() (aSp) +Q(aS$)i()ysu (3.4)

where the overdot denotes covariant derivative with
respect to u . In what follows the source term t( p) of
Eqs. (2.9) will be identified with t~ p), and the units will
be chosen such that a = 1 =c, the speed of light.

IV. THE INTERIOR SOLUTION

Following Prasanna, ' we will now consider a spin-
polarized medium occupying the 0&r(R region of a
coordinate system in which the metric reads

ds = e'dt +r —e "dp +e (I' "'(dr +dz ) (4.1)

where )M, v are functions only of r, and (r,y) represent po-
lar coordinates. It will be assumed that all particles of
this medium have their spin aligned along the axis of
cylindrical symmetry (the z axis) and their velocity along
the hypersurface orthogonal timelike killing vector 8, . It
will be further assumed that the tensor fields u, S p have
vanishing Lie derivatives along all three Killing vector
fields B„B~,8,. In terms of the orthonormal basis
(eo=e "B„e)——e" "B„,e2 ——r 'B&,e3 ——e" "8,), the
above assumptions are expressed as

u =5(), S p 4S(r)5[ 5p]——, (4.2)
III. THE FORM OF

THE SOURCE TENSOR FIELDS

In the solution to be presented in the following sections,
the source of the gravitational field will be considered to
consist of a perfect fluid of the Weyssenhoff type, for
which the spin-density tensor takes the form

S p„——u Sp„, u S~p ——0, (3 1)

where S p=S[ap], and u is the fiuid particles' velocity
four-vector, with u u = —1.

As for the form of, the canonical stress-energy tensor,
use will be made of recent results by Ray and Smalley, '
who have constructed a stress-energy tensor appropriate

where condition (3.1) was taken into consideration. When
the same condition is used in Eq. (2.6), it follows that

T~=O, T py
——S py

——u Spy, (4.3)

which, combined with (4.2), shows that T)2 ———Tzi ——2S
are the only nonvanishing components of the torsion ten-
sor.

Given that the geometry of the EC spacetime is com-
pletely determined by the metric and torsion tensor fields,
the assumptions laid out above permit us to characterize
the spacetime region under study as cylindrically sym-
metric and static.

The connection coefficients, curvature tensor, and all
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other geometric quantities for the metric (4.1) and spin
tensor (4.2) are given in Ref. 10, from where we quote the
results pertinent to later calculations. Thus, the nonvan-
ishing components of the angular velocity are given by

where C& is another integration constant. The condition
of elementary flatness discussed earlier makes C3 vanish,
and so we can write the final form of the interior metric
as

woi =—wjo=—
(4.4)

2@2

ds = dt —+r dP +e (dr +dz ) . (4.13)

w&2
———w2~

———S,
where a prime denotes differentiation with respect to r,

V. THE EXTERIOR SOLUTION
AND MATCHING

and

=5iv'e" " (4.5) The EC field equations for vacuum reduce to those of
GR, namely,

SaP= 45—(a5tt)Sv'e" " . (4.6) R~p ——0 . (5.1)

Having assumed that S~2 ———S2~ are the only nonvan-
ishing components of the spin tensor and that on the level
of thermodynamics w p=(Be/Bs ~), according to Eq.
(3,2), it is consistent to put wpi ———wip ——0. From Eqs.
(4.4) and (4.6) it is clear that this is equivalent to assuming

S tt=0, i.e., that spin is conserved. Either one of these
equations then implies that v=C~, a constant, which we
require to vanish in order for the metric (4.1) to reduce to
that of Minkowski on the z axis ("elementary flatness" ).
According to Eq. (4.5), u also vanishes, and, then, use
can be made of Eqs. (4.2) and (4.4} in order to write Eq.
(3.4) as

t~att~ ——diag(m, p i,pz, p3 )

where

m =p(1+e), Pi P2 P —2S————, P3 ——p .2

(4.7)

(4.8)

The vanishing of the right-hand side of Eq. (4.6), on the
other hand, leads via Eqs. (2.8) and (4.3) to

(4.9)

A well-known static cylindrically symmetric solution of
Eqs. (5.1) is the metric of Levi-Civita, '

ds = r'dt's+—r " "dy2+L r " "(dr +dz )

(5.2)

where l,L are constants. It is, therefore, tempting to con-
sider (5.2) as the metric representing the gravitational
field produced by the static cylinder under study, and use
the well-known Lichnerowicz' junction conditions in or-
der to match this solution to the interior metric. This is
the approach followed by Prasanna. ' Arkuzewski
et al. ' have shown, however, that the matching and junc-
tion conditions appropriate to the EC theory are not those
of Lichnerowicz, but a new set, which in our case read

(i) the fluid particles move along the r =R hypersur-
face, separating the cylinder from the vacuum,

(ii) the component of stress normal to this hypersurface
vanishes,

(iii} the metric functions are continuous at r =R, and
(iv)

while the field equations (2.9) become Brgat3 I r =R +0 BrgaP I r =R —0+2+r(att) (5.3)

—p"e 2&+S~= too ——m,
(p, 'Ir)e "+S =tii ——p —2S

p"e ~+S =tg2 ——p —2S

(p'Ir)e "+S—=t33=p,
—(S'+p'S)e ~ = tpz =0 .

The last of these equations demands that

S =Spe

(4.10)

(4.11)

m =p =2S, 2@= (Spr) +Cz, —(4.12)

where So is an integration constant, which renders the
system of the remaining equations very easy to solve. The
result reads

where a,P~r.
The first two of the above conditions are satisfied by

our interior solution, since u =50 and t» vanishes as a
result of Eqs. (4.7) and (4.12). The last two conditions,
however, cannot be simultaneously satisfied by the Levi-
Civita metric in the form (5.2), because Eq. (S.3) demands
that

B'g y I.=R+0=2SoR " (5.4)

This difficulty, along with the fact that it was the Lewis'
stationary cylindrically symmetric solution that van
Stockum was able to match to his solution for the interior
of a rotating cylinder of dust, led us to consider the Lewis
metric as a candidate for the description of the gravita-
tional field outside a spin-polarized cylinder. The Lewis
metric is given by

ds = r(ai e& yi e —")dt +r(—a2 e"+y2 e ~)dP —+2r( aiaze&+yiy2e—~)dtdP+e "(dr +dz ),
where

g= —k ln(rlrp), 2P= —,
' (kz —1)lnr +D

(5.5)

(5.6)
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and k, ro, D,ai, a2, yi, y2 are arbitrary constants, the last four of which must satisfy the condition

cxigp —(x2fi = 1 (5.7)

All these constants are specified in terms of So and R, by making the metric (5.5) agree with (4.13) at r =R, and satisfy
Eq. (5.4) there. The algebra being simple but tedious, we give only the final result, which makes Eq. (5.5) read

/

s = (g—x' " B—x'+")gt +R ( —B x' "+g x'+"gy

where

2 —S R2R—AB(x' —x'+")dt dP+x'" " e ' (dr +dz ) (5.8)

x =r/R, A =(1+k)/2k, B =(1—k)/2k, k =[I—(2SOR) ]'~ (5.9)

The expression (5.8) for the metric is given for 2SOR (1,
so that, according to (5.9), k is real and positive. The
metric form for 2SOR =1 can be obtained as the k =0
limit of (5.8), while for 2SOR & 1 and k pure imaginary a
solution still obtains, but lacks any physical interest, since
it leads to the z =constant surfaces having finite extent,
as discussed in detail in the last section of van Stockum's
paper.

VI. DISCUSSIONS AND CONCLUSIONS

The gravitational field of the static spin-polarized per-
fect fluid cylinder described in the previous sections is
determined by the cylinder's spin density and size only.
This is reflected in the fact that the expressions (4.13) and
(5.8) for the metric field in the interior and exterior re-
gions, respectively, involve only 2SO, the spin density on
the cylinder's axis of symmetry, and R, the cylinder's
coordinate radius. Thus, for SOR =0 we obtain the flat
spacetime of Minkowski.

The dynamical role of spin in the physical problem
studied, on the other hand, is twofold. First, inside the
cylinder it acts as an anisotropic negative pressure which
prevents the cylinder from collapsing under the mutual
attraction of its elements. This can be made explicit by
transferring all terms involving the spin density on the
right-hand side of the field equations (4.10), thus obtain-
ing the field equations of GR with an "effective" stress-
energy tensor describing a "pressure" of the sort just men-
tioned. Second, the cylinder's spin is responsible for the
presence of the t —P cross terms in the metric field out-
side. These magneticlike terms reflect the "dragging of
inertial frames, " usually produced by mass distributions
with orbital angular momentum described in the context
of GR. To our knowledge, the solution obtained above is
the first exact solution of the EC field equations, exhibit-
ing the double effect of spin described in this paragraph.

Of course, inertial-frame dragging is an effect associat-
ed with stationary spacetimes and not simply with time-
space components in the metric tensor. Thus, our refer-
ence to this effect in connection with the metric (5.8)
might seem not well founded, since the gravitational field
outside the cylinder is static, a fact that can be made ex-
plicit via a linear transformation of the t —P coordinates
which brings the metric (5.8) to the manifestly static
Levi-Civita form (5.2). This is also the case with van
Stockum's solution and, till very recently, it was con-
sidered paradoxical that a rotating source produces a stat-

ic gravitational field. The paradox was resolved by Sta-
chel, ' who noted that the transformation that gauges
away the off-diagonal terms in the exterior metric is not a
proper one for the entire spacetime manifold, due to the
periodic nature of the P coordinate.

In contrast with van Stockum's solution where the in-
terior region is stationary, in our case the gravitational
field is static even inside the cylinder. However, one still
cannot find a transformation that eliminates the t —P
components of the metric globally. Equivalently, no time-
like Killing vector can be found which is hypersurface
orthogonal everywhere. Thus, although static by regions,
our solution is globally stationary.

Stachel' has also shown that globally stationary but lo-
cally static spacetimes provide a gravitational analog of
the well-known Aharonov-Bohm effect. ' In terms of this
analogy, the static gravitational field produced by van
Stockum's rotating cylinder of dust corresponds to the
electrostatic field outside an infinite charged rotating
cylinder. The Aharonov-Bohm effect demonstrates the
nonlocal electromagnetic effects of the rotating charge.
Similarly, one can in principle observe the global gravita-
tional effects of the cylinder's rotating mass via an optical
experiment. Specifically, the cylinders orbital angular
momentum is expected to bring about a shift in the in-
terference pattern produced by reuniting two components
of a coherent beam of light after passing them around op-
posite sides of the cylinder.

The solution described in this paper, on the other hand,
provides the gravitational analog to the case of the infi-
nitely long magnet. Thus, an optical experiment of the
type performed by Chambers, in which the Aharonov-
Bohm effect was observed to be produced by a magnetized
iron whisker, can in principle prove the global gravitation-
al effect of the spin angular momentum of the source.

In connection with the analogy with classical elec-
tromagnetism, it should be observed that the fact that the
metric of our solution is static in the interior region of the
cylinder corresponds to the fact that inside an infinitely
long magnet the magnetic field H vanishes. This is not
the case with the rotating charged cylinder, and this is re-
flected in the fact that inside van Stockum's cylinder
spacetime is stationary.

The analogy established above brings forth the issue of
the relation between the EC. theory and Einstein's GR.
According to Adamowicz, "the relation between the EC
theory and GR is similar to that between Maxwell's
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theory of continuous media and classical microscopic
electrodynamics; torsion appears as a by-product of the
process of averaging of GR, exactly as one introduces the
polarization and magnetization vectors in the process of
averaging of microscopic Maxwell's equations. " Hehl
et al. , however, disagree with this conclusion of
Adamowicz and claim that in the context of EC theory
spin is meant to be the spin of elementary particles, there-
fore torsion exists already on an elementary level. Actual-
ly, the analog of classical macroscopic electromagnetism
seems to favor the argument of Hehl et al. Because, even
though one can model the effects of a piece of magnetic

material in terms of a continuous distribution of infini-
tesimal loops of electric current (Ampere's model), the
fact remains that the magnetic moments of its constituent
elementary particles have their origin in the particles'
(quantum-mechanical) spin and thus exist already on an
elementary level.
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